1
|
Sugianto NA, Newman C, Macdonald DW, Buesching CD. Effects of weather and social factors on hormone levels in the European badger (Meles meles). ZOOLOGY 2023; 158:126093. [PMID: 37149943 DOI: 10.1016/j.zool.2023.126093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023]
Abstract
Animals in the wild continually experience changes in environmental and social conditions, which they respond to with behavioural, physiological and morphological adaptations related to individual phenotypic quality. During unfavourable environmental conditions, reproduction can be traded-off against self-maintenance, mediated through changes in reproductive hormone levels. Using the European badger (Meles meles) as a model species, we examine how testosterone in males and oestrogens in females respond to marked deviations in weather from the long-term mean (rainfall and temperature, where badger earthworm food supply is weather dependent), and to social factors (number of adult males and females per social group and total adults in the population), in relation to age, weight and head-body length. Across seasons, testosterone levels correlated postively with body weight and rainfall variability, whereas oestrone correlated positively with population density, but negatively with temperature variability. Restricting analyses to the mating season (spring), heavier males had higher testosterone levels and longer females had higher oestradiol levels. Spring oestrone levels were lower when temperatures were above normal. That we see these effects for this generally adaptive species with a broad bioclimatic niche serves to highlight that climatic effects (especially with the threat of anthropogenic climate change) on reproductive physiology warrant careful attention in a conservation context.
Collapse
Affiliation(s)
- N A Sugianto
- School of Biosciences, University of Birmingham, Birmingham, UK; Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney OX13 5QL, UK.
| | - C Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney OX13 5QL, UK; Cook's Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, Nova Scotia, Canada
| | - D W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney OX13 5QL, UK
| | - C D Buesching
- Cook's Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, Nova Scotia, Canada; Department of Biology, Irving K. Barber Faculty of Sciences, The University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
2
|
Redpath SHA, Marks NJ, Menzies FD, O'Hagan MJH, Wilson RP, Smith S, Magowan EA, McClune DW, Collins SF, McCormick CM, Scantlebury DM. Impact of test, vaccinate or remove protocol on home ranges and nightly movements of badgers a medium density population. Sci Rep 2023; 13:2592. [PMID: 36788237 PMCID: PMC9929337 DOI: 10.1038/s41598-023-28620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
In the British Isles, the European badger (Meles meles) is thought to be the primary wildlife reservoir of bovine tuberculosis (bTB), an endemic disease in cattle. Test, vaccinate or remove ('TVR') of bTB test-positive badgers, has been suggested to be a potentially useful protocol to reduce bTB incidence in cattle. However, the practice of removing or culling badgers is controversial both for ethical reasons and because there is no consistent observed effect on bTB levels in cattle. While removing badgers reduces population density, it may also result in disruption of their social behaviour, increase their ranging, and lead to greater intra- and inter-species bTB transmission. This effect has been recorded in high badger density areas, such as in southwest England. However, little is known about how TVR affects the behaviour and movement of badgers within a medium density population, such as those that occur in Northern Ireland (NI), which the current study aimed to examine. During 2014-2017, badger ranging behaviours were examined prior to and during a TVR protocol in NI. Nightly distances travelled by 38 individuals were determined using Global Positioning System (GPS) measurements of animal tracks and GPS-enhanced dead-reckoned tracks. The latter was calculated using GPS, tri-axial accelerometer and tri-axial magnetometer data loggers attached to animals. Home range and core home range size were measured using 95% and 50% autocorrelated kernel density estimates, respectively, based on location fixes. TVR was not associated with measured increases in either distances travelled per night (mean = 3.31 ± 2.64 km) or home range size (95% mean = 1.56 ± 0.62 km2, 50% mean = 0.39 ± 0.62 km2) over the four years of study. However, following trapping, mean distances travelled per night increased by up to 44% eight days post capture. Findings differ from those observed in higher density badger populations in England, in which badger ranging increased following culling. Whilst we did not assess behaviours of individual badgers, possible reasons why no differences in home range size were observed include higher inherent 'social fluidity' in Irish populations whereby movements are less restricted by habitat saturation and/or that the numbers removed did not reach a threshold that might induce increases in ranging behaviour. Nevertheless, short-term behavioural disruption from trapping was observed, which led to significant increases in the movements of individual animals within their home range. Whether or not TVR may alter badger behaviours remains to be seen, but it would be better to utilise solutions such as oral vaccination of badgers and/or cattle as well as increased biosecurity to limit bTB transmission, which may be less likely to cause interference and thereby reduce the likelihood of bTB transmission.
Collapse
Affiliation(s)
- Sophie H A Redpath
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT4 3SD, Northern Ireland
| | - Nikki J Marks
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Fraser D Menzies
- Department of Agriculture, Environment and Rural Affairs, Veterinary Epidemiology Unit, Belfast, BT4 3SB, Northern Ireland
| | - Maria J H O'Hagan
- Department of Agriculture, Environment and Rural Affairs, Veterinary Epidemiology Unit, Belfast, BT4 3SB, Northern Ireland
| | - Rory P Wilson
- Department of Biological Sciences, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales
| | - Sinéad Smith
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Elizabeth A Magowan
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - David W McClune
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Shane F Collins
- Department of Agriculture, Environment and Rural Affairs, Veterinary Epidemiology Unit, Belfast, BT4 3SB, Northern Ireland
| | - Carl M McCormick
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT4 3SD, Northern Ireland
| | - D Michael Scantlebury
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland.
| |
Collapse
|
3
|
Lam DK, Frantz AC, Burke T, Geffen E, Sin SYW. Both selection and drift drive the spatial pattern of adaptive genetic variation in a wild mammal. Evolution 2023; 77:221-238. [PMID: 36626810 DOI: 10.1093/evolut/qpac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 01/12/2023]
Abstract
The major histocompatibility complex (MHC) has been intensively studied for the relative effects of different evolutionary forces in recent decades. Pathogen-mediated balancing selection is generally thought to explain the high polymorphism observed in MHC genes, but it is still unclear to what extent MHC diversity is shaped by selection relative to neutral drift. In this study, we genotyped MHC class II DRB genes and 15 neutral microsatellite loci across 26 geographic populations of European badgers (Meles meles) covering most of their geographic range. By comparing variation of microsatellite and diversity of MHC at different levels, we demonstrate that both balancing selection and drift have shaped the evolution of MHC genes. When only MHC allelic identity was investigated, the spatial pattern of MHC variation was similar to that of microsatellites. By contrast, when functional aspects of the MHC diversity (e.g., immunological supertypes) were considered, balancing selection appears to decrease genetic structuring across populations. Our comprehensive sampling and analytical approach enable us to conclude that the likely mechanisms of selection are heterozygote advantage and/or rare-allele advantage. This study is a clear demonstration of how both balancing selection and genetic drift simultaneously affect the evolution of MHC genes in a widely distributed wild mammal.
Collapse
Affiliation(s)
- Derek Kong Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Alain C Frantz
- Musée National d'Histoire Naturelle, Luxembourg, Luxembourg
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Eli Geffen
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Fokidis HB, Brock T, Newman C, Macdonald DW, Buesching CD. Assessing chronic stress in wild mammals using claw-derived cortisol: a validation using European badgers ( Meles meles). CONSERVATION PHYSIOLOGY 2023; 11:coad024. [PMID: 37179707 PMCID: PMC10171820 DOI: 10.1093/conphys/coad024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/26/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Measuring stress experienced by wild mammals is increasingly important in the context of human-induced rapid environmental change and initiatives to mitigate human-wildlife conflicts. Glucocorticoids (GC), such as cortisol, mediate responses by promoting physiological adjustments during environmental perturbations. Measuring cortisol is a popular technique; however, this often reveals only recent short-term stress such as that incurred by restraining the animal to sample blood, corrupting the veracity of this approach. Here we present a protocol using claw cortisol, compared with hair cortisol, as a long-term stress bio-indicator, which circumvents this constraint, where claw tissue archives the individual's GC concentration over preceding weeks. We then correlate our findings against detailed knowledge of European badger life history stressors. Based on a solid-phase extraction method, we assessed how claw cortisol concentrations related to season and badger sex, age and body-condition using a combination of generalized linear mixed models (GLMM) (n = 668 samples from 273 unique individuals) followed by finer scale mixed models for repeated measures (MMRM) (n = 152 re-captured individuals). Claw and hair cortisol assays achieved high accuracy, precision and repeatability, with similar sensitivity. The top GLMM model for claw cortisol included age, sex, season and the sex*season interaction. Overall, claw cortisol levels were significantly higher among males than females, but strongly influenced by season, where females had higher levels than males in autumn. The top fine scale MMRM model included sex, age and body condition, with claw cortisol significantly higher in males, older and thinner individuals. Hair cortisol was more variable than claw; nevertheless, there was a positive correlation after removing 34 outliers. We discuss strong support for these stress-related claw cortisol patterns from previous studies of badger biology. Given the potential of this technique, we conclude that it has broad application in conservation biology.
