1
|
Jia H, Chu W, Zhang D, Li K, Huang W, Li X. Morphology, Molecular Characterization, and Phylogeny of Travassosius rufus Khalil, 1922 (Strongylidea: Trichostrongylidae), a Parasite from Endangered Sino-Mongolian Beaver ( Castor fiber birulai) in Xinjiang, China. Animals (Basel) 2025; 15:1339. [PMID: 40362155 PMCID: PMC12071037 DOI: 10.3390/ani15091339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
The genus Travassosius Khalil, 1922, the smallest genus in the subfamily Trichostrongylinae (family Trichostrongylidae), primarily infects the only two extant beaver species worldwide and can be lethal in severe infections. However, the mitochondrial genome evolution of Travassosius remains poorly understood, and its phylogenetic placement within Trichostrongylinae is still unresolved. In this study, we applied both morphological techniques (differential interference contrast microscopy) and molecular tools (nuclear ITS2 and mitochondrial genome) to examine T. rufus Khalil, 1922. Specimens were collected from the Sino-Mongolian beaver, a subspecies of the Eurasian beaver native to the Ulungur River Basin in northern Xinjiang, China. This work presents the first complete mitochondrial genome sequence and annotation of T. rufus, and it is also the first mitochondrial genome reported for the genus Travassosius. The mitochondrial genome of T. rufus measures 13,646 bp and contains 36 genes, including 12 protein-coding genes (PCGs) (excluding atp8), 22 transfer RNA genes, and 2 ribosomal RNA genes. Phylogenetic analysis based on amino acid sequences of 12 mitochondrial PCGs strongly supports the distinctiveness of the genus Travassosius. Additionally, T. rufus appears to be closely related to Nematodirus within Trichostrongylinae. This study also addresses the possible consequences of parasitic infection for the Sino-Mongolian beaver and offers a scientific foundation for conserving this endangered subspecies and managing parasitic diseases in its population.
Collapse
Affiliation(s)
- Huiping Jia
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (H.J.); (W.C.)
| | - Wenwen Chu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (H.J.); (W.C.)
- Altay Wildlife Conservation Association, Altay 836599, China; (W.H.); (X.L.)
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (H.J.); (W.C.)
| | - Kai Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (H.J.); (W.C.)
| | - Wenpu Huang
- Altay Wildlife Conservation Association, Altay 836599, China; (W.H.); (X.L.)
| | - Xiaoyun Li
- Altay Wildlife Conservation Association, Altay 836599, China; (W.H.); (X.L.)
| |
Collapse
|
2
|
Jakovlić I, Ye T, Zou H, Zhu F, Shi Y, Ma Y, Wang GT, Li WX, Zhang D. Drivers of interlineage variability in mitogenomic evolutionary rates in Platyhelminthes. Heredity (Edinb) 2024; 133:276-286. [PMID: 39095653 PMCID: PMC11436680 DOI: 10.1038/s41437-024-00712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Studies of forces driving interlineage variability in the evolutionary rates (both sequence and architecture) of mitochondrial genomes often produce contradictory results. Flatworms (Platyhelminthes) exhibit the fastest-evolving mitogenomic sequences among all bilaterian phyla. To test the effects of multiple factors previously associated with different aspects of mitogenomic evolution, we used mitogenomes of 223 flatworm species, phylogenetic multilevel regression models, and causal inference. Thermic host environment (endothermic vs. ectothermic) had nonsignificant impacts on both sequence evolution and mitogenomic size. Mitogenomic gene order rearrangements (GORR) were mostly positively correlated with mitogenomic size (R2 ≈ 20-30%). Longevity was not (negatively) correlated with sequence evolution in flatworms. The predominantly free-living "turbellaria" exhibited much shorter branches and faster-evolving mitogenomic architecture than parasitic Neodermata. As a result, "parasitism" had a strong explanatory power on the branch length variability (>90%), and there was a negative correlation between GORR and branch length. However, the stem branch of Neodermata comprised 63.6% of the total average branch length. This evolutionary period was also marked by a high rate of gene order rearrangements in the ancestral Neodermata. We discuss how this period of rapid evolution deep in the evolutionary history may have decoupled sequence evolution rates from longevity and GORR, and overestimated the explanatory power of "parasitism". This study shows that impacts of variables often vary across lineages, and stresses the importance accounting for the episodic nature of evolutionary patterns in studies of mitogenomic evolution.
