1
|
Inskeep KA, Doellman MM, Powell THQ, Berlocher SH, Seifert NR, Hood GR, Ragland GJ, Meyers PJ, Feder JL. Divergent diapause life history timing drives both allochronic speciation and reticulate hybridization in an adaptive radiation of Rhagoletis flies. Mol Ecol 2021; 31:4031-4049. [PMID: 33786930 DOI: 10.1111/mec.15908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022]
Abstract
Divergent adaptation to new ecological opportunities can be an important factor initiating speciation. However, as niches are filled during adaptive radiations, trait divergence driving reproductive isolation between sister taxa may also result in trait convergence with more distantly related taxa, increasing the potential for reticulated gene flow across the radiation. Here, we demonstrate such a scenario in a recent adaptive radiation of Rhagoletis fruit flies, specialized on different host plants. Throughout this radiation, shifts to novel hosts are associated with changes in diapause life history timing, which act as "magic traits" generating allochronic reproductive isolation and facilitating speciation-with-gene-flow. Evidence from laboratory rearing experiments measuring adult emergence timing and genome-wide DNA-sequencing surveys supported allochronic speciation between summer-fruiting Vaccinium spp.-infesting Rhagoletis mendax and its hypothesized and undescribed sister taxon infesting autumn-fruiting sparkleberries. The sparkleberry fly and R. mendax were shown to be genetically discrete sister taxa, exhibiting no detectable gene flow and allochronically isolated by a 2-month average difference in emergence time corresponding to host availability. At sympatric sites across the southern USA, the later fruiting phenology of sparkleberries overlaps with that of flowering dogwood, the host of another more distantly related and undescribed Rhagoletis taxon. Laboratory emergence data confirmed broadly overlapping life history timing and genomic evidence supported on-going gene flow between sparkleberry and flowering dogwood flies. Thus, divergent phenological adaptation can drive the initiation of reproductive isolation, while also enhancing genetic exchange across broader adaptive radiations, potentially serving as a source of novel genotypic variation and accentuating further diversification.
Collapse
Affiliation(s)
- Katherine A Inskeep
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University (State University of New York), Binghamton, NY, USA
| | - Stewart H Berlocher
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicholas R Seifert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Glen R Hood
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Peter J Meyers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
2
|
Haines GE, Stuart YE, Hanson D, Tasneem T, Bolnick DI, Larsson HCE, Hendry AP. Adding the third dimension to studies of parallel evolution of morphology and function: An exploration based on parapatric lake-stream stickleback. Ecol Evol 2020; 10:13297-13311. [PMID: 33304538 PMCID: PMC7713967 DOI: 10.1002/ece3.6929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/04/2022] Open
Abstract
Recent methodological advances have led to a rapid expansion of evolutionary studies employing three-dimensional landmark-based geometric morphometrics (GM). GM methods generally enable researchers to capture and compare complex shape phenotypes, and to quantify their relationship to environmental gradients. However, some recent studies have shown that the common, inexpensive, and relatively rapid two-dimensional GM methods can distort important information and produce misleading results because they cannot capture variation in the depth (Z) dimension. We use micro-CT scanned threespine stickleback (Gasterosteus aculeatus Linnaeus, 1758) from six parapatric lake-stream populations on Vancouver Island, British Columbia, to test whether the loss of the depth dimension in 2D GM studies results in misleading interpretations of parallel evolution. Using joint locations described with 2D or 3D landmarks, we compare results from separate 2D and 3D shape spaces, from a combined 2D-3D shape space, and from estimates of biomechanical function. We show that, although shape is distorted enough in 2D projections to strongly influence the interpretation of morphological parallelism, estimates of biomechanical function are relatively robust to the loss of the Z dimension.
Collapse
Affiliation(s)
- Grant E. Haines
- Redpath Museum and Department of BiologyMcGill UniversityMontréalQCCanada
| | | | - Dieta Hanson
- Redpath Museum and Department of BiologyMcGill UniversityMontréalQCCanada
| | - Tania Tasneem
- Kealing Middle SchoolAustin Independent School DistrictAustinTXUSA
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| | - Hans C. E. Larsson
- Redpath Museum and Department of BiologyMcGill UniversityMontréalQCCanada
| | - Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill UniversityMontréalQCCanada
| |
Collapse
|
3
|
Abstract
Threespine stickleback populations provide a striking example of local adaptation to divergent habitats in populations that are connected by recurrent gene flow. These small fish occur in marine and freshwater habitats throughout the Northern Hemisphere, and in numerous cases the smaller freshwater populations have been established “de novo” from marine colonists. Independently evolved freshwater populations exhibit similar phenotypes that have been shown to derive largely from the same standing genetic variants. Geographic isolation prevents direct migration between the freshwater populations, strongly suggesting that these shared locally adaptive alleles are transported through the marine population. However it is still largely unknown how gene flow, recombination, and selection jointly impact the standing variation that might fuel this adaptation. Here we use individual-based, spatially explicit simulations to determine the levels of gene flow that best match observed patterns of allele sharing among habitats in stickleback. We aim to better understand how gene flow and local adaptation in large metapopulations determine the speed of adaptation and re-use of standing genetic variation. In our simulations we find that repeated adaptation uses a shared set of alleles that are maintained at low frequency by migration-selection balance in oceanic populations. This process occurs over a realistic range of intermediate levels of gene flow that match previous empirical population genomic studies in stickleback. Examining these simulations more deeply reveals how lower levels of gene flow leads to slow, independent adaptation to different habitats, whereas higher levels of gene flow leads to significant mutation load – but an increased probability of successful population genomic scans for locally adapted alleles. Surprisingly, we find that the genealogical origins of most freshwater adapted alleles can be traced back to the original generation of marine individuals that colonized the lakes, as opposed to subsequent migrants. These simulations provide deeper context for existing studies of stickleback evolutionary genomics, and guidance for future empirical studies in this model. More broadly, our results support existing theory of local adaptation but extend it by more completely documenting the genealogical history of adaptive alleles in a metapopulation.
