1
|
Chen B, Mao T, Liu Y, Dai W, Li X, Rajput AP, Pie MR, Yang J, Gross JB, Meegaskumbura M. Sensory evolution in a cavefish radiation: patterns of neuromast distribution and associated behaviour in Sinocyclocheilus (Cypriniformes: Cyprinidae). Proc Biol Sci 2022; 289:20221641. [PMID: 36476002 PMCID: PMC9554722 DOI: 10.1098/rspb.2022.1641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023] Open
Abstract
The genus Sinocyclocheilus, comprising a large radiation of freshwater cavefishes, are well known for their presence of regressive features (e.g. variable eye reduction). Fewer constructive features are known, such as the expansion of the lateral line system (LLS), which is involved in detecting water movements. The precise relationship between LLS expansion and cave adaptation is not well understood. Here, we examine morphology and LLS-mediated behaviour in Sinocyclocheilus species characterized by broad variation in eye size, habitat and geographical distribution. Using live-staining techniques and automated behavioural analyses, we examined 26 Sinocyclocheilus species and quantified neuromast organ number, density and asymmetry within a phylogenetic context. We then examined how these morphological features may relate to wall-following, an established cave-associated behaviour mediated by the lateral line. We show that most species demonstrated laterality (i.e. asymmetry) in neuromast organs on the head, often biased to the right. We also found that wall-following behaviour was distinctive, particularly among eyeless species. Patterns of variation in LLS appear to correlate with the degree of eye loss, as well as geographical distribution. This work reveals that constructive LLS evolution is convergent across distant cavefish taxa and may mediate asymmetric behavioural features that enable survival in stark subterranean microenvironments.
Collapse
Affiliation(s)
- Bing Chen
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Tingru Mao
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| | - Yewei Liu
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| | - Wenzhang Dai
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing 210000, People's Republic of China
| | - Xianglin Li
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| | - Amrapali P. Rajput
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| | - Marcio R. Pie
- Biology Department, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK
| | - Jian Yang
- Key Laboratory of Environment Change and Resource Use, Beibu Gulf, Nanning Normal University, Nanning, Guangxi, People's Republic of China
| | - Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati OH 45221, USA
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
2
|
Wu NC, Seebacher F. Physiology can predict animal activity, exploration, and dispersal. Commun Biol 2022; 5:109. [PMID: 35115649 PMCID: PMC8814174 DOI: 10.1038/s42003-022-03055-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
Physiology can underlie movement, including short-term activity, exploration of unfamiliar environments, and larger scale dispersal, and thereby influence species distributions in an environmentally sensitive manner. We conducted meta-analyses of the literature to establish, firstly, whether physiological traits underlie activity, exploration, and dispersal by individuals (88 studies), and secondly whether physiological characteristics differed between range core and edges of distributions (43 studies). We show that locomotor performance and metabolism influenced individual movement with varying levels of confidence. Range edges differed from cores in traits that may be associated with dispersal success, including metabolism, locomotor performance, corticosterone levels, and immunity, and differences increased with increasing time since separation. Physiological effects were particularly pronounced in birds and amphibians, but taxon-specific differences may reflect biased sampling in the literature, which also focussed primarily on North America, Europe, and Australia. Hence, physiology can influence movement, but undersampling and bias currently limits general conclusions.
Collapse
Affiliation(s)
- Nicholas C Wu
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
3
|
Planidin NP, Reimchen TE. Behavioural responses of threespine stickleback with lateral line asymmetries to experimental mechanosensory stimuli. J Exp Biol 2021; 225:273859. [PMID: 34939652 DOI: 10.1242/jeb.243661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022]
Abstract
Behavioural asymmetry, typically referred to as laterality, is widespread among bilaterians and is often associated with asymmetry in brain structure. However, the influence of sensory receptor asymmetry on laterality has undergone limited investigation. Here we use threespine stickleback (Gasterosteus aculeatus) to investigate the influence of lateral line asymmetry on laterality during lab simulations of three mechanosensation-dependent behaviours: predator evasion, prey localization and rheotaxis. We recorded the response of stickleback to impacts at the water surface and water flow in photic conditions and low-frequency oscillations in the dark, across four repeat trials. We then compared individuals' laterality to asymmetry in the number of neuromasts on either side of their body. Stickleback hovered with their right side against the arena wall 57% of the time (P<0.001) in illuminated surface impact trials and 56% of the time in (P=0.085) dark low-frequency stimulation trials. Light regime modulated the effect of neuromast count on laterality, as fish with more neuromasts were more likely to hover with the wall on their right during illumination (P=0.007) but were less likely to do so in darkness (P=0.025). Population level laterality diminished in later trials across multiple behaviours and individuals did not show a consistent side bias in any behaviours. Our results demonstrate a complex relationship between sensory structure asymmetry and laterality, suggesting that laterality is modulated multiple sensory modalities and temporally dynamic.
