1
|
Tang X, Zhong L, Tang L, Fan C, Zhang B, Wang M, Dong H, Zhou C, Rensing C, Zhou S, Zeng G. Lysogenic bacteriophages encoding arsenic resistance determinants promote bacterial community adaptation to arsenic toxicity. THE ISME JOURNAL 2023:10.1038/s41396-023-01425-w. [PMID: 37161002 DOI: 10.1038/s41396-023-01425-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Emerging evidence from genomics gives us a glimpse into the potential contribution of lysogenic bacteriophages (phages) to the environmental adaptability of their hosts. However, it is challenging to quantify this kind of contribution due to the lack of appropriate genetic markers and the associated controllable environmental factors. Here, based on the unique transformable nature of arsenic (the controllable environmental factor), a series of flooding microcosms was established to investigate the contribution of arsM-bearing lysogenic phages to their hosts' adaptation to trivalent arsenic [As(III)] toxicity, where arsM is the marker gene associated with microbial As(III) detoxification. In the 15-day flooding period, the concentration of As(III) was significantly increased, and this elevated As(III) toxicity visibly inhibited the bacterial population, but the latter quickly adapted to As(III) toxicity. During the flooding period, some lysogenic phages re-infected new hosts after an early burst, while others persistently followed the productive cycle (i.e., lytic cycle). The unique phage-host interplay contributed to the rapid spread of arsM among soil microbiota, enabling the quick recovery of the bacterial community. Moreover, the higher abundance of arsM imparted a greater arsenic methylation capability to soil microbiota. Collectively, this study provides experimental evidence for lysogenic phages assisting their hosts in adapting to an extreme environment, which highlights the ecological perspectives on lysogenic phage-host mutualism.
Collapse
Affiliation(s)
- Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China.
| | - Baowei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Mier Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China.
| |
Collapse
|
2
|
Temperate infection in a virus-host system previously known for virulent dynamics. Nat Commun 2020; 11:4626. [PMID: 32934228 PMCID: PMC7493887 DOI: 10.1038/s41467-020-18078-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
The blooming cosmopolitan coccolithophore Emiliania huxleyi and its viruses (EhVs) are a model for density-dependent virulent dynamics. EhVs commonly exhibit rapid viral reproduction and drive host death in high-density laboratory cultures and mesocosms that simulate blooms. Here we show that this system exhibits physiology-dependent temperate dynamics at environmentally relevant E. huxleyi host densities rather than virulent dynamics, with viruses switching from a long-term non-lethal temperate phase in healthy hosts to a lethal lytic stage as host cells become physiologically stressed. Using this system as a model for temperate infection dynamics, we present a template to diagnose temperate infection in other virus-host systems by integrating experimental, theoretical, and environmental approaches. Finding temperate dynamics in such an established virulent host-virus model system indicates that temperateness may be more pervasive than previously considered, and that the role of viruses in bloom formation and decline may be governed by host physiology rather than by host-virus densities.
Collapse
|
3
|
Tonnabel J, Schurr FM, Boucher F, Thuiller W, Renaud J, Douzery EJP, Ronce O. Life-History Traits Evolved Jointly with Climatic Niche and Disturbance Regime in the Genus Leucadendron (Proteaceae). Am Nat 2017; 191:220-234. [PMID: 29351009 DOI: 10.1086/695283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Organisms have evolved a diversity of life-history strategies to cope with variation in their environment. Persistence as adults and/or seeds across recruitment events allows species to dampen the effects of environmental fluctuations. The evolution of life cycles with overlapping generations should thus permit the colonization of environments with uncertain recruitment. We tested this hypothesis in Leucadendron (Proteaceae), a genus with high functional diversity native to fire-prone habitats in the South African fynbos. We analyzed the joint evolution of life-history traits (adult survival and seed-bank strategies) and ecological niches (climate and fire regime), using comparative methods and accounting for various sources of uncertainty. In the fynbos, species with canopy seed banks that are unable to survive fire as adults display nonoverlapping generations. In contrast, resprouters with an underground seed bank may be less threatened by extreme climatic events and fire intervals, given their iteroparity and long-lasting seed bank. Life cycles with nonoverlapping generations indeed jointly evolved with niches with less exposure to frost but not with those with less exposure to drought. Canopy seed banks jointly evolved with niches with more predictable fire return, compared to underground seed banks. The evolution of extraordinary functional diversity among fynbos plants thus reflects, at least in part, the diversity of both climates and fire regimes in this region.
Collapse
|
4
|
Gandon S. Why Be Temperate: Lessons from Bacteriophage λ. Trends Microbiol 2016; 24:356-365. [PMID: 26946976 DOI: 10.1016/j.tim.2016.02.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 01/19/2023]
Abstract
Many pathogens have evolved the ability to induce latent infections of their hosts. The bacteriophage λ is a classical model for exploring the regulation and the evolution of latency. Here, I review recent experimental studies on phage λ that identify specific conditions promoting the evolution of lysogenic life cycles. In addition, I present specific adaptations of phage λ that allow this virus to react plastically to variations in the environment and to reactivate its lytic life cycle. All of these different examples are discussed in the light of evolutionary epidemiology theory to disentangle the different evolutionary forces acting on temperate phages. Understanding phage λ adaptations yield important insights into the evolution of latency in other microbes, including several life-threatening human pathogens.
Collapse
Affiliation(s)
- Sylvain Gandon
- CEFE UMR 5175, CNRS - Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende, 34293 Montpellier Cedex 5, France.
| |
Collapse
|