Collapse
Affiliation(s)
- Ivan Jakovlić
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Tong Ye
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fengyue Zhu
- National Agricultural Science Observing and Experimental Station of Chongqing, Chongqing, 401329, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan, 430073, China
| | - Yuying Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yiwen Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Dong Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850011, China.
| |
Collapse
|
3
|
Cheng WX, Wang J, Mao ML, Lu YB, Zou JX. The mitochondrial genome of Bottapotamon fukienense (Brachiura: Potamidae) is fragmented into two chromosomes. BMC Genomics 2024; 25:755. [PMID: 39095713 PMCID: PMC11295360 DOI: 10.1186/s12864-024-10657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND China is the hotspot of global freshwater crab diversity, but their wild populations are facing severe pressures associated with anthropogenic factors, necessitating the need to map their taxonomic and genetic diversity and design conservation policies. RESULTS Herein, we sequenced the mitochondrial genome of a Chinese freshwater crab species Bottapotamon fukienense, and found that it is fragmented into two chromosomes. We confirmed that fragmentation was not limited to a single specimen or population. Chromosome 1 comprised 15,111 base pairs (bp) and there were 26 genes and one pseudogene (pseudo-nad1) encoded on it. Chromosome 2 comprised 8,173 bp and there were 12 genes and two pseudogenes (pseudo-trnL2 and pseudo-rrnL) encoded on it. Combined, they comprise the largest mitogenome (23,284 bp) among the Potamidae. Bottapotamon was the only genus in the Potamidae dataset exhibiting rearrangements of protein-coding genes. Bottapotamon fukienense exhibited average rates of sequence evolution in the dataset and did not differ in selection pressures from the remaining Potamidae. CONCLUSIONS This is the first experimentally confirmed fragmentation of a mitogenome in crustaceans. While the mitogenome of B. fukienense exhibited multiple signs of elevated mitogenomic architecture evolution rates, including the exceptionally large size, duplicated genes, pseudogenisation, rearrangements of protein-coding genes, and fragmentation, there is no evidence that this is matched by elevated sequence evolutionary rates or changes in selection pressures.
Collapse
Affiliation(s)
- Wang-Xinjun Cheng
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China
| | - Jun Wang
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China
| | - Mei-Lin Mao
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China
| | - Yuan-Biao Lu
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China
| | - Jie-Xin Zou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China.
- Provincial Key Laboratory for Drug Targeting and Drug Screening, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Gendron EMS, Qing X, Sevigny JL, Li H, Liu Z, Blaxter M, Powers TO, Thomas WK, Porazinska DL. Comparative mitochondrial genomics in Nematoda reveal astonishing variation in compositional biases and substitution rates indicative of multi-level selection. BMC Genomics 2024; 25:615. [PMID: 38890582 PMCID: PMC11184840 DOI: 10.1186/s12864-024-10500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Nematodes are the most abundant and diverse metazoans on Earth, and are known to significantly affect ecosystem functioning. A better understanding of their biology and ecology, including potential adaptations to diverse habitats and lifestyles, is key to understanding their response to global change scenarios. Mitochondrial genomes offer high species level characterization, low cost of sequencing, and an ease of data handling that can provide insights into nematode evolutionary pressures. RESULTS Generally, nematode mitochondrial genomes exhibited similar structural characteristics (e.g., gene size and GC content), but displayed remarkable variability around these general patterns. Compositional strand biases showed strong codon position specific G skews and relationships with nematode life traits (especially parasitic feeding habits) equal to or greater than with predicted phylogeny. On average, nematode mitochondrial genomes showed low non-synonymous substitution rates, but also high clade specific deviations from these means. Despite the presence of significant mutational saturation, non-synonymous (dN) and synonymous (dS) substitution rates could still be significantly explained by feeding habit and/or habitat. Low ratios of dN:dS rates, particularly associated with the parasitic lifestyles, suggested the presence of strong purifying selection. CONCLUSIONS Nematode mitochondrial genomes demonstrated a capacity to accumulate diversity in composition, structure, and content while still maintaining functional genes. Moreover, they demonstrated a capacity for rapid evolutionary change pointing to a potential interaction between multi-level selection pressures and rapid evolution. In conclusion, this study helps establish a background for our understanding of the potential evolutionary pressures shaping nematode mitochondrial genomes, while outlining likely routes of future inquiry.