Collapse
|
4
|
Hohenlohe PA, Magalhaes IS. The Population Genomics of Parallel Adaptation: Lessons from Threespine Stickleback. POPULATION GENOMICS 2019. [DOI: 10.1007/13836_2019_67] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Hanson D, Hu J, Hendry AP, Barrett RDH. Heritable gene expression differences between lake and stream stickleback include both parallel and antiparallel components. Heredity (Edinb) 2017; 119:339-348. [PMID: 28832577 PMCID: PMC5637370 DOI: 10.1038/hdy.2017.50] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
The repeated phenotypic patterns that characterize populations undergoing parallel evolution provide support for a deterministic role of adaptation by natural selection. Determining the level of parallelism also at the genetic level is thus central to our understanding of how natural selection works. Many studies have looked for repeated genomic patterns in natural populations, but work on gene expression is less common. The studies that have examined gene expression have found some support for parallelism, but those studies almost always used samples collected from the wild that potentially confounds the effects of plasticity with heritable differences. Here we use two independent pairs of lake and stream threespine stickleback (Gasterosteus aculeatus) raised in common garden conditions to assess both parallel and antiparallel (that is, similar versus different directions of lake–stream expression divergence in the two watersheds) heritable gene expression differences as measured by total RNA sequencing. We find that more genes than expected by chance show either parallel (22 genes, 0.18% of expressed genes) or antiparallel (24 genes, 0.20% of expressed genes) lake–stream expression differences. These results correspond well with previous genomic studies in stickleback ecotype pairs that found similar levels of parallelism. We suggest that parallelism might be similarly constrained at the genomic and transcriptomic levels.
Collapse
Affiliation(s)
- D Hanson
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - J Hu
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - A P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - R D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Sympatric, temporally isolated populations of the pine white butterfly Neophasia menapia, are morphologically and genetically differentiated. PLoS One 2017; 12:e0176989. [PMID: 28562656 PMCID: PMC5451007 DOI: 10.1371/journal.pone.0176989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/20/2017] [Indexed: 12/18/2022] Open
Abstract
Temporal isolation remains an understudied, and potentially under-appreciated, mechanism of reproductive isolation. Phenological differences have been discovered in populations of the pine white butterfly (Neophasia menapia), a typically univoltine species found throughout western North America. At two locations in the Coast Range of California there are two periods of adult emergence per year, one in early summer (July) and one in late summer/autumn (September/October). Differences in flight time are accompanied by differences in wing shape and pigmentation. Here we use a combination of population genomics and morphological analyses to assess the extent to which temporal isolation is able to limit gene flow between sympatric early and late flights. Not only did we detect both genetic and morphological differences between early and late flights at the two sites, we also found that the patterns of differentiation between the two flights were different at each location, suggesting an independent origin for the two sympatric flights. Additionally, we found no evidence that these sympatric flights originated via colonization from any of the other sampled localities. We discuss several potential hypotheses about the origin of these temporally isolated sympatric flights.
Collapse
|
7
|
Berner D, Ammann M, Spencer E, Rüegg A, Lüscher D, Moser D. Sexual isolation promotes divergence between parapatric lake and stream stickleback. J Evol Biol 2016; 30:401-411. [PMID: 27862535 DOI: 10.1111/jeb.13016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022]
Abstract
Speciation can be initiated by adaptive divergence between populations in ecologically different habitats, but how sexually based reproductive barriers contribute to this process is less well understood. We here test for sexual isolation between ecotypes of threespine stickleback fish residing in adjacent lake and stream habitats in the Lake Constance basin, Central Europe. Mating trials exposing females to pairings of territorial lake and stream males in outdoor mesocosms allowing for natural reproductive behaviour reveal that mating occurs preferentially between partners of the same ecotype. Compared to random mating, this sexual barrier reduces gene flow between the ecotypes by some 36%. This relatively modest strength of sexual isolation is surprising because comparing the males between the two ecotypes shows striking differentiation in traits generally considered relevant to reproductive behaviour (body size, breeding coloration, nest size). Analysing size differences among the individuals in the mating trials further indicates that assortative mating is not related to ecotype differences in body size. Overall, we demonstrate that sexually based reproductive isolation promotes divergence in lake-stream stickleback along with other known reproductive barriers, but we also caution against inferring strong sexual isolation from the observation of strong population divergence in sexually relevant traits.
