1
|
Sun X, Wu T, Yang Z, Chen S, Zhao Z, Hu C, Wu S, Wu J, Mao Y, Liu J, Guo C, Cao G, Xu X, Huang S, Liang G. Regulatory role of PDK1 via integrated gene analysis of mitochondria-immune response in periodontitis. Gene 2024; 918:148476. [PMID: 38657876 DOI: 10.1016/j.gene.2024.148476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
AIMS To investigate the association between mitochondrial events and immune response in periodontitis and related regulatory genes. MAIN METHODS Gene expression profiles in gingival tissues were retrieved from the Gene Expression Omnibus. Mitochondria-immune response-related differentially expressed genes (MIR-DEGs) between the healthy and periodontitis samples were determined. WGCNA, GO, and KEGG were used to investigate the function and the enriched pathways of MIR-DEGs. The correlation between MIR-DEGs expression and clinical probing pocket depth was analyzed. The MIR-DEGs were further identified and verified in animal samples. A periodontitis model was established in C57BL/6 mice with silk ligation. Micro-computed tomography was used to assess alveolar bone loss. Western blot, quantitative real-time polymerase chain reaction, and immunohistochemical analyses further validated the differential expression of the MIR-DEGs. KEY FINDINGS A total of ten MIR-DEGs (CYP24A1, PRDX4, GLDC, PDK1, BCL2A1, CBR3, ARMCX3, BNIP3, IFI27, and UNG) were identified, the expression of which could effectively distinguish patients with periodontitis from the healthy controls. Enhanced immune response was detected in the periodontitis group with that in the healthy controls, especially in B cells. PDK1 was a critical MIR-DEG correlated with B cell immune response and clinical periodontal probing pocket depth. Both animal and clinical periodontal samples presented higher gene and protein expression of PDK1 than the control samples. Additionally, PDK1 colocalized with B cells in both animal and clinical periodontal tissues. SIGNIFICANCE Mitochondria participate in the regulation of the immune response in periodontitis. PDK1 may be the key mitochondria-related gene regulating B-cell immune response in periodontitis.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China; Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Tong Wu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhan Yang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Shuhong Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zheyu Zhao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Chaoming Hu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Shengzhuang Wu
- School and Hospital of Stomatology, Hangzhou Medical University, Wenzhou, China
| | - Jiayu Wu
- School of Medicine, Jiujiang University, 320 Xunyang East Road, Jiujiang City, Jiangxi Province 332000, China
| | - Yixin Mao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jiefan Liu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Oral and Maxillofacial Surgery/Pathology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Chen Guo
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Xiangwei Xu
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China.
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
| | - Guang Liang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China.
| |
Collapse
|
2
|
Atalay N, Balci N, Gürsoy M, Gürsoy UK. Systemic Factors Affecting Human Beta-Defensins in Oral Cavity. Pathogens 2024; 13:654. [PMID: 39204254 PMCID: PMC11357671 DOI: 10.3390/pathogens13080654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Human beta-defensins are host defense peptides with broad antimicrobial and inflammatory functions. In the oral cavity, these peptides are produced mainly by the keratinocytes of the epithelium; however, fibroblasts, monocytes, and macrophages also contribute to oral human beta-defensin expressions. The resident and immune cells of the oral cavity come into contact with various microbe-associated molecular patterns continuously and simultaneously. The overall antimicrobial cellular response is highly influenced by local and environmental factors. Recent studies have produced evidence showing that not only systemic chronic diseases but also systemic factors like hyperglycemia, pregnancy, the long-term use of certain vitamins, and aging can modulate oral cellular antimicrobial responses against microbial challenges. Therefore, the aim of this narrative review is to discuss the role of systemic factors on oral human beta-defensin expressions.
Collapse
Affiliation(s)
- Nur Atalay
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland; (N.A.); (M.G.)
| | - Nur Balci
- Department of Periodontology, Faculty of Dentistry, Medipol University, Goztepe Mahallesi, Ataturk Caddesi 40, Beykoz, 34815 Istanbul, Turkey;
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland; (N.A.); (M.G.)
- Welfare Division, Oral Health Care, 20540 Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland; (N.A.); (M.G.)