Collapse
Affiliation(s)
- Eli M S Gendron
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Xue Qing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.
| | - Joseph L Sevigny
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Hongmei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyin Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | | | - Thomas O Powers
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - W Kelly Thomas
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Dorota L Porazinska
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Song W, Dai M, Shi Q, Liang C, Duan F, Zhao H. Diagnosis and Characterization of Ditylenchus destructor Isolated from Mazus japonicus in China. Life (Basel) 2023; 13:1758. [PMID: 37629615 PMCID: PMC10455563 DOI: 10.3390/life13081758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The potato rot nematode (Ditylenchus destructor) is one of the most destructive pests in the production of tuber crops, resulting in severely decreased yields and inferior product quality. In 2021, a great number of nematodes were detected in the roots of Mazus japonicus, a weed that is harmful to crop growth, in Qingdao, Shandong Province, China. The present study was undertaken to characterize and identify the nematodes isolated from M. japonicus through morphological identification and molecular approaches. Their morphological characteristics were highly consistent with the descriptions of D. destructor Thorne, 1945. The nematodes collected from M. japonicus were identified as D. destructor haplotype B using D1/D2 and sequence characterized amplified region (SCAR) primers. PCR-ITS-RFLP analysis was conducted to monitor intraspecific variations. In addition, the phylogenetic analysis of the internal transcribed spacer (ITS) demonstrated that this D. destructor population was clustered in haplotype B, supported by a 100% bootstrap value. Another assay, in which M. japonicus was inoculated with a mixture of the life stages of D. destructor, was performed. This assay showed that M. japonicus exhibited a high susceptibility to D. destructor in pots. This is the first record of D. destructor parasitizing M. japonicus in China, and it is of great importance because M. japonicus could be a potential reservoir for D. destructor in the field.
Collapse
Affiliation(s)
| | | | | | | | | | - Honghai Zhao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
6
|
Inverted base composition skews and discontinuous mitochondrial genome architecture evolution in the Enoplea (Nematoda). BMC Genomics 2022; 23:376. [PMID: 35585506 PMCID: PMC9115964 DOI: 10.1186/s12864-022-08607-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Background Within the class Enoplea, the earliest-branching lineages in the phylum Nematoda, the relatively highly conserved ancestral mitochondrial architecture of Trichinellida is in stark contrast to the rapidly evolving architecture of Dorylaimida and Mermithida. To better understand the evolution of mitogenomic architecture in this lineage, we sequenced the mitogenome of a fish parasite Pseudocapillaria tomentosa (Trichinellida: Capillariidae) and compared it to all available enoplean mitogenomes. Results P. tomentosa exhibited highly reduced noncoding regions (the largest was 98 bp), and a unique base composition among the Enoplea. We attributed the latter to the inverted GC skew (0.08) in comparison to the ancestral skew in Trichinellidae (-0.43 to -0.37). Capillariidae, Trichuridae and Longidoridae (Dorylaimida) generally exhibited low negative or low positive skews (-0.1 to 0.1), whereas Mermithidae exhibited fully inverted low skews (0 to 0.05). This is indicative of inversions in the strand replication order or otherwise disrupted replication mechanism in the lineages with reduced/inverted skews. Among the Trichinellida, Trichinellidae and Trichuridae have almost perfectly conserved architecture, whereas Capillariidae exhibit multiple rearrangements of tRNA genes. In contrast, Mermithidae (Mermithida) and Longidoridae (Dorylaimida) exhibit almost no similarity to the ancestral architecture. Conclusions Longidoridae exhibited more rearranged mitogenomic architecture than the hypervariable Mermithidae. Similar to the Chromadorea, the evolution of mitochondrial architecture in enoplean nematodes exhibits a strong discontinuity: lineages possessing a mostly conserved architecture over tens of millions of years are interspersed with lineages exhibiting architectural hypervariability. As Longidoridae also have some of the smallest metazoan mitochondrial genomes, they contradict the prediction that compact mitogenomes should be structurally stable. Lineages exhibiting inverted skews appear to represent the intermediate phase between the Trichinellidae (ancestral) and fully derived skews in Chromadorean mitogenomes (GC skews = 0.18 to 0.64). Multiple lines of evidence (CAT-GTR analysis in our study, a majority of previous mitogenomic results, and skew disruption scenarios) support the Dorylaimia split into two sister-clades: Dorylaimida + Mermithida and Trichinellida. However, skew inversions produce strong base composition biases, which can hamper phylogenetic and other evolutionary studies, so enoplean mitogenomes have to be used with utmost care in evolutionary studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08607-4.