Collapse
Affiliation(s)
- D Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| | - M Ammann
- Zoological Institute, University of Basel, Basel, Switzerland
| | - E Spencer
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | - A Rüegg
- Zoological Institute, University of Basel, Basel, Switzerland
| | - D Lüscher
- Zoological Institute, University of Basel, Basel, Switzerland
| | - D Moser
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Weber JN, Bradburd GS, Stuart YE, Stutz WE, Bolnick DI. Partitioning the effects of isolation by distance, environment, and physical barriers on genomic divergence between parapatric threespine stickleback. Evolution 2016; 71:342-356. [DOI: 10.1111/evo.13110] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/15/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Jesse N. Weber
- Department of Integrative Biology University of Texas at Austin Austin Texas 78712
- Division of Biological Sciences University of Montana Missoula Montana 59801
| | - Gideon S. Bradburd
- Department of Integrative Biology Michigan State University East Lansing Michigan 48824
| | - Yoel E. Stuart
- Department of Integrative Biology University of Texas at Austin Austin Texas 78712
| | - William E. Stutz
- Department of Integrative Biology University of Texas at Austin Austin Texas 78712
- Department of Ecology and Evolutionary Biology University of Colorado at Boulder Boulder Colorado 80309
| | - Daniel I. Bolnick
- Department of Integrative Biology University of Texas at Austin Austin Texas 78712
| |
Collapse
|
9
|
Hanson D, Moore JS, Taylor EB, Barrett RDH, Hendry AP. Assessing reproductive isolation using a contact zone between parapatric lake-stream stickleback ecotypes. J Evol Biol 2016; 29:2491-2501. [PMID: 27633750 DOI: 10.1111/jeb.12978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023]
Abstract
Ecological speciation occurs when populations evolve reproductive isolation as a result of divergent natural selection. This isolation can be influenced by many potential reproductive barriers, including selection against hybrids, selection against migrants and assortative mating. How and when these barriers act and interact in nature is understood for relatively few empirical systems. We used a mark-recapture experiment in a contact zone between lake and stream three-spined sticklebacks (Gasterosteus aculeatus, Linnaeus) to evaluate the occurrence of hybrids (allowing inferences about mating isolation), the interannual survival of hybrids (allowing inferences about selection against hybrids) and the shift in lake-like vs. stream-like characteristics (allowing inferences about selection against migrants). Genetic and morphological data suggest the occurrence of hybrids and no selection against hybrids in general, a result contradictory to a number of other studies of sticklebacks. However, we did find selection against more lake-like individuals, suggesting a barrier to gene flow from the lake into the stream. Combined with previous work on this system, our results suggest that multiple (most weakly and often asymmetric) barriers must be combining to yield substantial restrictions on gene flow. This work provides evidence of a reproductive barrier in lake-stream sticklebacks and highlights the value of assessing multiple reproductive barriers in natural contexts.
Collapse
Affiliation(s)
- D Hanson
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| | - J-S Moore
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - E B Taylor
- Department of Zoology and Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada
| | - R D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| | - A P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Moser D, Frey A, Berner D. Fitness differences between parapatric lake and stream stickleback revealed by a field transplant. J Evol Biol 2016; 29:711-9. [PMID: 26709953 DOI: 10.1111/jeb.12817] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 01/18/2023]
Abstract
Molecular comparisons of populations diverging into ecologically different environments often reveal strong differentiation in localized genomic regions, with the remainder of the genome being weakly differentiated. This pattern of heterogeneous genomic divergence, however, is rarely connected to direct measurements of fitness differences among populations. We here do so by performing a field enclosure experiment in threespine stickleback fish residing in a lake and in three replicate adjoining streams, and displaying weak yet heterogeneous genomic divergence between these habitats. Tracking survival over 29 weeks, we consistently find that lake genotypes transplanted into the streams suffer greatly reduced viability relative to local stream genotypes and that the performance of F1 hybrid genotypes is intermediate. This observed selection against migrants and hybrids combines to a total reduction in gene flow from the lake into streams of around 80%. Overall, our study identifies a strong reproductive barrier between parapatric stickleback populations, and cautions against inferring weak fitness differences between populations exhibiting weak overall genomic differentiation.
Collapse
Affiliation(s)
- D Moser
- Zoological Institute, University of Basel, Basel, Switzerland
| | - A Frey
- Zoological Institute, University of Basel, Basel, Switzerland
| | - D Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|