Collapse
|
4
|
Ecological predictors of lateral line asymmetry in stickleback (Gasterosteus aculeatus). Evol Ecol 2021. [DOI: 10.1007/s10682-021-10117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Mobley RB, Boughman JW. Variation in the Sensory Space of Three-spined Stickleback Populations. Integr Comp Biol 2020; 61:50-61. [PMID: 33382869 DOI: 10.1093/icb/icaa145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The peripheral sensory systems, whose morphological attributes help determine the acquisition of distinct types of information, provide a means to quantitatively compare multiple modalities of a species' sensory ecology. We used morphological metrics to characterize multiple sensory modalities-the visual, olfactory, and mechanosensory lateral line sensory systems-for Gasterosteus aculeatus, the three-spined stickleback, to compare how sensory systems vary in animals that evolve in different ecological conditions. We hypothesized that the dimensions of sensory organs and correlations among sensory systems vary in populations adapted to marine and freshwater environments, and have diverged further among freshwater lake-dwelling populations. Our results showed that among environments, fish differed in which senses are relatively elaborated or reduced. When controlling for body length, littoral fish had larger eyes, more neuromasts, and smaller olfactory tissue area than pelagic or marine populations. We also found differences in the direction and magnitude of correlations among sensory systems for populations even within the same habitat type. Our data suggest that populations take different trajectories in how visual, olfactory, and lateral line systems respond to their environment. For the populations we studied, sensory modalities do not conform in a predictable way to the ecological categories we assigned.
Collapse
Affiliation(s)
- Robert B Mobley
- Department of Integrative Biology, Ecology, Evolutionary Biology and Behavior, BEACON, Michigan State University, East Lansing, MI, USA
| | - Janette W Boughman
- Department of Integrative Biology, Ecology, Evolutionary Biology and Behavior, BEACON, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Ahnelt H, Ramler D, Madsen MØ, Jensen LF, Windhager S. Diversity and sexual dimorphism in the head lateral line system in North Sea populations of threespine sticklebacks, Gasterosteus aculeatus (Teleostei: Gasterosteidae). ZOOMORPHOLOGY 2020. [DOI: 10.1007/s00435-020-00513-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractThe mechanosensory lateral line of fishes is a flow sensing system and supports a number of behaviors, e.g. prey detection, schooling or position holding in water currents. Differences in the neuromast pattern of this sensory system reflect adaptation to divergent ecological constraints. The threespine stickleback, Gasterosteus aculeatus, is known for its ecological plasticity resulting in three major ecotypes, a marine type, a migrating anadromous type and a resident freshwater type. We provide the first comparative study of the pattern of the head lateral line system of North Sea populations representing these three ecotypes including a brackish spawning population. We found no distinct difference in the pattern of the head lateral line system between the three ecotypes but significant differences in neuromast numbers. The anadromous and the brackish populations had distinctly less neuromasts than their freshwater and marine conspecifics. This difference in neuromast number between marine and anadromous threespine stickleback points to differences in swimming behavior. We also found sexual dimorphism in neuromast number with males having more neuromasts than females in the anadromous, brackish and the freshwater populations. But no such dimorphism occurred in the marine population. Our results suggest that the head lateral line of the three ecotypes is under divergent hydrodynamic constraints. Additionally, sexual dimorphism points to divergent niche partitioning of males and females in the anadromous and freshwater but not in the marine populations. Our findings imply careful sampling as an important prerequisite to discern especially between anadromous and marine threespine sticklebacks.
Collapse
|
7
|
Archambeault SL, Bärtschi LR, Merminod AD, Peichel CL. Adaptation via pleiotropy and linkage: Association mapping reveals a complex genetic architecture within the stickleback Eda locus. Evol Lett 2020; 4:282-301. [PMID: 32774879 PMCID: PMC7403726 DOI: 10.1002/evl3.175] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/04/2020] [Accepted: 04/29/2020] [Indexed: 11/26/2022] Open
Abstract
Genomic mapping of the loci associated with phenotypic evolution has revealed genomic "hotspots," or regions of the genome that control multiple phenotypic traits. This clustering of loci has important implications for the speed and maintenance of adaptation and could be due to pleiotropic effects of a single mutation or tight genetic linkage of multiple causative mutations affecting different traits. The threespine stickleback (Gasterosteus aculeatus) is a powerful model for the study of adaptive evolution because the marine ecotype has repeatedly adapted to freshwater environments across the northern hemisphere in the last 12,000 years. Freshwater ecotypes have repeatedly fixed a 16 kilobase haplotype on chromosome IV that contains Ectodysplasin (Eda), a gene known to affect multiple traits, including defensive armor plates, lateral line sensory hair cells, and schooling behavior. Many additional traits have previously been mapped to a larger region of chromosome IV that encompasses the Eda freshwater haplotype. To identify which of these traits specifically map to this adaptive haplotype, we made crosses of rare marine fish heterozygous for the freshwater haplotype in an otherwise marine genetic background. Further, we performed fine-scale association mapping in a fully interbreeding, polymorphic population of freshwater stickleback to disentangle the effects of pleiotropy and linkage on the phenotypes affected by this haplotype. Although we find evidence that linked mutations have small effects on a few phenotypes, a small 1.4-kb region within the first intron of Eda has large effects on three phenotypic traits: lateral plate count, and both the number and patterning of the posterior lateral line neuromasts. Thus, the Eda haplotype is a hotspot of adaptation in stickleback due to both a small, pleiotropic region affecting multiple traits as well as multiple linked mutations affecting additional traits.
