1
|
Viggiano D, Joshi R, Borriello G, Cacciola G, Gonnella A, Gigliotti A, Nigro M, Gigliotti G. SGLT2 Inhibitors: The First Endothelial-Protector for Diabetic Nephropathy. J Clin Med 2025; 14:1241. [PMID: 40004772 PMCID: PMC11856817 DOI: 10.3390/jcm14041241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Sodium-glucose co-transporter type 2 inhibitors (SGLT2i) have emerged as a class of agents relevant for managing diabetic nephropathy and cardiopathy. In a previous report, we noticed that these drugs share, with other drugs with "nephroprotective" effects, the ability to reduce the glomerular filtration rate (GFR), thus suggesting the kidney hemodynamic effect as a proxy for optimal drug dosage. We also noticed that all known nephroprotective drugs exert cardioprotective functions, suggesting the possibility of activities not mediated by the kidney. Finally, we observe that nephroprotective drugs can be grouped according to their effects on hemoglobin levels, thus suggesting their mechanism of action. While the primary mechanism of SGLT2i involves glycosuria and natriuria, growing evidence suggests broader therapeutic effects beyond hemodynamic modulation. Specifically, the evidence that SGLT2 can be expressed in several atypical regions under pathological conditions, supports the possibility that its inhibition has several extratubular effects. Evidence supports the hypothesis that SGLT2i influence mitochondrial function in various cell types affected by diabetes, particularly in the context of diabetic nephropathy. Notably, in SGLT2i-treated patients, the extent of albumin-creatinine ratio (ACR) reduction post-treatment may be correlated with mitochondrial staining intensity in glomerular endothelial cells. This implies that the anti-proteinuric effects of SGLT2i could involve direct actions on glomerular endothelial cell. Our investigation into the role of SGLT2 inhibitors (SGLT2i) in endothelial function suggests that the aberrant expression of SGLT2 in endothelial cells in T2DM would lead to intracellular accumulation of glucose; therefore, SGLT2i are the first type of endothelial protective drugs available today, with potential implications for ageing-related kidney disease. The review reveals two major novel findings: SGLT2 inhibitors are the first known class of endothelial-protective drugs, due to their ability to prevent glucose accumulation in endothelial cells where SGLT2 is aberrantly expressed in Type 2 Diabetes. Additionally, the research demonstrates that SGLT2 inhibitors share a GFR-reducing effect with other nephroprotective drugs, suggesting both a mechanism for optimal drug dosing and potential broader applications in ageing-related kidney disease through their effects on mitochondrial function and glomerular endothelial cells.
Collapse
Affiliation(s)
- Davide Viggiano
- Department Translational Medical Sciences, University of Campania, 80138 Naples, Italy; (R.J.); (G.B.); (G.C.)
| | - Rashmi Joshi
- Department Translational Medical Sciences, University of Campania, 80138 Naples, Italy; (R.J.); (G.B.); (G.C.)
| | - Gianmarco Borriello
- Department Translational Medical Sciences, University of Campania, 80138 Naples, Italy; (R.J.); (G.B.); (G.C.)
| | - Giovanna Cacciola
- Department Translational Medical Sciences, University of Campania, 80138 Naples, Italy; (R.J.); (G.B.); (G.C.)
| | - Annalisa Gonnella
- Department Nephrology, Eboli Hospital, 84025 Eboli, Italy; (A.G.); (A.G.); (M.N.); (G.G.)
| | - Andrea Gigliotti
- Department Nephrology, Eboli Hospital, 84025 Eboli, Italy; (A.G.); (A.G.); (M.N.); (G.G.)
| | - Michelangelo Nigro
- Department Nephrology, Eboli Hospital, 84025 Eboli, Italy; (A.G.); (A.G.); (M.N.); (G.G.)
| | - Giuseppe Gigliotti
- Department Nephrology, Eboli Hospital, 84025 Eboli, Italy; (A.G.); (A.G.); (M.N.); (G.G.)
| |
Collapse
|
2
|
Xu H, Pan J, Chen Q. The progress of clinical research on the detection of 1,5-anhydroglucitol in diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1383483. [PMID: 38803475 PMCID: PMC11128578 DOI: 10.3389/fendo.2024.1383483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
1,5-Anhydroglucitol (1,5-AG) is sensitive to short-term glucose fluctuations and postprandial hyperglycemia, which has great potential in the clinical application of diabetes as a nontraditional blood glucose monitoring indicator. A large number of studies have found that 1,5-AG can be used to screen for diabetes, manage diabetes, and predict the perils of diabetes complications (diabetic nephropathy, diabetic cardiovascular disease, diabetic retinopathy, diabetic pregnancy complications, diabetic peripheral neuropathy, etc.). Additionally, 1,5-AG and β cells are also associated with each other. As a noninvasive blood glucose monitoring indicator, salivary 1,5-AG has much more benefit for clinical application; however, it cannot be ignored that its detection methods are not perfect. Thus, a considerable stack of research is still needed to establish an accurate and simple enzyme assay for the detection of salivary 1,5-AG. More clinical studies will also be required in the future to confirm the normal reference range of 1,5-AG and its role in diabetes complications to further enhance the blood glucose monitoring system for diabetes.