Collapse
Affiliation(s)
- H Bobby Fokidis
- Corresponding author: Department of Biology, Rollins College, Winter Park, Florida, USA.
| | - Taylor Brock
- Department of Biology, Rollins College, 1000 Holt Avenue, Winter Park, Florida, 32789-4499, USA
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abindgon Rd, Tubney, OX13 5QL, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abindgon Rd, Tubney, OX13 5QL, UK
| | - Christina D Buesching
- Irving K. Barber Faculty of Science, University of British Columbia, Okanagan campus, 3187 University Way, Kelowna, British Columbia, V1V1V7, Canada
| |
Collapse
|
5
|
van Lieshout SHJ, Badás EP, Bright Ross JG, Bretman A, Newman C, Buesching CD, Burke T, Macdonald DW, Dugdale HL. Early-life seasonal, weather and social effects on telomere length in a wild mammal. Mol Ecol 2022; 31:5993-6007. [PMID: 34101279 DOI: 10.1111/mec.16014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/03/2021] [Indexed: 01/31/2023]
Abstract
Early-life environmental conditions can provide a source of individual variation in life-history strategies and senescence patterns. Conditions experienced in early life can be quantified by measuring telomere length, which can act as a biomarker of survival probability in some species. Here, we investigate whether seasonal changes, weather conditions and group size are associated with early-life and/or early-adulthood telomere length in a wild population of European badgers (Meles meles). We found substantial intra-annual changes in telomere length during the first 3 years of life, where within-individual effects showed shorter telomere lengths in the winter following the first spring and a trend for longer telomere lengths in the second spring compared to the first winter. In terms of weather conditions, cubs born in warmer, wetter springs with low rainfall variability had longer early-life (3-12 months old) telomeres. Additionally, cubs born in groups with more cubs had marginally longer early-life telomeres, providing no evidence of resource constraint from cub competition. We also found that the positive association between early-life telomere length and cub survival probability remained when social and weather variables were included. Finally, after sexual maturity, in early adulthood (i.e., 12-36 months) we found no significant association between same-sex adult group size and telomere length (i.e., no effect of intrasexual competition). Overall, we show that controlling for seasonal effects, which are linked to food availability, is important in telomere length analyses, and that variation in telomere length in badgers reflects early-life conditions and also predicts first year cub survival.
Collapse
Affiliation(s)
- Sil H J van Lieshout
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,NERC Environmental Omics Visitor Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Elisa P Badás
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Julius G Bright Ross
- Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Abingdon, UK
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Abingdon, UK
| | - Christina D Buesching
- Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Abingdon, UK.,Department of Biology, The University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | - Terry Burke
- NERC Environmental Omics Visitor Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Abingdon, UK
| | - Hannah L Dugdale
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Infection with a Recently Discovered Gammaherpesvirus Variant in European Badgers, Meles meles, is Associated with Higher Relative Viral Loads in Blood. Pathogens 2022; 11:pathogens11101154. [PMID: 36297210 PMCID: PMC9606972 DOI: 10.3390/pathogens11101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Herpesviruses are ubiquitous pathogens infecting most animals. Although host immunity continually coevolves to combat virulence, viral variants with enhanced transmissibility or virulence occasionally emerge, resulting in disease burdens in host populations. Mustelid gammaherpesvirus 1 (MusGHV-1) is the only herpesvirus species identified thus far in European badgers, Meles meles. No MusGHV-1 associated pathomorbidity has been reported, but reactivation of MusGHV-1 in genital tracts is linked to impaired female reproductive success. An analysis of a short sequence from the highly conserved DNA polymerase (DNApol) gene previously identified two variants in a single host population. Here we compared genetic variance in blood samples from 66 known individuals of this same free-ranging badger population using a partial sequence comprising 2874 nucleotides of the DNApol gene, among which we identified 15 nucleotide differences resulting in 5 amino acid differences. Prevalence was 86% (59/66) for the common and 17% (11/66) for the novel variant, with 6% (4/66) of badgers presenting with coinfection. MusGHV-1 variants were distributed unevenly across the population, with individuals infected with the novel genotype clustered in 3 of 25 contiguous social groups. Individuals infected with the novel variant had significantly higher MusGHV-1 viral loads in their blood (p = 0.002) after adjusting for age (juveniles > adults, p < 0.001) and season (summer > spring and autumn, p = 0.005; mixed-effect linear regression), likely indicating higher virulence of the novel variant. Further genome-wide analyses of MusGHV-1 host resistance genes and host phenotypic variations are required to clarify the drivers and sequelae of this new MusGHV-1 variant.
Collapse
|
7
|
Newman C, Tsai MS, Buesching CD, Holland PWH, Macdonald DW. The genome sequence of the European badger, Meles meles (Linnaeus, 1758). Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.18230.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a haplotype resolved, diploid genome assembly from a male Meles meles (European badger; Chordata; Mammalia; Carnivora; Mustelidae) using the trio binning approach. The genome sequence is 2,739 megabases in span. The majority of the assembly (95.16%) is scaffolded into 23 chromosomal pseudomolecules with the X and Y sex chromosomes assembled. The complete mitochondrial genome was also assembled and is 16.4 kilobases in length.
Collapse
|
8
|
Tsai MS, Newman C, Macdonald DW, Buesching CD. Adverse weather during in utero development is linked to higher rates of later-life herpesvirus reactivation in adult European badgers, Meles meles. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211749. [PMID: 35582658 PMCID: PMC9091846 DOI: 10.1098/rsos.211749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/12/2022] [Indexed: 05/03/2023]
Abstract
Maternal immune and/or metabolic conditions relating to stress or nutritional status can affect in utero development among offspring with subsequent implications for later-life responses to infections. We used free-ranging European badgers as a host-pathogen model to investigate how prenatal weather conditions affect later-life herpesvirus genital tract reactivation. We applied a sliding window analysis of weather conditions to 164 samples collected in 2018 from 95 individuals born between 2005-2016. We test if the monthly mean and variation in rainfall and temperature experienced by their mother during the 12 months of delayed implantation and gestation prior to parturition subsequently affected individual herpes reactivation rates among these offspring. We identified four influential prenatal seasonal weather windows that corresponded with previously identified critical climatic conditions affecting badger survival, fecundity and body condition. These all occurred during the pre-implantation rather than the post-implantation period. We conclude that environmental cues during the in utero period of delayed implantation may result in changes that affect an individual's developmental programming against infection or viral reactivation later in life. This illustrates how prenatal adversity caused by environmental factors, such as climate change, can impact wildlife health and population dynamics-an interaction largely overlooked in wildlife management and conservation programmes.
Collapse
Affiliation(s)
- Ming-shan Tsai
- Department of Zoology, Wildlife Conservation Research Unit, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK
| | - Chris Newman
- Department of Zoology, Wildlife Conservation Research Unit, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK
- Cook's Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, Nova Scotia, Canada
| | - David W. Macdonald
- Department of Zoology, Wildlife Conservation Research Unit, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK
| | - Christina D. Buesching
- Cook's Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, Nova Scotia, Canada
- Department of Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
9
|
Sugianto NA, Heistermann M, Newman C, Macdonald DW, Buesching CD. Alternative reproductive strategies provide a flexible mechanism for assuring mating success in the European badgers (Meles meles): An investigation from hormonal measures. Gen Comp Endocrinol 2021; 310:113823. [PMID: 34044013 DOI: 10.1016/j.ygcen.2021.113823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/19/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Selection-pressures differ with population density, but few studies investigate how this can affect reproductive physiology. European badger (Meles meles) density varies from solitary to group-living across their range, with reported mating periods throughout the entire year to specific seasonal periods. Badger reproduction is evolutionarily distinct, interrupting the direct progression from conception to gestation with delayed implantation (DI), allowing for superfecundation (SF). To establish the tactical mating flexibility afforded by DI*SF, we used cross-sectional population-level seasonal variation of circulating sex-steroids for 97 females from a high-density population. Oestradiol was highest in spring among non-parous females, then lower in summer, and remained low during following seasons, suggesting that the mating period was restricted to just spring. Oestrone was consistently higher than oestradiol; it was elevated in spring, lowest during summer, peaked in autumn, and remained elevated for pregnant females in winter. This suggests that oestrone sustains pre-implanted blastocysts throughout DI. Progesterone was low throughout, except during winter pregnancy, associated with implantation and luteal development. In contrast to multiple mating periods reported by lower-density studies, our oestradiol data suggest that, at high-density, females exhibit only one mating period (congruent with testosterone patterns in males studied previously in this same population). While additional mating periods during DI enhance fertility assurance at low-density, at high-density, we propose that when coitus is frequent, fertilisation is assured, precluding the need for further cycles and associated mating risks. This endocrinologically flexible DI*SF mating strategy likely represents a form of balancing selection, allowing badgers to succeed at a range of regional densities.