Collapse
Affiliation(s)
- Sophie L. Archambeault
- Institute of Ecology and EvolutionUniversity of BernBern3012Switzerland
- Graduate Program in Molecular and Cellular BiologyUniversity of WashingtonSeattleWashington98195
- Divisions of Basic Sciences and Human BiologyFred Hutchinson Cancer Research CenterSeattleWashington98109
| | - Luis R. Bärtschi
- Institute of Ecology and EvolutionUniversity of BernBern3012Switzerland
| | | | - Catherine L. Peichel
- Institute of Ecology and EvolutionUniversity of BernBern3012Switzerland
- Graduate Program in Molecular and Cellular BiologyUniversity of WashingtonSeattleWashington98195
- Divisions of Basic Sciences and Human BiologyFred Hutchinson Cancer Research CenterSeattleWashington98109
| |
Collapse
|
8
|
Maciejewski MF, Jiang C, Stuart YE, Bolnick DI. Microhabitat contributes to microgeographic divergence in threespine stickleback. Evolution 2020; 74:749-763. [PMID: 32058582 DOI: 10.1111/evo.13942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Since the New Synthesis, most migration-selection balance theory has predicted that there should be negligible differentiation over small spatial scales (relative to dispersal), because gene flow should erode any effect of divergent selection. Nevertheless, there are classic examples of microgeographic divergence, which theory suggests can arise under specific conditions: exceptionally strong selection, phenotypic plasticity in philopatric individuals, or nonrandom dispersal. Here, we present evidence of microgeographic morphological variation within lake and stream populations of threespine stickleback (Gasterosteus aculeatus). It seems reasonable to assume that a given lake or stream population of fish is well-mixed. However, we found this assumption to be untenable. We examined trap-to-trap variation in 34 morphological traits measured on stickleback from 16 lakes and 16 streams. Most traits varied appreciably among traps within populations. Both between-trap distance and microhabitat characteristics such as depth and substrate explained some of the within-population morphological variance. Microhabitat was also associated with genotype at particular loci but there was no genetic isolation by distance, implying that heritable habitat preferences may contribute to microgeographic variation. Our study adds to growing evidence that microgeographic divergence can occur across small spatial scales within individuals' daily dispersal neighborhood where gene flow is expected to be strong.
Collapse
Affiliation(s)
- Meghan F Maciejewski
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269
| | - Cynthia Jiang
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78705.,Long School of Medicine, UT Health Science Center San Antonio, San Antonio, Texas, 78229
| | - Yoel E Stuart
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78705.,Loyola University Chicago, Chicago, Illinois, 60660
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269.,Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78705
| |
Collapse
|
9
|
Asymmetric Isolation and the Evolution of Behaviors Influencing Dispersal: Rheotaxis of Guppies above Waterfalls. Genes (Basel) 2020; 11:genes11020180. [PMID: 32050464 PMCID: PMC7073897 DOI: 10.3390/genes11020180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
Populations that are asymmetrically isolated, such as above waterfalls, can sometimes export emigrants in a direction from which they do not receive immigrants, and thus provide an excellent opportunity to study the evolution of dispersal traits. We investigated the rheotaxis of guppies above barrier waterfalls in the Aripo and Turure rivers in Trinidad-the later having been introduced in 1957 from a below-waterfall population in another drainage. We predicted that, as a result of strong selection against downstream emigration, both of these above-waterfall populations should show strong positive rheotaxis. Matching these expectations, both populations expressed high levels of positive rheotaxis, possibly reflecting contemporary (rapid) evolution in the introduced Turure population. However, the two populations used different behaviors to achieve the same performance of strong positive rheotaxis, as has been predicted in the case of multiple potential evolutionary solutions to the same functional challenge (i.e., "many-to-one mapping"). By contrast, we did not find any difference in rheotactic behavior above versus below waterfalls on a small scale within either river, suggesting constraints on adaptive divergence on such scales.