Collapse
|
7
|
Pan F, Li F, Mao Y, Liu D, Chen A, Zhao D, Hu Y. First Detection of Ditylenchus destructor Parasitizing Maize in Northeast China. Life (Basel) 2021; 11:life11121303. [PMID: 34947834 PMCID: PMC8706602 DOI: 10.3390/life11121303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Maize is one of the most important crops in the world. Heilongjiang province has the largest maize area in China. Plant-parasitic nematodes are important agricultural pests, which cause huge economic losses every year and have attracted global attention. Potato rot nematode Ditylenchus destructor is a plant-parasitic nematode with a wide range of hosts and strong survival ability in different environments, which brings risks to agricultural production. In 2020, D. destructor was detected in seven maize fields in Heilongjiang province. Morphological identification and molecular approach were used to characterize the isolated D. destructor. The observed morphological and morphometric characteristics were highly similar and consistent with the existing description. The DNA sequencing on the D2/D3 region of the ribosomal DNA 28S and the phylogenetic analysis showed that D. destructor population obtained from maize and other isolates infesting carrot, sweet potato, and potato were in subclade I supported by a 96% bootstrap value. Additionally, the phylogenetic analysis of the ITS rRNA gene sequence further indicated that this D. destructor population from maize clustered in a clade I group and belonged to ITS rRNA haplotype C. An inoculation experiment revealed that D. destructor was pathogenic on the maize seedlings in pots and caused the disease symptoms in the stem base of maize seedlings. This is the first report of D. destructor causing stem rot of maize in Heilongjiang province, and contributes additional information on disease control and safe production of maize in the region.
Collapse
Affiliation(s)
- Fengjuan Pan
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China;
| | - Feng Li
- Syngenta (China) Investment Co., Ltd., Beijing 102206, China; (F.L.); (D.L.)
| | - Yanzhi Mao
- Heilongjiang Academy of Agricultural Sciences, Harbin 154026, China; (Y.M.); (D.Z.)
| | - Dan Liu
- Syngenta (China) Investment Co., Ltd., Beijing 102206, China; (F.L.); (D.L.)
| | - Aoshuang Chen
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150006, China;
| | - Dan Zhao
- Heilongjiang Academy of Agricultural Sciences, Harbin 154026, China; (Y.M.); (D.Z.)
| | - Yanfeng Hu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China;
- Correspondence:
| |
Collapse
|
8
|
Jakovlić I, Zou H, Chen JH, Lei HP, Wang GT, Liu J, Zhang D. Slow crabs - fast genomes: Locomotory capacity predicts skew magnitude in crustacean mitogenomes. Mol Ecol 2021; 30:5488-5502. [PMID: 34418213 DOI: 10.1111/mec.16138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023]
Abstract
Base composition skews (G-C/G+C) of mitochondrial genomes are believed to be primarily driven by mutational pressure, which is positively correlated with metabolic rate. In marine animals, metabolic rate is also positively correlated with locomotory capacity. Given the central role of mitochondria in energy metabolism, we hypothesised that selection for locomotory capacity should be positively correlated with the strength of purifying selection (dN/dS), and thus be negatively correlated with the skew magnitude. Therefore, these two models assume diametrically opposite associations between the metabolic rate and skew magnitude: positive correlation in the prevailing paradigm, and negative in our working hypothesis. We examined correlations between the skew magnitude, metabolic rate, locomotory capacity, and several other variables previously associated with mitochondrial evolution on 287 crustacean mitogenomes. Weakly locomotory taxa had higher skew magnitude and ω (dN/dS) values, but not the gene order rearrangement rate. Skew and ω magnitudes were correlated. Multilevel regression analyses indicated that three competing variables, body size, gene order rearrangement rate, and effective population size, had negligible impacts on the skew magnitude. In most crustacean lineages selection for locomotory capacity appears to be the primary factor determining the skew magnitude. Contrary to the prevailing paradigm, this implies that adaptive selection outweighs nonadaptive selection (mutation pressure) in crustaceans. However, we found indications that effective population size (nonadaptive factor) may outweigh the impact of locomotory capacity in sessile crustaceans (Thecostraca). In conclusion, skew magnitude is a product of the interplay between adaptive and nonadaptive factors, the balance of which varies among lineages.