Collapse
Affiliation(s)
- Nadine Adrianna Sugianto
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, UK; School of Biosciences, University of Birmingham, Birmingham, UK.
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, UK; Cook's Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, Nova Scotia, Canada
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, UK
| | - Christina D Buesching
- Cook's Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, Nova Scotia, Canada; Department of Biology, Irving K. Barber Faculty of Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
10
|
Albery GF, Newman C, Ross JB, MacDonald DW, Bansal S, Buesching C. Negative density-dependent parasitism in a group-living carnivore. Proc Biol Sci 2020; 287:20202655. [PMID: 33323092 PMCID: PMC7779509 DOI: 10.1098/rspb.2020.2655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Animals living at high population densities commonly experience greater exposure to disease, leading to increased parasite burdens. However, social animals can benefit immunologically and hygienically from cooperation, and individuals may alter their socio-spatial behaviour in response to infection, both of which could counteract density-related increases in exposure. Consequently, the costs and benefits of sociality for disease are often uncertain. Here, we use a long-term study of a wild European badger population (Meles meles) to investigate how within-population variation in host density determines infection with multiple parasites. Four out of five parasite taxa exhibited consistent spatial hotspots of infection, which peaked among badgers living in areas of low local population density. Combined movement, survival, spatial and social network analyses revealed that parasite avoidance was the likely cause of this negative density dependence, with possible roles for localized mortality, encounter-dilution effects, and micronutrient-enhanced immunity. These findings demonstrate that animals can organize their societies in space to minimize parasite infection, with important implications for badger behavioural ecology and for the control of badger-associated diseases.
Collapse
Affiliation(s)
| | - Chris Newman
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - Julius Bright Ross
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - David W. MacDonald
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Christina Buesching
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
- Irving K. Barber Faculty of Sciences, Okanagan Department of Biology, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
11
|
Wells DA, Cant MA, Thompson FJ, Marshall HH, Vitikainen EIK, Hoffman JI, Nichols HJ. Extra-group paternity varies with proxies of relatedness in a social mammal with high inbreeding risk. Behav Ecol 2020. [DOI: 10.1093/beheco/araa105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Behavioral mechanisms for avoiding inbreeding are common in the natural world and are believed to have evolved as a response to the negative consequences of inbreeding. However, despite a fundamental role in fitness, we have a limited understanding of the cues that individuals use to assess inbreeding risk, as well as the extent to which individual inbreeding behavior is repeatable. We used piecewise structural equation modeling of 24 years of data to investigate the causes and consequences of within- versus extra-group paternity in banded mongooses. This cooperatively breeding mammal lives in tight-knit social groups that often contain closely related opposite-sex breeders, so inbreeding can be avoided through extra-group mating. We used molecular parentage assignments to show that, despite extra-group paternity resulting in outbred offspring, within-group inbreeding occurs frequently, with around 16% litters being moderately or highly inbred. Additionally, extra-group paternity appears to be plastic, with females mating outside of their social group according to individual proxies (age and immigration status) and societal proxies (group size and age) of within-group inbreeding risk but not in direct response to levels of within-group relatedness. While individual repeatability in extra-group paternity was relatively low, female cobreeders showed high repeatability, suggesting a strong constraint arising from the opportunities for extra-group mating. The use of extra-group paternity as an inbreeding avoidance strategy is, therefore, limited by high costs, opportunity constraints, and the limited reliability of proxies of inbreeding risk.
Collapse
Affiliation(s)
- David A Wells
- Department of Animal Behaviour, University of Bielefeld, Postfach, Bielefeld, Germany
- School of Natural Science and Psychology, Liverpool John Moores University, Liverpool, UK
| | - Michael A Cant
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Faye J Thompson
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Harry H Marshall
- Centre for Research in Ecology, Evolution and Behaviour, Department of Life Sciences, University of Roehampton, London, UK
| | - Emma I K Vitikainen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Joseph I Hoffman
- Department of Animal Behaviour, University of Bielefeld, Postfach, Bielefeld, Germany
- British Antarctic Survey, Cambridge, Cambridgeshire, UK
| | - Hazel J Nichols
- Department of Animal Behaviour, University of Bielefeld, Postfach, Bielefeld, Germany
- Department of Biosciences, Swansea University, Swansea, UK
| |
Collapse
|
12
|
van Lieshout SHJ, Sparks AM, Bretman A, Newman C, Buesching CD, Burke T, Macdonald DW, Dugdale HL. Estimation of environmental, genetic and parental age at conception effects on telomere length in a wild mammal. J Evol Biol 2020; 34:296-308. [PMID: 33113164 DOI: 10.1111/jeb.13728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Abstract
Understanding individual variation in fitness-related traits requires separating the environmental and genetic determinants. Telomeres are protective caps at the ends of chromosomes that are thought to be a biomarker of senescence as their length predicts mortality risk and reflect the physiological consequences of environmental conditions. The relative contribution of genetic and environmental factors to individual variation in telomere length is, however, unclear, yet important for understanding its evolutionary dynamics. In particular, the evidence for transgenerational effects, in terms of parental age at conception, on telomere length is mixed. Here, we investigate the heritability of telomere length, using the 'animal model', and parental age at conception effects on offspring telomere length in a wild population of European badgers (Meles meles). Although we found no heritability of telomere length and low evolvability (<0.001), our power to detect heritability was low and a repeatability of 2% across individual lifetimes provides a low upper limit to ordinary narrow-sense heritability. However, year (32%) and cohort (3%) explained greater proportions of the phenotypic variance in telomere length, excluding qPCR plate and row variances. There was no support for cross-sectional or within-individual parental age at conception effects on offspring telomere length. Our results indicate a lack of transgenerational effects through parental age at conception and a low potential for evolutionary change in telomere length in this population. Instead, we provide evidence that individual variation in telomere length is largely driven by environmental variation in this wild mammal.
Collapse
Affiliation(s)
- Sil H J van Lieshout
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK.,Department of Animal and Plant Sciences, NERC Biomolecular Analysis Facility, University of Sheffield, Sheffield, UK
| | - Alexandra M Sparks
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - Amanda Bretman
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, UK
| | - Christina D Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, UK
| | - Terry Burke
- Department of Animal and Plant Sciences, NERC Biomolecular Analysis Facility, University of Sheffield, Sheffield, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, UK
| | - Hannah L Dugdale
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Tsai MS, Fogarty U, Byrne AW, O’Keeffe J, Newman C, Macdonald DW, Buesching CD. Effects of Mustelid gammaherpesvirus 1 (MusGHV-1) Reactivation in European Badger ( Meles meles) Genital Tracts on Reproductive Fitness. Pathogens 2020; 9:E769. [PMID: 32962280 PMCID: PMC7559395 DOI: 10.3390/pathogens9090769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Reactivation of latent Gammaherpesvirus in the genital tract can lead to reproductive failure in domestic animals. Nevertheless, this pathophysiology has not received formal study in wild mammals. High prevalence of Mustelid gammaherpesvirus 1 (MusGHV-1) DNA detected in the genital tracts of European badgers (Meles meles) implies that this common pathogen may be a sexual transmitted infection. Here we used PCR to test MusGHV-1 DNA prevalence in genital swabs collected from 144 wild badgers in Ireland (71 males, 73 females) to investigate impacts on male fertility indicators (sperm abundance and testes weight) and female fecundity (current reproductive output). MusGHV-1 reactivation had a negative effect on female reproduction, but not on male fertility; however males had a higher risk of MusGHV-1 reactivation than females, especially during the late-winter mating season, and genital MusGHV-1 reactivation differed between age classes, where 3-5 year old adults had significantly lower reactivation rates than younger or older ones. Negative results in foetal tissues from MusGHV-1 positive mothers indicated that cross-placental transmission was unlikely. This study has broader implications for how wide-spread gammaherpesvirus infections could affect reproductive performance in wild Carnivora species.