Collapse
Affiliation(s)
- Huijuan Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junhua Pan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Theron IJ, Mason S, van Reenen M, Stander Z, Kleynhans L, Ronacher K, Loots DT. Characterizing poorly controlled type 2 diabetes using 1H-NMR metabolomics. Metabolomics 2024; 20:54. [PMID: 38734832 PMCID: PMC11088559 DOI: 10.1007/s11306-024-02127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION The prevalence of type 2 diabetes has surged to epidemic proportions and despite treatment administration/adherence, some individuals experience poorly controlled diabetes. While existing literature explores metabolic changes in type 2 diabetes, understanding metabolic derangement in poorly controlled cases remains limited. OBJECTIVE This investigation aimed to characterize the urine metabolome of poorly controlled type 2 diabetes in a South African cohort. METHOD Using an untargeted proton nuclear magnetic resonance metabolomics approach, urine samples from 15 poorly controlled type 2 diabetes patients and 25 healthy controls were analyzed and statistically compared to identify differentiating metabolites. RESULTS The poorly controlled type 2 diabetes patients were characterized by elevated concentrations of various metabolites associated with changes to the macro-fuel pathways (including carbohydrate metabolism, ketogenesis, proteolysis, and the tricarboxylic acid cycle), autophagy and/or apoptosis, an uncontrolled diet, and kidney and liver damage. CONCLUSION These results indicate that inhibited cellular glucose uptake in poorly controlled type 2 diabetes significantly affects energy-producing pathways, leading to apoptosis and/or autophagy, ultimately contributing to kidney and mild liver damage. The study also suggests poor dietary compliance as a cause of the patient's uncontrolled glycemic state. Collectively these findings offer a first-time comprehensive overview of urine metabolic changes in poorly controlled type 2 diabetes and its association with secondary diseases, offering potential insights for more targeted treatment strategies to prevent disease progression, treatment efficacy, and diet/treatment compliance.
Collapse
Affiliation(s)
- Isabella J Theron
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Mari van Reenen
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Zinandré Stander
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Katharina Ronacher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Du Toit Loots
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
4
|
Viggiano D. Mechanisms of Diabetic Nephropathy Not Mediated by Hyperglycemia. J Clin Med 2023; 12:6848. [PMID: 37959313 PMCID: PMC10650633 DOI: 10.3390/jcm12216848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Diabetes mellitus (DM) is characterized by the appearance of progressive kidney damage, which may progress to end-stage kidney disease. The control of hyperglycemia is usually not sufficient to halt this progression. The kidney damage is quantitatively and qualitatively different in the two forms of diabetes; the typical nodular fibrosis (Kimmelstiel Wilson nodules) appears mostly in type 1 DM, whereas glomerulomegaly is primarily present in type 2 obese DM. An analysis of the different metabolites and hormones in type 1 and type 2 DM and their differential pharmacological treatments might be helpful to advance the hypotheses on the different histopathological patterns of the kidneys and their responses to sodium/glucose transporter type 2 inhibitors (SGLT2i).
Collapse
Affiliation(s)
- Davide Viggiano
- Department of Translational Medical Sciences, University of Campania, 80131 Naples, Italy
| |
Collapse
|
5
|
Aleidi SM, Al Fahmawi H, Masoud A, Rahman AA. Metabolomics in diabetes mellitus: clinical insight. Expert Rev Proteomics 2023; 20:451-467. [PMID: 38108261 DOI: 10.1080/14789450.2023.2295866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Diabetes Mellitus (DM) is a chronic heterogeneous metabolic disorder characterized by hyperglycemia due to the destruction of insulin-producing pancreatic β cells and/or insulin resistance. It is now considered a global epidemic disease associated with serious threats to a patient's life. Understanding the metabolic pathways involved in disease pathogenesis and progression is important and would improve prevention and management strategies. Metabolomics is an emerging field of research that offers valuable insights into the metabolic perturbation associated with metabolic diseases, including DM. AREA COVERED Herein, we discussed the metabolomics in type 1 and 2 DM research, including its contribution to understanding disease pathogenesis and identifying potential novel biomarkers clinically useful for disease screening, monitoring, and prognosis. In addition, we highlighted the metabolic changes associated with treatment effects, including insulin and different anti-diabetic medications. EXPERT OPINION By analyzing the metabolome, the metabolic disturbances involved in T1DM and T2DM can be explored, enhancing our understanding of the disease progression and potentially leading to novel clinical diagnostic and effective new therapeutic approaches. In addition, identifying specific metabolites would be potential clinical biomarkers for predicting the disease and thus preventing and managing hyperglycemia and its complications.