Collapse
Affiliation(s)
- Ivan Jakovlić
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jian-Hai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong-Peng Lei
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Dong Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
de Melo Teixeira M, Lang BF, Matute DR, Stajich JE, Barker BM. Mitochondrial genomes of the human pathogens Coccidioides immitis and Coccidioides posadasii. G3 (BETHESDA, MD.) 2021; 11:jkab132. [PMID: 33871031 PMCID: PMC8496281 DOI: 10.1093/g3journal/jkab132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022]
Abstract
Fungal mitochondrial genomes encode genes involved in crucial cellular processes, such as oxidative phosphorylation and mitochondrial translation, and the molecule has been used as a molecular marker for population genetics studies. Coccidioides immitis and C. posadasii are endemic fungal pathogens that cause coccidioidomycosis in arid regions across both American continents. To date, approximately 150 Coccidioides isolates have been sequenced to infer patterns of variation in nuclear genomes. However, less attention has been given to the mitochondrial genomes of Coccidioides. In this report, we describe the assembly and annotation of mitochondrial reference genomes for two representative strains of C. posadasii and C. immitis, as well as assess population variation among 77 selected genomes. The sizes of the circular-mapping molecules are 68.2 Kb in C. immitis and 75.1 Kb in C. posadasii. We identify 14 mitochondrial protein-coding genes common to most fungal mitochondria, which are largely syntenic across different populations and species of Coccidioides. Both Coccidioides species are characterized by a large number of group I and II introns, harboring twice the number of elements as compared to closely related Onygenales. The introns contain complete or truncated ORFs with high similarity to homing endonucleases of the LAGLIDADG and GIY-YIG families. Phylogenetic comparisons of mitochondrial and nuclear genomes show extensive phylogenetic discordance suggesting that the evolution of the two types of genetic material is not identical. This work represents the first assessment of mitochondrial genomes among isolates of both species of Coccidioides, and provides a foundation for future functional work.
Collapse
Affiliation(s)
- Marcus de Melo Teixeira
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
- Faculty of Medicine, University of Brasília-DF, Brasília, Federal District 70910-3300, Brazil
| | - B Franz Lang
- Robert Cedergren Centre for Bioinformatics and Génomiques, Département de Biochimie, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jason E Stajich
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
10
|
|
11
|
Mestre A, Poulin R, Hortal J. A niche perspective on the range expansion of symbionts. Biol Rev Camb Philos Soc 2019; 95:491-516. [DOI: 10.1111/brv.12574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Alexandre Mestre
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of Valencia Av. Dr. Moliner 50, 46100 Burjassot Spain
- Department of BiologyUniversity of Concordia Richard J. Renaud Science Complex, 7141 Sherbrooke W., H4B 1R6 Montreal Canada
| | - Robert Poulin
- Department of ZoologyUniversity of Otago 340 Great King Street, 9054 Dunedin New Zealand
| | - Joaquín Hortal
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC) C/José Gutiérrez Abascal 2, 28006 Madrid Spain
- Departamento de EcologiaICB, Universidade Federal de Goiás (UFG), Rodovia Goiânia‐Nerópolis Km 5, Campus II, Setor Itatiaia, Goiânia GO 74001‐970 Brazil
- cE3c–Centre for EcologyEvolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2 Piso 5, 1749‐016 Lisboa Portugal
| |
Collapse
|
12
|
Tan MH, Gan HM, Lee YP, Bracken-Grissom H, Chan TY, Miller AD, Austin CM. Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition. Sci Rep 2019; 9:10756. [PMID: 31341205 PMCID: PMC6656734 DOI: 10.1038/s41598-019-47145-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023] Open
Abstract
The emergence of cost-effective and rapid sequencing approaches has resulted in an exponential rise in the number of mitogenomes on public databases in recent years, providing greater opportunity for undertaking large-scale comparative genomic and systematic research. Nonetheless, current datasets predominately come from small and disconnected studies on a limited number of related species, introducing sampling biases and impeding research of broad taxonomic relevance. This study contributes 21 crustacean mitogenomes from several under-represented decapod infraorders including Polychelida and Stenopodidea, which are used in combination with 225 mitogenomes available on NCBI to investigate decapod mitogenome diversity and phylogeny. An overview of mitochondrial gene orders (MGOs) reveals a high level of genomic variability within the Decapoda, with a large number of MGOs deviating from the ancestral arthropod ground pattern and unevenly distributed among infraorders. Despite the substantial morphological and ecological variation among decapods, there was limited evidence for correlations between gene rearrangement events and species ecology or lineage specific nucleotide substitution rates. Within a phylogenetic context, predicted scenarios of rearrangements show some MGOs to be informative synapomorphies for some taxonomic groups providing strong independent support for phylogenetic relationships. Additional comparisons for a range of mitogenomic features including nucleotide composition, strand asymmetry, unassigned regions and codon usage indicate several clade-specific trends that are of evolutionary and ecological interest.