Collapse
Affiliation(s)
- Ming-shan Tsai
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.); (C.D.B.)
| | - Ursula Fogarty
- Irish Equine Centre, Johnstown, Naas, Co. Kildare W91 RH93, Ireland;
| | - Andrew W. Byrne
- One-Health Scientific Support Unit, Department of Agriculture, Agriculture House, Dublin 2 DO2 WK12, Ireland;
| | - James O’Keeffe
- Department of Agriculture, Agriculture House, Dublin 2 DO2 WK1, Ireland;
- Centre for Veterinary Epidemiology and Risk Analysis, University College Dublin, Belfield, Dublin 4 D04 W6F6, Ireland
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.); (C.D.B.)
- Cook’s Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, NS B0J 2H0, Canada
| | - David W. Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.); (C.D.B.)
| | - Christina D. Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.); (C.D.B.)
- Cook’s Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, NS B0J 2H0, Canada
| |
Collapse
|
14
|
Evans JC, Lindholm AK, König B. Long-term overlap of social and genetic structure in free-ranging house mice reveals dynamic seasonal and group size effects. Curr Zool 2020; 67:59-69. [PMID: 33654491 PMCID: PMC7901755 DOI: 10.1093/cz/zoaa030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/10/2020] [Indexed: 12/02/2022] Open
Abstract
Associating with relatives in social groups can bring benefits such as reduced risk of aggression and increased likelihood of cooperation. Competition among relatives over limited resources, on the other hand, can induce individuals to alter their patterns of association. Population density might further affect the costs and benefits of associating with relatives by altering resource competition or by changing the structure of social groups; preventing easy association with relatives. Consequently, the overlap between genetic and social structure is expected to decrease with increasing population size, as well as during times of increased breeding activity. Here, we use multi-layer network techniques to quantify the similarity between long-term, high resolution genetic, and behavioral data from a large population of free-ranging house mice (Mus musculus domesticus), studied over 10 years. We infer how the benefit of associating with genetically similar individuals might fluctuate in relation to breeding behavior and environmental conditions. We found a clear seasonal effect, with decreased overlap between social and genetic structure during summer months, characterized by high temperatures and high breeding activity. Though the effect of overall population size was relatively weak, we found a clear decrease in the overlap between genetic similarity and social associations within larger groups. As well as longer-term within-group changes, these results reveal population-wide short-term shifts in how individuals associate with relatives. Our study suggests that resource competition modifies the trade-off between the costs and benefits of interacting with relatives.
Collapse
Affiliation(s)
- Julian C Evans
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Address correspondence to Julian C. Evans. E-mail:
| | - Anna K Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Barbara König
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
15
|
van Lieshout SHJ, Badás EP, Mason MWT, Newman C, Buesching CD, Macdonald DW, Dugdale HL. Social effects on age-related and sex-specific immune cell profiles in a wild mammal. Biol Lett 2020; 16:20200234. [PMID: 32673548 PMCID: PMC7423055 DOI: 10.1098/rsbl.2020.0234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Evidence for age-related changes in innate and adaptive immune responses is increasing in wild populations. Such changes have been linked to fitness, and knowledge of the factors driving immune response variation is important for understanding the evolution of immunity. Age-related changes in immune profiles may be owing to factors such as immune system development, sex-specific behaviour and responses to environmental conditions. Social environments may also contribute to variation in immunological responses, for example, through transmission of pathogens and stress arising from resource and mate competition. Yet, the impact of the social environment on age-related changes in immune cell profiles is currently understudied in the wild. Here, we tested the relationship between leukocyte cell composition (proportion of neutrophils and lymphocytes [innate and adaptive immunity, respectively] that were lymphocytes) and age, sex and group size in a wild population of European badgers (Meles meles). We found that the proportion of lymphocytes in early life was greater in males in smaller groups compared to larger groups, but with a faster age-related decline in smaller groups. By contrast, the proportion of lymphocytes in females was not significantly related to age or group size. Our results provide evidence of sex-specific age-related changes in immune cell profiles in a wild mammal, which are influenced by the social environment.
Collapse
Affiliation(s)
- Sil H J van Lieshout
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Elisa P Badás
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Michael W T Mason
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, Oxfordshire OX13 5QL, UK
| | - Christina D Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, Oxfordshire OX13 5QL, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, Oxfordshire OX13 5QL, UK
| | - Hannah L Dugdale
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
16
|
Bright Ross JG, Newman C, Buesching CD, Macdonald DW. What lies beneath? Population dynamics conceal pace-of-life and sex ratio variation, with implications for resilience to environmental change. GLOBAL CHANGE BIOLOGY 2020; 26:3307-3324. [PMID: 32243650 DOI: 10.1111/gcb.15106] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/07/2020] [Indexed: 06/11/2023]
Abstract
Life-history and pace-of-life syndrome theory predict that populations are comprised of individuals exhibiting different reproductive schedules and associated behavioural and physiological traits, optimized to prevailing social and environmental factors. Changing weather and social conditions provide in situ cues altering this life-history optimality; nevertheless, few studies have considered how tactical, sex-specific plasticity over an individual's lifespan varies in wild populations and influences population resilience. We examined the drivers of individual life-history schedules using 31 years of trapping data and 28 years of pedigree for the European badger (Meles meles L.), a long-lived, iteroparous, polygynandrous mammal that exhibits heterochrony in the timing of endocrinological puberty in male cubs. Our top model for the effects of environmental (social and weather) conditions during a badger's first year on pace-of-life explained <10% of variance in the ratio of fertility to age at first reproduction (F/α) and lifetime reproductive success. Conversely, sex ratio (SR) and sex-specific density explained 52.8% (males) and 91.0% (females) of variance in adult F/α ratios relative to the long-term population median F/α. Weather primarily affected the sexes at different life-history stages, with energy constraints limiting the onset of male reproduction but playing a large role in female strategic energy allocation, particularly in relation to ongoing mean temperature increases. Furthermore, the effects of social factors on age of first reproduction and year-to-year reproductive success covaried differently with sex, likely due to sex-specific responses to potential mate availability. For females, low same-sex densities favoured early primiparity; for males, instead, up to 10% of yearlings successfully mated at high same-sex densities. We observed substantial SR dynamism relating to differential mortality of life-history strategists within the population, and propose that shifting ratios of 'fast' and 'slow' life-history strategists contribute substantially to population dynamics and resilience to changing conditions.
Collapse
Affiliation(s)
- Julius G Bright Ross
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - Chris Newman
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - Christina D Buesching
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Sugianto NA, Newman C, Macdonald DW, Buesching CD. Reproductive and Somatic Senescence in the European Badger (Meles meles): Evidence from Lifetime Sex-Steroid Profiles. ZOOLOGY 2020; 141:125803. [PMID: 32574816 DOI: 10.1016/j.zool.2020.125803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Among the Carnivora, there is sparse evidence for any substantive fitness benefits of post reproductive lifespan (PRLS, survival after reproductive cessation, RC). Using the European badger (Meles meles) as a model species, we analyzed sex-specific cross-sectional endocrinological and morphological data to investigate: 1) age-dependent reproductive decline in sex-steroid levels versus prime reproductive age; 2) age-dependent declines in somatic condition and reproductive advertisement (from subcaudal scent gland secretion); 3) changes in reproductive success with age due to somatic and endocrinological decline; 4) occurrence of RC, PRLS, and post reproductive representation (PrR) in the population with reference to pre-pubescent hormone levels and evidenced by fewer cub assignments from pedigree. We provide strong evidence for a gradual, not abrupt, decline in sex-steroid levels with age, with both sexes following a concave (down) quadratic trend. For both sexes, the onset of decline in somatic condition commenced at the age of 3 years. In contrast, decline in reproductive hormones started at age ca. 5.5 years in females and 6 years in males, with similar rates of decline thereafter. Subcaudal gland secretion volume also decreased in both sexes, especially after age 5, suggesting less investment in reproductive advertisement. After age 3, fewer (surviving) females were assigned cubs. This coincided with the onset of somatic decline but came earlier than hormonal decline (5.5 years onwards). The decrease in offspring assignments commenced later in males at age 5-6 years; concomitant with onset of testosterone decline at 6 years. This suggests that, contrary to females, in males declining body condition does not preclude reproductive success (no 'restraint') in advance of hormonal senescence ('constraint'). There was evidence of female PRLS, with very old adults living up to 2.59 ± 1.29 years after RC; although in males this evidence was weaker. We discuss the implications of these findings for RC and PRLS in the context of adaptive and non-adaptive hypotheses. There was evidence of over 2 years of Post Reproductive Life Span in both sexes.