| |
Collapse
|
3
|
Yilmaz M, He Q, Demir E, Teräsjärvi J, Gürsoy UK. Salivary IL-33 and sST2 levels in relation to TLR2 rs111200466 polymorphism and periodontitis. Oral Dis 2024; 30:2254-2261. [PMID: 37427857 DOI: 10.1111/odi.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES Toll-like receptor-2 (TLR2) signalling pathway is involved in the regulation of interleukin (IL)-33 and its receptor suppression of tumorigenicity-2 (ST2). This study aimed to compare salivary IL-33 and soluble ST2 (sST2) levels of periodontitis patients with those of periodontally healthy individuals in relation to their TLR2 rs111200466 23-bp insertion/deletion polymorphism within the promoter region. MATERIALS AND METHODS Unstimulated saliva samples were collected, and periodontal parameters were recorded from 35 periodontally healthy individuals and 44 periodontitis patients. Non-surgical treatments were applied to periodontitis patients, and sample collections and clinical measurements were repeated 3 months following therapy. Salivary IL-33 and sST2 levels were measured with enzyme-linked immunosorbent assay kits, and TLR2 rs111200466 polymorphism was detected by polymerase chain reaction. RESULTS Elevated salivary IL-33 (p = 0.007) and sST2 (p = 0.020) levels were observed in periodontitis patients, in comparison to controls. sST2 levels declined 3-months following treatment (p < 0.001). Increased salivary IL-33 and sST2 levels were found to be associated with periodontitis, with no significant relation to the TLR2 polymorphism. CONCLUSION Periodontitis, but not TLR2 rs111200466 polymorphism, is associated with elevated salivary sST2 and possibly IL-33 levels, and periodontal treatment is effective in reducing salivary sST2 levels.
Collapse
Affiliation(s)
- Mustafa Yilmaz
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Periodontology, Faculty of Dentistry, Biruni University, Istanbul, Turkey
| | - Qiushui He
- Institute of Biomedicine, Research Centre for Infections and Immunity, University of Turku, Turku, Finland
- InFLAMES Research Flagship Centre, University of Turku, Turku, Finland
| | - Esra Demir
- Department of Periodontology, Faculty of Dentistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Johanna Teräsjärvi
- Institute of Biomedicine, Research Centre for Infections and Immunity, University of Turku, Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Gürsoy UK, Özdemir Kabalak M, Gürsoy M. Advances in periodontal biomarkers. Adv Clin Chem 2024; 120:145-168. [PMID: 38762240 DOI: 10.1016/bs.acc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Due to technologic advancements, periodontology has witnessed a boost in biomarker research over the past three decades. Indeed, with the aid of omics, our understanding of the healthy periodontium, pathogenesis of periodontal diseases, and healing after periodontal treatment has improved significantly. Yet, the traditional methods, periodontal probing and radiographies, remain the most common methods to diagnose periodontal disease and monitor treatment. Although these approaches can produce reliable diagnostic outcomes, they generally detect disease only after significant tissue degradation thus making treatment outcome highly uncertain. Accordingly, laboratories worldwide have collaborated with clinicians to design accurate, rapid and cost-effective biomarkers for periodontal disease diagnosis. Despite these efforts, biomarkers that can be widely used in early disease diagnosis and for treatment outcome prediction are far from daily use. The aim of this chapter is to give a general overview on periodontal health and diseases, and review recent advancements in periodontal biomarker research. A second aim will discuss the strengths and limitations of translating periodontal biomarker research to clinical practice. Genetic biomarkers of periodontitis are not discussed as the available confirmatory data is scarce.
Collapse
Affiliation(s)
| | | | - Mervi Gürsoy
- Periodontology, Institute of Dentistry, University of Turku, Turku, Finland; Oral Health Care, Welfare Division, City of Turku, Turku, Finland
| |
Collapse
|
5
|
Hu H, Leung WK. Mass Spectrometry-Based Proteomics for Discovering Salivary Biomarkers in Periodontitis: A Systematic Review. Int J Mol Sci 2023; 24:14599. [PMID: 37834046 PMCID: PMC10572407 DOI: 10.3390/ijms241914599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Periodontitis is one of the primary causes of tooth loss, and is also related to various systemic diseases. Early detection of this condition is crucial when it comes to preventing further oral damage and the associated health complications. This study offers a systematic review of the literature published up to April 2023, and aims to clearly explain the role of proteomics in identifying salivary biomarkers for periodontitis. Comprehensive searches were conducted on PubMed and Web of Science to shortlist pertinent studies. The inclusion criterion was those that reported on mass spectrometry-driven proteomic analyses of saliva samples from periodontitis cohorts, while those on gingivitis or other oral diseases were excluded. An assessment for risk of bias was carried out using the Newcastle-Ottawa Scale and Quality Assessment of Diagnostic Accuracy Studies or the NIH quality assessment tool, and a meta-analysis was performed for replicable candidate biomarkers, i.e., consistently reported candidate biomarkers (in specific saliva samples, and periodontitis subgroups, reported in ≥2 independent cohorts/reports) were identified. A Gene Ontology enrichment analysis was conducted using the Database for Annotation, Visualization, and Integrated Discovery bioinformatics resources, which consistently expressed candidate biomarkers, to explore the predominant pathway wherein salivary biomarkers consistently manifested. Of the 15 studies included, 13 were case-control studies targeting diagnostic biomarkers for periodontitis participants (periodontally healthy/diseased, n = 342/432), while two focused on biomarkers responsive to periodontal treatment (n = 26 participants). The case-control studies were considered to have a low risk of bias, while the periodontitis treatment studies were deemed fair. Summary estimate and confidence/credible interval, etc. determination for the identified putative salivary biomarkers could not be ascertained due to the low number of studies in each case. The results from the included case-control studies identified nine consistently expressed candidate biomarkers (from nine studies with 230/297 periodontally healthy/diseased participants): (i) those that were upregulated: alpha-amylase, serum albumin, complement C3, neutrophil defensin, profilin-1, and S100-P; and (ii) those that were downregulated: carbonic anhydrase 6, immunoglobulin J chain, and lactoferrin. All putative biomarkers exhibited consistent regulation patterns. The implications of the current putative marker proteins identified were reviewed, with a focus on their potential roles in periodontitis diagnosis and pathogenesis, and as putative therapeutic targets. Although in its early stages, mass spectrometry-based salivary periodontal disease biomarker proteomics detection appeared promising. More mass spectrometry-based proteomics studies, with or without the aid of already available clinical biochemical approaches, are warranted to aid the discovery, identification, and validation of periodontal health/disease indicator molecule(s). Protocol registration number: CRD42023447722; supported by RD-02-202410 and GRF17119917.