Collapse
Affiliation(s)
- Mun Hua Tan
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia.
- Deakin Genomics Centre, Deakin University, Geelong, Australia.
| | - Han Ming Gan
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Yin Peng Lee
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
| | - Heather Bracken-Grissom
- Department of Biological Sciences, Florida International University, North Miami, Florida, 33181, USA
| | - Tin-Yam Chan
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, 20224, Taiwan
| | - Adam D Miller
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
| | - Christopher M Austin
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
13
|
Franke F, Raifarth N, Kurtz J, Scharsack JP. Consequences of divergent temperature optima in a host–parasite system. OIKOS 2019. [DOI: 10.1111/oik.05864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Frederik Franke
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| | - Nadja Raifarth
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| | - Joachim Kurtz
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| | - Jörn P. Scharsack
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| |
Collapse
|
14
|
Abstract
Genetic variation in mitochondrial DNA (mtDNA) provides adaptive potential although the underlying genetic architecture of fitness components within mtDNAs is not known. To dissect functional variation within mtDNAs, we first identified naturally occurring mtDNAs that conferred high or low fitness in Saccharomyces cerevisiae by comparing growth in strains containing identical nuclear genotypes but different mtDNAs. During respiratory growth under temperature and oxidative stress conditions, mitotype effects were largely independent of nuclear genotypes even in the presence of mito-nuclear interactions. Recombinant mtDNAs were generated to determine fitness components within high- and low-fitness mtDNAs. Based on phenotypic distributions of isogenic strains containing recombinant mtDNAs, we found that multiple loci contributed to mitotype fitness differences. These mitochondrial loci interacted in epistatic, nonadditive ways in certain environmental conditions. Mito-mito epistasis (i.e., nonadditive interactions between mitochondrial loci) influenced fitness in progeny from four different crosses, suggesting that mito-mito epistasis is a widespread phenomenon in yeast and other systems with recombining mtDNAs. Furthermore, we found that interruption of coadapted mito-mito interactions produced recombinant mtDNAs with lower fitness. Our results demonstrate that mito-mito epistasis results in functional variation through mitochondrial recombination in fungi, providing modes for adaptive evolution and the generation of mito-mito incompatibilities.