Collapse
Affiliation(s)
- Shereen M Aleidi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Hiba Al Fahmawi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Afshan Masoud
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Anas Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
6
|
Sakanaka A, Katakami N, Furuno M, Nishizawa H, Omori K, Taya N, Ishikawa A, Mayumi S, Inoue M, Tanaka Isomura E, Amano A, Shimomura I, Fukusaki E, Kuboniwa M. Salivary metabolic signatures of carotid atherosclerosis in patients with type 2 diabetes hospitalized for treatment. Front Mol Biosci 2022; 9:1074285. [PMID: 36619162 PMCID: PMC9815705 DOI: 10.3389/fmolb.2022.1074285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a life-threatening disease associated with morbidity and mortality in patients with type 2 diabetes (T2D). This study aimed to characterize a salivary signature of atherosclerosis based on evaluation of carotid intima-media thickness (IMT) to develop a non-invasive predictive tool for diagnosis and disease follow-up. Metabolites in saliva and plasma samples collected at admission and after treatment from 25 T2D patients hospitalized for 2 weeks to undergo medical treatment for diabetes were comprehensively profiled using metabolomic profiling with gas chromatography-mass spectrometry. Orthogonal partial least squares analysis, used to explore the relationships of IMT with clinical markers and plasma and salivary metabolites, showed that the top predictors for IMT included salivary allantoin and 1,5-anhydroglucitol (1,5-AG) at both the baseline examination at admission and after treatment. Furthermore, though treatment induced alterations in salivary levels of allantoin and 1,5-AG, it did not modify the association between IMT and these metabolites (p interaction > 0.05), and models with these metabolites combined yielded satisfactory diagnostic accuracy for the high IMT group even after treatment (area under curve = 0.819). Collectively, this salivary metabolite combination may be useful for non-invasive identification of T2D patients with a higher atherosclerotic burden in clinical settings.
Collapse
Affiliation(s)
- Akito Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiro Furuno
- Department of Biotechnology, Osaka University Graduate School of Engineering, Suita, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuo Omori
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naohiro Taya
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Asuka Ishikawa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Shota Mayumi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Moe Inoue
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Emiko Tanaka Isomura
- First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Osaka University Graduate School of Engineering, Suita, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan,*Correspondence: Masae Kuboniwa,
| |
Collapse
|
7
|
Taya N, Katakami N, Omori K, Hosoe S, Watanabe H, Takahara M, Miyashita K, Nishizawa H, Konya Y, Obara S, Hidaka A, Nakao M, Takahashi M, Izumi Y, Shimomura I, Bamba T. Change in fatty acid composition of plasma triglyceride caused by a 2 week comprehensive risk management for diabetes: A prospective observational study of type 2 diabetes patients with supercritical fluid chromatography/mass spectrometry-based semi-target lipidomic analysis. J Diabetes Investig 2022; 14:102-110. [PMID: 36208067 PMCID: PMC9807157 DOI: 10.1111/jdi.13924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023] Open
Abstract
AIMS/INTRODUCTION Hypertriglyceridemia is common in patients with diabetes. Although the fatty acid (FA) composition of triglycerides (TGs) is suggested to be related to the pathology of diabetes and its complications, changes in the fatty acid composition caused by diabetes treatment remain unclear. This study aimed to identify short-term changes in the fatty acid composition of plasma triglycerides after diabetes treatment. MATERIALS AND METHODS This study was a sub-analysis of a prospective observational study of patients with type 2 diabetes aged between 20 and 75 years who were hospitalized to improve glycemic control (n = 31). A lipidomic analysis of plasma samples on the 2nd and 16th hospital days was conducted by supercritical fluid chromatography coupled with mass spectrometry. RESULTS In total, 104 types of triglycerides with different compositions were identified. Most of them tended to decrease after treatment. In particular, triglycerides with a lower carbon number and fewer double bonds showed a relatively larger reduction. The inclusion of FA 14:0 (myristic acid), as a constituent of triglyceride, was significantly associated with a more than 50%, and statistically significant, reduction (odds ratio 39.0; P < 0.001). The total amount of FA 14:0 as a constituent of triglycerides also decreased significantly, and its rate of decrease was the greatest of all the fatty acid constituents. CONCLUSIONS A 2 week comprehensive risk management for diabetes resulted in decreased levels of plasma triglycerides and a change in the fatty acid composition of triglycerides, characterized by a relatively large reduction in FA 14:0 as a constituent of triglycerides.