Collapse
Affiliation(s)
- Nadine Adrianna Sugianto
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK
| | - Christina D Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK.
| |
Collapse
|
18
|
Macdonald DW, Campbell LAD, Kamler JF, Marino J, Werhahn G, Sillero-Zubiri C. Monogamy: Cause, Consequence, or Corollary of Success in Wild Canids? Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Lodé T. A brief natural history of the orgasm. ALL LIFE 2019. [DOI: 10.1080/21553769.2019.1664642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Thierry Lodé
- Laboratoire d’Éthologie Animale et Humaine EthoS–UMR-CNRS 6552, Université de Rennes 1, Rennes, France
| |
Collapse
|
20
|
Raj Pant S, Komdeur J, Burke TA, Dugdale HL, Richardson DS. Socio-ecological conditions and female infidelity in the Seychelles warbler. Behav Ecol 2019; 30:1254-1264. [PMID: 31579133 PMCID: PMC6765383 DOI: 10.1093/beheco/arz072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/05/2019] [Accepted: 05/13/2019] [Indexed: 02/04/2023] Open
Abstract
Within socially monogamous breeding systems, levels of extra-pair paternity can vary not only between species, populations, and individuals, but also across time. Uncovering how different extrinsic conditions (ecological, demographic, and social) influence this behavior will help shed light on the factors driving its evolution. Here, we simultaneously address multiple socio-ecological conditions potentially influencing female infidelity in a natural population of the cooperatively breeding Seychelles warbler, Acrocephalus sechellensis. Our contained study population has been monitored for more than 25 years, enabling us to capture variation in socio-ecological conditions between individuals and across time and to accurately assign parentage. We test hypotheses predicting the influence of territory quality, breeding density and synchrony, group size and composition (number and sex of subordinates), and inbreeding avoidance on female infidelity. We find that a larger group size promotes the likelihood of extra-pair paternity in offspring from both dominant and subordinate females, but this paternity is almost always gained by dominant males from outside the group (not by subordinate males within the group). Higher relatedness between a mother and the dominant male in her group also results in more extra-pair paternity-but only for subordinate females-and this does not prevent inbreeding occurring in this population. Our findings highlight the role of social conditions favoring infidelity and contribute toward understanding the evolution of this enigmatic behavior.
Collapse
Affiliation(s)
- Sara Raj Pant
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Terry A Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Hannah L Dugdale
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David S Richardson
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Nature Seychelles, Roche Caiman, Mahe, Republic of Seychelles
| |
Collapse
|
21
|
Sugianto N, Newman C, Macdonald D, Buesching C. Extrinsic factors affecting cub development contribute to sexual size dimorphism in the European badger (Meles meles). ZOOLOGY 2019; 135:125688. [DOI: 10.1016/j.zool.2019.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 11/24/2022]
|
22
|
Sugianto NA, Newman C, Macdonald DW, Buesching CD. Heterochrony of puberty in the European badger (Meles meles) can be explained by growth rate and group-size: Evidence for two endocrinological phenotypes. PLoS One 2019; 14:e0203910. [PMID: 30840618 PMCID: PMC6402631 DOI: 10.1371/journal.pone.0203910] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/08/2018] [Indexed: 11/18/2022] Open
Abstract
Puberty is a key stage in mammalian ontogeny, involving endocrinological, physiological and behavioural changes, moderated by intrinsic and extrinsic factors. Thus, not all individuals within one population achieve sexual maturity simultaneously. Here, using the European badger (Meles meles) as a model, we describe male testosterone and female oestrone profiles (using Enzyme-immunoassays) from first capture (3 months, post-weaning) until 28 months (attaining sexual maturity and final body size), along with metrics of somatic growth, scent gland development and maturation of external reproductive organs as well as intra-specific competition. In both sexes, endocrinological puberty commenced at ca. 11 months. Thereafter, cub hormone levels followed adult seasonal hormone patterns but at lower levels, with the majority of cubs reaching sexual maturity during their second mating season (22-28 months). Interestingly, there was evidence for two endocrinological phenotypes among male cubs (less evident in females), with early developers reaching sexual maturity at 11 months (first mating season) and late developers reaching sexual maturity at 22-26 months (second mating season). Early developers also attained a greater proportion of their ultimate adult size by 11 months, exhibiting faster growth rates than late developers (despite having similar adult size). Male cubs born into larger social groups tended to follow the late developer phenotype. Our results support the hypothesis that a minimum body size is required to reach sexual maturity, which may be achieved at different ages, even within a single population, where early maturity can confer individual fitness advantages and enhance population growth rate.
Collapse
Affiliation(s)
- Nadine Adrianna Sugianto
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - David Whyte Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Christina Dagmar Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Marjamäki PH, Dugdale HL, Dawson DA, McDonald RA, Delahay R, Burke T, Wilson AJ. Individual variation and the source-sink group dynamics of extra-group paternity in a social mammal. Behav Ecol 2019; 30:301-312. [PMID: 30971858 PMCID: PMC6450204 DOI: 10.1093/beheco/ary164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 10/17/2018] [Accepted: 11/20/2018] [Indexed: 11/29/2022] Open
Abstract
Movement of individuals, or their genes, can influence eco-evolutionary processes in structured populations. We have limited understanding of the extent to which spatial behavior varies among groups and individuals within populations. Here, we use genetic pedigree reconstruction in a long-term study of European badgers (Meles meles) to characterize the extent of extra-group paternity, occurring as a consequence of breeding excursions, and to test hypothesized drivers of variation at multiple levels. We jointly estimate parentage and paternity distance (PD; distance between a cub's natal and its father's social group), and test whether population density and sex ratio influence mean annual PD. We also model cub-level PD and extra-group paternity (EGP) to test for variation among social groups and parental individuals. Mean PD varied among years but was not explained by population density or sex ratio. However, cub-level analysis shows strong effects of social group, and parental identities, with some parental individuals being consistently more likely to produce cubs with extra-group partners. Group effects were partially explained by local sex ratio. There was also a strong negative correlation between maternal and paternal social group effects on cub paternity distance, indicating source-sink dynamics. Our analyses of paternity distance and EGP indicate variation in extra-group mating at multiple levels-among years, social groups and individuals. The latter in particular is a phenomenon seldom documented and suggests that gene flow among groups may be disproportionately mediated by a nonrandom subset of adults, emphasizing the importance of the individual in driving eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Paula H Marjamäki
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Hannah L Dugdale
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Deborah A Dawson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Robbie A McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | - Richard Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Gloucestershire, UK
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
| |
Collapse
|
24
|
Ebensperger LA, Correa LA, Ly Prieto Á, Pérez de Arce F, Abades S, Hayes LD. Multiple mating is linked to social setting and benefits the males in a communally rearing mammal. Behav Ecol 2019. [DOI: 10.1093/beheco/arz003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Individuals in social species may mate with multiple opposite-sex individuals, including members of the same or different social groups. This variation may be linked to genetic benefits, where multiple mating decreases risk of inbreeding. Multiple mating may also be constrained by the sociospatial setting through its effect on availability of mates. Because multiple mating with individuals from same or different groups may determine sex-specific fitness effects, we also examined how multiple mating modulates social benefits of females and males. We used 7 years of data on demography, social organization, and genetics of a natural population of the group-living and colonial rodent, Octodon degus, to determine how kin and sex composition within social groups, and spatial relations between these groups (i.e., colonial habits) influence multiple mating and its fitness consequences. Males (81.3%) and females (64.9%) produced offspring with multiple opposite-sex individuals within groups and with individuals of neighboring groups. Thus, polygynandry was the dominant mating system in the degu population examined. Multiple mating in degus was high when compared with estimates reported in other social mammals. Variation in female and male multiple mating was better explained by social setting through its effect on availability of potential mates rather than by benefits derived from decreasing risk of inbreeding. Finally, our study revealed how multiple mating enhances male, but not female reproductive success.