Collapse
Affiliation(s)
- Hongying Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medical Imaging, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Gürsoy UK, Gürsoy M, Liukkonen A, Suominen AL, Könönen E. Salivary Human β-Defensin 1-3 and Human α-Defensin-1 Levels in Relation to the Extent of Periodontal Disease and Tooth Loss in the Elderly. J Clin Med 2023; 12:jcm12030976. [PMID: 36769624 PMCID: PMC9918087 DOI: 10.3390/jcm12030976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The oral innate immune response may diminish with aging. In the present study, the aim was to examine human β-defensin (hBD) 1-3 and human neutrophil peptide (HNP)-1 levels in the saliva of an elderly population to establish the extent of periodontal disease and tooth loss. A total of 175 individuals aged ≥ 65 years were divided into five groups based on the number of teeth with a pocket depth ≥ 4 mm as follows: 17 pocket-free individuals (Control), 55 individuals having 1-6 pocket teeth (PerioA), 33 individuals having 7-13 pocket teeth (PerioB), 29 individuals having at least 14 pocket teeth (PerioC), and 41 edentulous individuals. Their salivary defensin levels were measured with ELISA kits. The salivary HNP-1 levels were significantly higher in the Perio groups (PerioB: p < 0.001 and PerioC: p < 0.001) in comparison to the Control. The associations between salivary HNP-1 levels and the number of pocket teeth remained significant after adjustments for age, gender, level of education, and number of teeth. The salivary HNP and hBD levels differed in terms of their correlation to the extent of periodontal disease and tooth loss in the elderly.
Collapse
Affiliation(s)
- Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20500 Turku, Finland
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20500 Turku, Finland
- Welfare Division, Oral Health Care, 20101 Turku, Finland
| | - Anna Liukkonen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20500 Turku, Finland
| | - Anna Liisa Suominen
- Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland
- Oral Health Services, 33101 City of Tampere, Finland
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20500 Turku, Finland
- Correspondence:
| |
Collapse
|
7
|
Griffith A, Mateen A, Markowitz K, Singer SR, Cugini C, Shimizu E, Wiedman GR, Kumar V. Alternative Antibiotics in Dentistry: Antimicrobial Peptides. Pharmaceutics 2022; 14:1679. [PMID: 36015305 PMCID: PMC9412702 DOI: 10.3390/pharmaceutics14081679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
The rise of antibiotic resistant bacteria due to overuse and misuse of antibiotics in medicine and dentistry is a growing concern. New approaches are needed to combat antibiotic resistant (AR) bacterial infections. There are a number of methods available and in development to address AR infections. Dentists conventionally use chemicals such as chlorohexidine and calcium hydroxide to kill oral bacteria, with many groups recently developing more biocompatible antimicrobial peptides (AMPs) for use in the oral cavity. AMPs are promising candidates in the treatment of (oral) infections. Also known as host defense peptides, AMPs have been isolated from animals across all kingdoms of life and play an integral role in the innate immunity of both prokaryotic and eukaryotic organisms by responding to pathogens. Despite progress over the last four decades, there are only a few AMPs approved for clinical use. This review summarizes an Introduction to Oral Microbiome and Oral Infections, Traditional Antibiotics and Alternatives & Antimicrobial Peptides. There is a focus on cationic AMP characteristics and mechanisms of actions, and an overview of animal-derived natural and synthetic AMPs, as well as observed microbial resistance.
Collapse
Affiliation(s)
- Alexandra Griffith
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Akilah Mateen
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Kenneth Markowitz
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Steven R. Singer
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Gregory R. Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|