Collapse
|
15
|
Zou H, Jakovlić I, Chen R, Zhang D, Zhang J, Li WX, Wang GT. The complete mitochondrial genome of parasitic nematode Camallanus cotti: extreme discontinuity in the rate of mitogenomic architecture evolution within the Chromadorea class. BMC Genomics 2017; 18:840. [PMID: 29096600 PMCID: PMC5669012 DOI: 10.1186/s12864-017-4237-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Complete mitochondrial genomes are much better suited for the taxonomic identification and phylogenetic studies of nematodes than morphology or traditionally-used molecular markers, but they remain unavailable for the entire Camallanidae family (Chromadorea). As the only published mitogenome in the Camallanina suborder (Dracunculoidea superfamily) exhibited a unique gene order, the other objective of this research was to study the evolution of mitochondrial architecture in the Spirurida order. Thus, we sequenced the complete mitogenome of the Camallanus cotti fish parasite and conducted structural and phylogenomic comparative analyses with all available Spirurida mitogenomes. RESULTS The mitogenome is exceptionally large (17,901 bp) among the Chromadorea and, with 46 (pseudo-) genes, exhibits a unique architecture among nematodes. Six protein-coding genes (PCGs) and six tRNAs are duplicated. An additional (seventh) tRNA (Trp) was probably duplicated by the remolding of tRNA-Ser2 (missing). Two pairs of these duplicated PCGs might be functional; three were incomplete and one contained stop codons. Apart from Ala and Asp, all other duplicated tRNAs are conserved and probably functional. Only 19 unique tRNAs were found. Phylogenomic analysis included Gnathostomatidae (Spirurina) in the Camallanina suborder. CONCLUSIONS Within the Nematoda, comparable PCG duplications were observed only in the enoplean Mermithidae family, but those result from mitochondrial recombination, whereas characteristics of the studied mitogenome suggest that likely rearrangement mechanisms are either a series of duplications, transpositions and random loss events, or duplication, fragmentation and subsequent reassembly of the mitogenome. We put forward a hypothesis that the evolution of mitogenomic architecture is extremely discontinuous, and that once a long period of stasis in gene order and content has been punctuated by a rearrangement event, such a destabilised mitogenome is much more likely to undergo subsequent rearrangement events, resulting in an exponentially accelerated evolutionary rate of mitogenomic rearrangements. Implications of this model are particularly important for the application of gene order similarity as an additive source of phylogenetic information. Chromadorean nematodes, and particularly Camallanina clade (with C. cotti as an example of extremely accelerated rate of rearrangements), might be a good model to further study this discontinuity in the dynamics of mitogenomic evolution.
Collapse
Affiliation(s)
- Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Rong Chen
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Jin Zhang
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
16
|
Pentinsaari M, Salmela H, Mutanen M, Roslin T. Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life. Sci Rep 2016; 6:35275. [PMID: 27734964 PMCID: PMC5062346 DOI: 10.1038/srep35275] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/15/2016] [Indexed: 11/28/2022] Open
Abstract
DNA barcodes are widely used for identification and discovery of species. While such use draws on information at the DNA level, the current amassment of ca. 4.7 million COI barcodes also offers a unique resource for exploring functional constraints on DNA evolution. Here, we explore amino acid variation in a crosscut of the entire animal kingdom. Patterns of DNA variation were linked to functional constraints at the level of the amino acid sequence in functionally important parts of the enzyme. Six amino acid sites show variation with possible effects on enzyme function. Overall, patterns of amino acid variation suggest convergent or parallel evolution at the protein level connected to the transition into a parasitic life style. Denser sampling of two diverse insect taxa revealed that the beetles (Coleoptera) show more amino acid variation than the butterflies and moths (Lepidoptera), indicating fundamental difference in patterns of molecular evolution in COI. Several amino acid sites were found to be under notably strong purifying selection in Lepidoptera as compared to Coleoptera. Overall, these findings demonstrate the utility of the global DNA barcode library to extend far beyond identification and taxonomy, and will hopefully be followed by a multitude of work.