Collapse
Affiliation(s)
- Luis A Ebensperger
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins, CP, Chile
| | - Loreto A Correa
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins, CP, Chile
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, Huechuraba, Santiago, Chile
| | - Álvaro Ly Prieto
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins, CP, Chile
| | - Felipe Pérez de Arce
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins, CP, Chile
| | - Sebastian Abades
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, Huechuraba, Santiago, Chile
| | - Loren D Hayes
- Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| |
Collapse
|
25
|
Benton CH, Delahay RJ, Smith FAP, Robertson A, McDonald RA, Young AJ, Burke TA, Hodgson D. Inbreeding intensifies sex- and age-dependent disease in a wild mammal. J Anim Ecol 2018; 87:1500-1511. [DOI: 10.1111/1365-2656.12878] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/20/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Clare H. Benton
- National Wildlife Management Centre; Animal and Plant Health Agency; Stonehouse UK
- Centre for Ecology and Conservation; University of Exeter; Penryn UK
| | - Richard J. Delahay
- National Wildlife Management Centre; Animal and Plant Health Agency; Stonehouse UK
| | - Freya A. P. Smith
- National Wildlife Management Centre; Animal and Plant Health Agency; Stonehouse UK
| | - Andrew Robertson
- National Wildlife Management Centre; Animal and Plant Health Agency; Stonehouse UK
- Environment and Sustainability Institute; University of Exeter; Penryn UK
| | - Robbie A. McDonald
- Environment and Sustainability Institute; University of Exeter; Penryn UK
| | - Andrew J. Young
- Centre for Ecology and Conservation; University of Exeter; Penryn UK
| | - Terry A. Burke
- Molecular Ecology Laboratory; University of Sheffield; Sheffield UK
| | - Dave Hodgson
- Centre for Ecology and Conservation; University of Exeter; Penryn UK
| |
Collapse
|
26
|
Hau M, Dominoni D, Casagrande S, Buck CL, Wagner G, Hazlerigg D, Greives T, Hut RA. Timing as a sexually selected trait: the right mate at the right moment. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0249. [PMID: 28993493 DOI: 10.1098/rstb.2016.0249] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 12/20/2022] Open
Abstract
Sexual selection favours the expression of traits in one sex that attract members of the opposite sex for mating. The nature of sexually selected traits such as vocalization, colour and ornamentation, their fitness benefits as well as their costs have received ample attention in field and laboratory studies. However, sexually selected traits may not always be expressed: coloration and ornaments often follow a seasonal pattern and behaviours may be displayed only at specific times of the day. Despite the widely recognized differences in the daily and seasonal timing of traits and their consequences for reproductive success, the actions of sexual selection on the temporal organization of traits has received only scant attention. Drawing on selected examples from bird and mammal studies, here we summarize the current evidence for the daily and seasonal timing of traits. We highlight that molecular advances in chronobiology have opened exciting new opportunities for identifying the genetic targets that sexual selection may act on to shape the timing of trait expression. Furthermore, known genetic links between daily and seasonal timing mechanisms lead to the hypothesis that selection on one timescale may simultaneously also affect the other. We emphasize that studies on the timing of sexual displays of both males and females from wild populations will be invaluable for understanding the nature of sexual selection and its potential to act on differences within and between the sexes in timing. Molecular approaches will be important for pinpointing genetic components of biological rhythms that are targeted by sexual selection, and to clarify whether these represent core or peripheral components of endogenous clocks. Finally, we call for a renewed integration of the fields of evolution, behavioural ecology and chronobiology to tackle the exciting question of how sexual selection contributes to the evolution of biological clocks.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen, Germany .,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Davide Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - C Loren Buck
- Department of Biological Sciences and Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ, USA
| | - Gabriela Wagner
- Department of Arctic and Marine Biology, UiT: the Arctic University of Norway, Tromsø, Norway
| | - David Hazlerigg
- Department of Arctic and Marine Biology, UiT: the Arctic University of Norway, Tromsø, Norway
| | - Timothy Greives
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Roelof A Hut
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| |
Collapse
|
27
|
Ellwood SA, Newman C, Montgomery RA, Nicosia V, Buesching CD, Markham A, Mascolo C, Trigoni N, Pasztor B, Dyo V, Latora V, Baker SE, Macdonald DW. An active‐radio‐frequency‐identification system capable of identifying co‐locations and social‐structure: Validation with a wild free‐ranging animal. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephen A. Ellwood
- Wildlife Conservation Research UnitDepartment of ZoologyUniversity of OxfordThe Recanati‐Kaplan Centre Abingdon Oxfordshire UK
| | - Chris Newman
- Wildlife Conservation Research UnitDepartment of ZoologyUniversity of OxfordThe Recanati‐Kaplan Centre Abingdon Oxfordshire UK
| | - Robert A. Montgomery
- Wildlife Conservation Research UnitDepartment of ZoologyUniversity of OxfordThe Recanati‐Kaplan Centre Abingdon Oxfordshire UK
- Department of Fisheries and WildlifeMichigan State University East Lansing MI USA
| | - Vincenzo Nicosia
- School of Mathematical SciencesQueen Mary University of London London UK
| | - Christina D. Buesching
- Wildlife Conservation Research UnitDepartment of ZoologyUniversity of OxfordThe Recanati‐Kaplan Centre Abingdon Oxfordshire UK
| | - Andrew Markham
- Sensor Networks GroupDepartment of Computer SciencesUniversity of Oxford Oxford UK
| | | | - Niki Trigoni
- Sensor Networks GroupDepartment of Computer SciencesUniversity of Oxford Oxford UK
| | - Bence Pasztor
- Computer LaboratoryUniversity of Cambridge Cambridge UK
| | - Vladimir Dyo
- Department of Computer Science and TechnologyUniversity of BedfordshireUniversity Square Luton UK
| | - Vito Latora
- School of Mathematical SciencesQueen Mary University of London London UK
| | - Sandra E. Baker
- Wildlife Conservation Research UnitDepartment of ZoologyUniversity of OxfordThe Recanati‐Kaplan Centre Abingdon Oxfordshire UK
| | - David W. Macdonald
- Wildlife Conservation Research UnitDepartment of ZoologyUniversity of OxfordThe Recanati‐Kaplan Centre Abingdon Oxfordshire UK
| |
Collapse
|
28
|
Ruiz-Lambides AV, Weiß BM, Kulik L, Stephens C, Mundry R, Widdig A. Long-term analysis on the variance of extra-group paternities in rhesus macaques. Behav Ecol Sociobiol 2017; 71:67. [PMID: 28360453 PMCID: PMC5355504 DOI: 10.1007/s00265-017-2291-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 10/28/2022]
Abstract
ABSTRACT Extra-group paternity (EGP) has been described in various mammalian species; however, little is known about which factors contribute to the variation in EGP, as the majority of studies were restricted in time and the number of groups considered. Using longitudinal demographic and genetic data, we aim to investigate which factors predict rates of EGP in the free-ranging rhesus macaque population of Cayo Santiago, Puerto Rico (USA). Of the 1649 infants considered which were born into six social groups over 9 years, we identified an average of 16% of infants resulting from EGPs. We tested the influence of group size, breeding group sex ratio, female reproductive synchrony, and group instability on the occurrence of EGPs. Our results suggest a tendency for EGPs to increase as the proportion of females increased in larger groups, but no such effect in smaller groups. Furthermore, as group instability and female reproductive synchrony decreased, the number of EGPs tended to increase. Our results support the hypothesis that group structure affects the occurrence of EGPs, which might be mediated by male mating opportunities, male monopolization potential, and/or female choice. SIGNIFICANCE STATEMENT In several species, both sexes seek alternative reproductive strategies to enhance their reproductive success. For instance, females may pursue EGPs to potentially increase genetic compatibility with males, or males may seek EGPs to improve their mating opportunities. Our longitudinal analysis, including demographic and genetic data over 9 years of six social groups of rhesus macaques, revealed high variation in the occurrence of EGPs across groups and years, and this variation tended to depend on group characteristics such as breeding group size, sex ratio, female synchrony, and group instability. The data suggest that group structure affects the number of EGPs in this group-living primate. Our results show that EGPs can affect the distribution of paternity within social groups and should be taken into account when assessing reproductive success.