Collapse
Affiliation(s)
- Naohiro Taya
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Naoto Katakami
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuo Omori
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Shigero Hosoe
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Hirotaka Watanabe
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Mitsuyoshi Takahara
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan,Department of Diabetes Care Medicine, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Kazuyuki Miyashita
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Hitoshi Nishizawa
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Yutaka Konya
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Sachiko Obara
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Ayako Hidaka
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Motonao Nakao
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Masatomo Takahashi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Yoshihiro Izumi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Iichiro Shimomura
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Takeshi Bamba
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
8
|
Dai X, Shen L. Advances and Trends in Omics Technology Development. Front Med (Lausanne) 2022; 9:911861. [PMID: 35860739 PMCID: PMC9289742 DOI: 10.3389/fmed.2022.911861] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
The human history has witnessed the rapid development of technologies such as high-throughput sequencing and mass spectrometry that led to the concept of “omics” and methodological advancement in systematically interrogating a cellular system. Yet, the ever-growing types of molecules and regulatory mechanisms being discovered have been persistently transforming our understandings on the cellular machinery. This renders cell omics seemingly, like the universe, expand with no limit and our goal toward the complete harness of the cellular system merely impossible. Therefore, it is imperative to review what has been done and is being done to predict what can be done toward the translation of omics information to disease control with minimal cell perturbation. With a focus on the “four big omics,” i.e., genomics, transcriptomics, proteomics, metabolomics, we delineate hierarchies of these omics together with their epiomics and interactomics, and review technologies developed for interrogation. We predict, among others, redoxomics as an emerging omics layer that views cell decision toward the physiological or pathological state as a fine-tuned redox balance.
Collapse
|
9
|
Sakanaka A, Kuboniwa M, Katakami N, Furuno M, Nishizawa H, Omori K, Taya N, Ishikawa A, Mayumi S, Tanaka Isomura E, Shimomura I, Fukusaki E, Amano A. Saliva and Plasma Reflect Metabolism Altered by Diabetes and Periodontitis. Front Mol Biosci 2021; 8:742002. [PMID: 34589520 PMCID: PMC8473679 DOI: 10.3389/fmolb.2021.742002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022] Open
Abstract
Periodontitis is an inflammatory disorder caused by disintegration of the balance between the periodontal microbiome and host response. While growing evidence suggests links between periodontitis and various metabolic disorders including type 2 diabetes (T2D), non-alcoholic liver disease, and cardiovascular disease (CVD), which often coexist in individuals with abdominal obesity, factors linking periodontal inflammation to common metabolic alterations remain to be fully elucidated. More detailed characterization of metabolomic profiles associated with multiple oral and cardiometabolic traits may provide better understanding of the complexity of oral-systemic crosstalk and its underlying mechanism. We performed comprehensive profiling of plasma and salivary metabolomes using untargeted gas chromatography/mass spectrometry to investigate multivariate covariation with clinical markers of oral and systemic health in 31 T2D patients with metabolic comorbidities and 30 control subjects. Orthogonal partial least squares (OPLS) results enabled more accurate characterization of associations among 11 oral and 25 systemic clinical outcomes, and 143 salivary and 78 plasma metabolites. In particular, metabolites that reflect cardiometabolic changes were identified in both plasma and saliva, with plasma and salivary ratios of (mannose + allose):1,5-anhydroglucitol achieving areas under the curve of 0.99 and 0.92, respectively, for T2D diagnosis. Additionally, OPLS analysis of periodontal inflamed surface area (PISA) as the numerical response variable revealed shared and unique responses of metabolomic and clinical markers to PISA between healthy and T2D groups. When combined with linear regression models, we found a significant correlation between PISA and multiple metabolites in both groups, including threonate, cadaverine and hydrocinnamate in saliva, as well as lactate and pentadecanoic acid in plasma, of which plasma lactate showed a predominant trend in the healthy group. Unique metabolites associated with PISA in the T2D group included plasma phosphate and salivary malate, while those in the healthy group included plasma gluconate and salivary adenosine. Remarkably, higher PISA was correlated with altered hepatic lipid metabolism in both groups, including higher levels of triglycerides, aspartate aminotransferase and alanine aminotransferase, leading to increased risk of cardiometabolic disease based on a score summarizing levels of CVD-related biomarkers. These findings revealed the potential utility of saliva for evaluating the risk of metabolic disorders without need for a blood test, and provide evidence that disrupted liver lipid metabolism may underlie the link between periodontitis and cardiometabolic disease.
Collapse
Affiliation(s)
- Akito Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Furuno
- Department of Biotechnology, Osaka University Graduate School of Engineering, Osaka, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuo Omori
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naohiro Taya
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Asuka Ishikawa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shota Mayumi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Emiko Tanaka Isomura
- First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Osaka University Graduate School of Engineering, Osaka, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|