Collapse
Affiliation(s)
- Mikko Pentinsaari
- Department of Genetics and Physiology, University of Oulu, P.O.Box 3000 (Pentti Kaiteran katu 1), FI-90014, Finland
| | - Heli Salmela
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Viikinkaari 1, FI-00014, Finland
| | - Marko Mutanen
- Department of Genetics and Physiology, University of Oulu, P.O.Box 3000 (Pentti Kaiteran katu 1), FI-90014, Finland
| | - Tomas Roslin
- Spatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, FI-00014, Finland
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 750 07 Uppsala, Sweden
| |
Collapse
|
17
|
Mitochondrial Genome Supports Sibling Species of Angiostrongylus costaricensis (Nematoda: Angiostrongylidae). PLoS One 2015; 10:e0134581. [PMID: 26230642 PMCID: PMC4521872 DOI: 10.1371/journal.pone.0134581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/12/2015] [Indexed: 01/05/2023] Open
Abstract
Angiostrongylus costaricensis is a zoonotic parasitic nematode that causes abdominal or intestinal angiostrongyliasis in humans. It is endemic to the Americas. Although the mitochondrial genome of the Brazil taxon has been published, there is no available mitochondrial genome data on the Costa Rica taxon. We report here the complete mitochondrial genome of the Costa Rica taxon and its genetic differentiation from the Brazil taxon. The whole mitochondrial genome was obtained from next-generation sequencing of genomic DNA. It had a total length of 13,652 bp, comprising 36 genes (12 protein-coding genes—PCGs, 2 rRNA and 22 tRNA genes) and a control region (A + T rich non-coding region). It is longer than that of the Brazil taxon (13,585 bp). The larger mitogenome size of the Costa Rica taxon is due to the size of the control region as the Brazil taxon has a shorter length (265 bp) than the Costa Rica taxon (318 bp). The size of 6 PCGs and the start codon for ATP6, CYTB and NAD5 genes are different between the Costa Rica and Brazil taxa. Additionally, the two taxa differ in the stop codon of 6 PCGs. Molecular phylogeny based on 12 PCGs was concordant with two rRNA, 22 tRNA and 36 mitochondrial genes. The two taxa have a genetic distance of p = 16.2% based on 12 PCGs, p = 15.3% based on 36 mitochondrial genes, p = 13.1% based on 2 rRNA genes and p = 10.7% based on 22 tRNA genes, indicating status of sibling species. The Costa Rica and Brazil taxa of A. costaricensis are proposed to be accorded specific status as members of a species complex.
Collapse
|
18
|
Liu S, Xue D, Cheng R, Han H. The complete mitogenome of Apocheima cinerarius (Lepidoptera: Geometridae: Ennominae) and comparison with that of other lepidopteran insects. Gene 2014; 547:136-44. [PMID: 24967940 DOI: 10.1016/j.gene.2014.06.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/22/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
Abstract
The complete mitochondrial genome (mitogenome) of a female flightless geometrid moth Apocheima cinerarius was found to be 15,722 bp in length, containing 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and a control region. The A+T content of the complete mitogenome is 80.83%. The AT skew value ([A-T]/[A+T]) is 0.027. The 13 PCGs of the mitogenome start with typical ATN codons, except for cox1 with the start codon CGA. All the tRNA genes have typical cloverleaf secondary structures, except for trnSer(AGN). The secondary structures of rrnL and rrnS were predicted. Six structural domains including conserved regions (IV, V) and variable regions (I, II, III, VI) were identified in the secondary structure of rrnL. The secondary structure of rrnS consists of 3 structural domains. The control region of A. cinerarius begins with conserved motifs of "ATAGA"+19-bp poly T. It also contains a microsatellite-like (TA)26, a stem-and-loop structure, and a poly-A stretch. Phylogenetic analysis showed that Geometroidea is more closely related to Bombycoidea than to Noctuoidea. A. cinerarius is more closely related to Biston panterinaria than to Phthonandria atrilineata, which is in accordance with the conventional morphology-based classification.
Collapse
Affiliation(s)
- Shuxian Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Dayong Xue
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Rui Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxiang Han
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
19
|
Abstract
SUMMARY From hundreds of independent transitions from a free-living existence to a parasitic mode of life, separate parasite lineages have converged over evolutionary time to share traits and exploit their hosts in similar ways. Here, we first summarize the evidence that, at a phenotypic level, eukaryotic parasite lineages have all converged toward only six general parasitic strategies: parasitoid, parasitic castrator, directly transmitted parasite, trophically transmitted parasite, vector-transmitted parasite or micropredator. We argue that these strategies represent adaptive peaks, with the similarities among unrelated taxa within any strategy extending to all basic aspects of host exploitation and transmission among hosts and transcending phylogenetic boundaries. Then, we extend our examination of convergent patterns by looking at the evolution of parasite genomes. Despite the limited taxonomic coverage of sequenced parasite genomes currently available, we find some evidence of parallel evolution among unrelated parasite taxa with respect to genome reduction or compaction, and gene losses or gains. Matching such changes in parasite genomes with the broad phenotypic traits that define the convergence of parasites toward only six strategies of host exploitation is not possible at present. Nevertheless, as more parasite genomes become available, we may be able to detect clear trends in the evolution of parasitic genome architectures representing true convergent adaptive peaks, the genomic equivalents of the phenotypic strategies used by all parasites.
Collapse
|