Collapse
Affiliation(s)
- Angelina V. Ruiz-Lambides
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Behavioral Ecology Research Group, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
- Cayo Santiago Field Station, Caribbean Primate Research Center, University of Puerto Rico, P.O. Box 906, Punta Santiago, 00741 Puerto Rico
| | - Brigitte M. Weiß
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Behavioral Ecology Research Group, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| | - Lars Kulik
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Behavioral Ecology Research Group, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| | - Colleen Stephens
- Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Roger Mundry
- Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Anja Widdig
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Behavioral Ecology Research Group, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| |
Collapse
|
29
|
Ruiz-Lambides AV, Weiß BM, Kulik L, Stephens C, Mundry R, Widdig A. Long-term analysis on the variance of extra-group paternities in rhesus macaques. Behav Ecol Sociobiol 2017; 71:67. [PMID: 28360453 DOI: 10.10.1007/s00265-017-2291-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 05/21/2023]
Abstract
ABSTRACT Extra-group paternity (EGP) has been described in various mammalian species; however, little is known about which factors contribute to the variation in EGP, as the majority of studies were restricted in time and the number of groups considered. Using longitudinal demographic and genetic data, we aim to investigate which factors predict rates of EGP in the free-ranging rhesus macaque population of Cayo Santiago, Puerto Rico (USA). Of the 1649 infants considered which were born into six social groups over 9 years, we identified an average of 16% of infants resulting from EGPs. We tested the influence of group size, breeding group sex ratio, female reproductive synchrony, and group instability on the occurrence of EGPs. Our results suggest a tendency for EGPs to increase as the proportion of females increased in larger groups, but no such effect in smaller groups. Furthermore, as group instability and female reproductive synchrony decreased, the number of EGPs tended to increase. Our results support the hypothesis that group structure affects the occurrence of EGPs, which might be mediated by male mating opportunities, male monopolization potential, and/or female choice. SIGNIFICANCE STATEMENT In several species, both sexes seek alternative reproductive strategies to enhance their reproductive success. For instance, females may pursue EGPs to potentially increase genetic compatibility with males, or males may seek EGPs to improve their mating opportunities. Our longitudinal analysis, including demographic and genetic data over 9 years of six social groups of rhesus macaques, revealed high variation in the occurrence of EGPs across groups and years, and this variation tended to depend on group characteristics such as breeding group size, sex ratio, female synchrony, and group instability. The data suggest that group structure affects the number of EGPs in this group-living primate. Our results show that EGPs can affect the distribution of paternity within social groups and should be taken into account when assessing reproductive success.
Collapse
Affiliation(s)
- Angelina V Ruiz-Lambides
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Behavioral Ecology Research Group, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
- Cayo Santiago Field Station, Caribbean Primate Research Center, University of Puerto Rico, P.O. Box 906, Punta Santiago, 00741 Puerto Rico
| | - Brigitte M Weiß
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Behavioral Ecology Research Group, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| | - Lars Kulik
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Behavioral Ecology Research Group, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| | - Colleen Stephens
- Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Roger Mundry
- Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Anja Widdig
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Behavioral Ecology Research Group, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| |
Collapse
|
30
|
Sin YW, Newman C, Dugdale HL, Buesching C, Mannarelli ME, Annavi G, Burke T, Macdonald DW. No Compensatory Relationship between the Innate and Adaptive Immune System in Wild-Living European Badgers. PLoS One 2016; 11:e0163773. [PMID: 27695089 PMCID: PMC5047587 DOI: 10.1371/journal.pone.0163773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022] Open
Abstract
The innate immune system provides the primary vertebrate defence system against pathogen invasion, but it is energetically costly and can have immune pathological effects. A previous study in sticklebacks found that intermediate major histocompatibility complex (MHC) diversity correlated with a lower leukocyte coping capacity (LCC), compared to individuals with fewer, or many, MHC alleles. The organization of the MHC genes in mammals, however, differs to the highly duplicated MHC genes in sticklebacks by having far fewer loci. Using European badgers (Meles meles), we therefore investigated whether innate immune activity, estimated functionally as the ability of an individual’s leukocytes to produce a respiratory burst, was influenced by MHC diversity. We also investigated whether LCC was influenced by factors such as age-class, sex, body condition, season, year, neutrophil and lymphocyte counts, and intensity of infection with five different pathogens. We found that LCC was not associated with specific MHC haplotypes, MHC alleles, or MHC diversity, indicating that the innate immune system did not compensate for the adaptive immune system even when there were susceptible MHC alleles/haplotypes, or when the MHC diversity was low. We also identified a seasonal and annual variation of LCC. This temporal variation of innate immunity was potentially due to physiological trade-offs or temporal variation in pathogen infections. The innate immunity, estimated as LCC, does not compensate for MHC diversity suggests that the immune system may function differently between vertebrates with different MHC organizations, with implications for the evolution of immune systems in different taxa.
Collapse
Affiliation(s)
- Yung Wa Sin
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, United States of America
- * E-mail:
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
| | - Hannah L. Dugdale
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700 CC, Groningen, Netherlands
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Christina Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
| | - Maria-Elena Mannarelli
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, United Kingdom
| | - Geetha Annavi
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
- Faculty of Science, Department of Biology, University of Putra Malaysia, UPM 43400, Serdang, Selangor, Malaysia
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - David W. Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
| |
Collapse
|
31
|
Noonan MJ, Rahman MA, Newman C, Buesching CD, Macdonald DW. Avoiding verisimilitude when modelling ecological responses to climate change: the influence of weather conditions on trapping efficiency in European badgers (Meles meles). GLOBAL CHANGE BIOLOGY 2015; 21:3575-3585. [PMID: 25857625 DOI: 10.1111/gcb.12942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
The signal for climate change effects can be abstruse; consequently, interpretations of evidence must avoid verisimilitude, or else misattribution of causality could compromise policy decisions. Examining climatic effects on wild animal population dynamics requires ability to trap, observe or photograph and to recapture study individuals consistently. In this regard, we use 19 years of data (1994-2012), detailing the life histories on 1179 individual European badgers over 3288 (re-) trapping events, to test whether trapping efficiency was associated with season, weather variables (both contemporaneous and time lagged), body-condition index (BCI) and trapping efficiency (TE). PCA factor loadings demonstrated that TE was affected significantly by temperature and precipitation, as well as time lags in these variables. From multi-model inference, BCI was the principal driver of TE, where badgers in good condition were less likely to be trapped. Our analyses exposed that this was enacted mechanistically via weather variables driving BCI, affecting TE. Notably, the very conditions that militated for poor trapping success have been associated with actual survival and population abundance benefits in badgers. Using these findings to parameterize simulations, projecting best-/worst-case scenario weather conditions and BCI resulted in 8.6% ± 4.9 SD difference in seasonal TE, leading to a potential 55.0% population abundance under-estimation under the worst-case scenario; 38.6% over-estimation under the best case. Interestingly, simulations revealed that while any single trapping session might prove misrepresentative of the true population abundance, due to weather effects, prolonging capture-mark-recapture studies under sub-optimal conditions decreased the accuracy of population estimates significantly. We also use these projection scenarios to explore how weather could impact government-led trapping of badgers in the UK, in relation to TB management. We conclude that population monitoring must be calibrated against the likelihood that weather conditions could be altering trap success directly, and therefore biasing model design.
Collapse
Affiliation(s)
- Michael J Noonan
- Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, UK
| | - M Abidur Rahman
- Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, UK
- WildTeam, Cosmos Center, 69/1, New Circular Road, Malibagh, Dhaka, 1217, Bangladesh
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, UK
| | - Christina D Buesching
- Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, UK
| |
Collapse
|
32
|
Beirne C, Delahay R, Young A. Sex differences in senescence: the role of intra-sexual competition in early adulthood. Proc Biol Sci 2015; 282:rspb.2015.1086. [PMID: 26156771 PMCID: PMC4528560 DOI: 10.1098/rspb.2015.1086] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 06/09/2015] [Indexed: 11/12/2022] Open
Abstract
Males and females frequently differ in their rates of ageing, but the origins of these differences are poorly understood. Sex differences in senescence have been hypothesized to arise, because investment in intra-sexual reproductive competition entails costs to somatic maintenance, leaving the sex that experiences stronger reproductive competition showing higher rates of senescence. However, evidence that sex differences in senescence are attributable to downstream effects of the intensity of intra-sexual reproductive competition experienced during the lifetime remains elusive. Here, we show using a 35 year study of wild European badgers (Meles meles), that (i) males show higher body mass senescence rates than females and (ii) this sex difference is largely attributable to sex-specific downstream effects of the intensity of intra-sexual competition experienced during early adulthood. Our findings provide rare support for the view that somatic maintenance costs arising from intra-sexual competition can cause both individual variation and sex differences in senescence.
Collapse
Affiliation(s)
- Christopher Beirne
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, Cornwall TR10 9EZ, UK
| | - Richard Delahay
- National Wildlife Management Centre, Animal Health and Veterinary Laboratories Agency (AHVLA), Woodchester Park, Gloucestershire GL10 3UJ, UK
| | - Andrew Young
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, Cornwall TR10 9EZ, UK
| |
Collapse
|
33
|
Tinnesand HV, Buesching CD, Noonan MJ, Newman C, Zedrosser A, Rosell F, Macdonald DW. Will Trespassers Be Prosecuted or Assessed According to Their Merits? A Consilient Interpretation of Territoriality in a Group-Living Carnivore, the European Badger (Meles meles). PLoS One 2015; 10:e0132432. [PMID: 26147753 PMCID: PMC4493095 DOI: 10.1371/journal.pone.0132432] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/16/2015] [Indexed: 11/19/2022] Open
Abstract
Socio-spatial interactions of Carnivores have traditionally been described using the vocabulary of territoriality and aggression, with scent marks interpreted as 'scent fences'. Here, we investigate the role of olfactory signals in assumed territorial marking of group-living solitary foragers using European badgers Meles meles as a model. We presented anal gland secretions (n = 351) from known individuals to identifiable recipients (n = 187), to assess response-variation according to familiarity (own-group, neighbours, strangers) and spatial context (in-context: at a shared border; out-of-context: at an unshared border/ the main sett). Sniffing and over-marking (with subcaudal gland secretion) responses were strongest to anal gland secretions from strangers, intermediate to neighbouring-group and weakest to own-group members. Secretions from both, strangers and neighbours, were sniffed for longer than were own-group samples, although neighbour-secretion presented out-of-context evoked no greater interest than in-context. On an individual level, responses were further moderated by the relevance of individual-specific donor information encoded in the secretion, as it related to the physiological state of the responder. There was a trend bordering on significance for males to sniff for longer than did females, but without sex-related differences in the frequency of subcaudal over-marking responses, and males over-marked oestrous female secretions more than non-oestrous females. There were no age-class related differences in sniff-duration or in over-marking. Evaluating these results in the context of the Familiarity hypothesis, the Threat-level hypothesis, and the Individual advertisement hypothesis evidences that interpretations of territorial scent-marks depicting rigid and potentially agonistic discrimination between own- and foreign-group conspecifics are overly simplistic. We use our findings to advance conceptual understanding of badger socio-spatial ecology, and the general context of territoriality and group-range dynamics.
Collapse
Affiliation(s)
- Helga V. Tinnesand
- Faculty of Arts and Sciences, Department of Environmental and Health Studies, Telemark University College, N-3800 Bø i Telemark, Norway
| | - Christina D. Buesching
- Wildlife Conservation Research Unit, Dept. of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Rd, Tubney, Abingdon, OX13 5QL, United Kingdom
| | - Michael J. Noonan
- Wildlife Conservation Research Unit, Dept. of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Rd, Tubney, Abingdon, OX13 5QL, United Kingdom
| | - Chris Newman
- Wildlife Conservation Research Unit, Dept. of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Rd, Tubney, Abingdon, OX13 5QL, United Kingdom
| | - Andreas Zedrosser
- Faculty of Arts and Sciences, Department of Environmental and Health Studies, Telemark University College, N-3800 Bø i Telemark, Norway
- Department of Integrative Biology, Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna, Gregor Mendel Str. 33, A-1180 Vienna, Austria
| | - Frank Rosell
- Faculty of Arts and Sciences, Department of Environmental and Health Studies, Telemark University College, N-3800 Bø i Telemark, Norway
| | - David W. Macdonald
- Wildlife Conservation Research Unit, Dept. of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Rd, Tubney, Abingdon, OX13 5QL, United Kingdom
| |
Collapse
|
34
|
Nichols HJ, Cant MA, Sanderson JL. Adjustment of costly extra-group paternity according to inbreeding risk in a cooperative mammal. Behav Ecol 2015; 26:1486-1494. [PMID: 26609201 PMCID: PMC4652740 DOI: 10.1093/beheco/arv095] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 11/15/2022] Open
Abstract
Female-banded mongooses risk their lives to mate with rivals during pack “warfare.” Data from wild banded mongooses reveal that 18% of pups are fathered by males from rival packs. These pups are less likely to be inbred are heavier and have higher survival chances than their within-pack counterparts. However, their mothers risk a lot to mate with extra-pack males; aggressive encounters between packs account for 20% of pup deaths and 12% of adult deaths. Females of many animal species seek mating opportunities with multiple males, despite being able to obtain sufficient sperm to father their offspring from a single male. In animals that live in stable social groups, females often choose to mate outside their group resulting in extra-group paternity (EGP). One reason proposed to explain female choice for extra-group males is to obtain compatible genes, for example, in order to avoid inbreeding depression in offspring. The benefits of such extra-group paternities could be substantial if they result in fitter, outbred offspring. However, avoiding inbreeding in this way could be costly for females, for example, through retaliation by cuckolded males or through receiving aggression while prospecting for extra-group mating opportunities. We investigate the costs and benefits of EGP in the banded mongoose Mungos mungo, a cooperatively breeding mammal in which within-group mates are sometimes close relatives. We find that pups born to females that mate with extra-group males are more genetically heterozygous are heavier and are more likely to survive to independence than pups born to females that mate within their group. However, extra-group matings also involve substantial costs as they occur during violent encounters that sometimes result in injury and death. This appears to lead femalebanded mongooses to adaptively adjust EGP levels according to the current risk of inbreeding associated with mating within the group. For group-living animals, the costs of intergroup interactions may help to explain variation in both inbreeding rates and EGP within and between species.
Collapse
Affiliation(s)
- Hazel J Nichols
- School of Natural Science and Psychology, Liverpool John Moores University , Liverpool L3 3AF , UK and
| | - Michael A Cant
- College of Life and Environmental Sciences, University of Exeter , Penryn TR10 9FE, UK
| | - Jennifer L Sanderson
- College of Life and Environmental Sciences, University of Exeter , Penryn TR10 9FE, UK
| |
Collapse
|
35
|
Sin YW, Annavi G, Newman C, Buesching C, Burke T, Macdonald DW, Dugdale HL. MHC class II-assortative mate choice in European badgers (Meles meles). Mol Ecol 2015; 24:3138-50. [DOI: 10.1111/mec.13217] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Yung Wa Sin
- Wildlife Conservation Research Unit (WildCRU); Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House Abingdon Road Abingdon Oxfordshire OX13 5QL UK
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Western Bank; Sheffield South Yorkshire S10 2TN UK
- Department of Organismic and Evolutionary Biology; Museum of Comparative Zoology; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | - Geetha Annavi
- Wildlife Conservation Research Unit (WildCRU); Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House Abingdon Road Abingdon Oxfordshire OX13 5QL UK
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Western Bank; Sheffield South Yorkshire S10 2TN UK
- Biology Department; Faculty of Science; Universiti Putra Malaysia; 43400 UPM Serdang Selangor Darul Ehsan Malaysia
| | - Chris Newman
- Wildlife Conservation Research Unit (WildCRU); Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House Abingdon Road Abingdon Oxfordshire OX13 5QL UK
| | - Christina Buesching
- Wildlife Conservation Research Unit (WildCRU); Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House Abingdon Road Abingdon Oxfordshire OX13 5QL UK
| | - Terry Burke
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Western Bank; Sheffield South Yorkshire S10 2TN UK
| | - David W. Macdonald
- Wildlife Conservation Research Unit (WildCRU); Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House Abingdon Road Abingdon Oxfordshire OX13 5QL UK
| | - Hannah L. Dugdale
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Western Bank; Sheffield South Yorkshire S10 2TN UK
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; PO Box 11103 9700CC Groningen the Netherlands
| |
Collapse
|
36
|
Macdonald DW, Johnson DDP. Patchwork planet: the resource dispersion hypothesis, society, and the ecology of life. J Zool (1987) 2015. [DOI: 10.1111/jzo.12202] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- D. W. Macdonald
- Wildlife Conservation Research Unit; The Recanati-Kaplan Centre; Department of Zoology; University of Oxford; UK
| | - D. D. P. Johnson
- Department of Politics and International Relations; University of Oxford; UK
| |
Collapse
|