Collapse
|
10
|
Planidin N, Reimchen T. Spatial, sexual, and rapid temporal differentiation in neuromast expression on lateral plates of Haida Gwaii threespine stickleback (Gasterosteus aculeatus). CAN J ZOOL 2019. [DOI: 10.1139/cjz-2019-0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lateral lines, a major sensory modality in fishes, are diverse among taxa, but their intraspecific variation has received limited attention. We examined numbers of superficial neuromasts on the buttressing lateral plates (LP) of 1910 threespine stickleback (Gasterosteus aculeatus Linnaeus, 1758) from 26 ecologically and morphologically diverse populations on the Haida Gwaii archipelago, western Canada. Extending from previous studies, we predicted that (i) highly stained dystrophic localities would have threespine stickleback with elevated numbers of neuromasts per plate due to a greater reliance on non-visual sensory modalities and (ii) that LP count and neuromast numbers per plate would functionally covary with predatory assemblage. We found that there were no differences in neuromast count across major habitats (marine, lake, stream), but clear-water populations and those with predatory fish had significantly more neuromasts per plate than most populations in highly stained dystrophic lakes, the effects being accentuated on the first buttressing plate (LP4). We also report the first evidence that neuromast counts per plate are sexually dimorphic, with males having a greater density of neuromasts in most populations. Two transplant experiments between ecologically opposite habitats indicate that within 12 generations, neuromast counts per plate can rapidly shift in response to a change in habitat.
Collapse
Affiliation(s)
- N.P. Planidin
- Department of Biology, University of Victoria, P.O. Box 3020, Victoria, BC V8W 3N5, Canada
- Department of Biology, University of Victoria, P.O. Box 3020, Victoria, BC V8W 3N5, Canada
| | - T.E. Reimchen
- Department of Biology, University of Victoria, P.O. Box 3020, Victoria, BC V8W 3N5, Canada
- Department of Biology, University of Victoria, P.O. Box 3020, Victoria, BC V8W 3N5, Canada
| |
Collapse
|
11
|
Seebacher F, Krause J. Epigenetics of Social Behaviour. Trends Ecol Evol 2019; 34:818-830. [DOI: 10.1016/j.tree.2019.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022]
|
12
|
Erin NI, Benesh DP, Henrich T, Samonte IE, Jakobsen PJ, Kalbe M. Examining the role of parasites in limiting unidirectional gene flow between lake and river sticklebacks. J Anim Ecol 2019; 88:1986-1997. [PMID: 31365124 DOI: 10.1111/1365-2656.13080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/09/2019] [Indexed: 12/01/2022]
Abstract
Parasites are important selective agents with the potential to limit gene flow between host populations by shaping local host immunocompetence. We report on a contact zone between lake and river three-spined sticklebacks (Gasterosteus aculeatus) that offers the ideal biogeographic setting to explore the role of parasite-mediated selection on reproductive isolation. A waterfall acts as a natural barrier and enforces unidirectional migration from the upstream river stickleback population to the downstream river and lake populations. We assessed population genetic structure and parasite communities over four years. In a set of controlled experimental infections, we compared parasite susceptibility of upstream and downstream fish by exposing laboratory-bred upstream river and lake fish, as well as hybrids, to two common lake parasite species: a generalist trematode parasite, Diplostomum pseudospathaceum, and a host-specific cestode, Schistocephalus solidus. We found consistent genetic differentiation between upstream and downstream populations across four sampling years, even though the downstream river consisted of ~10% first-generation migrants from the upstream population as detected by parentage analysis. Fish in the upstream population had lower genetic diversity and were strikingly devoid of macroparasites. Through experimental infections, we demonstrated that upstream fish and their hybrids had higher susceptibility to parasite infections than downstream fish. Despite this, naturally sampled upstream migrants were less infected than downstream residents. Thus, migrants coming from a parasite-free environment may enjoy an initial fitness advantage, but their descendants seem likely to suffer from higher parasite loads. Our results suggest that adaptation to distinct parasite communities can influence stickleback invasion success and may represent a barrier to gene flow, even between close and connected populations.
Collapse
Affiliation(s)
- Noémie I Erin
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Daniel P Benesh
- Molecular Parasitology, Humboldt University, Berlin, Germany
| | - Tina Henrich
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Irene E Samonte
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Per J Jakobsen
- Department of Biology, University of Bergen, Bergen, Norway
| | - Martin Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
13
|
Mameri D, van Kammen C, Groothuis TGG, Seehausen O, Maan ME. Visual adaptation and microhabitat choice in Lake Victoria cichlid fish. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181876. [PMID: 31032041 PMCID: PMC6458373 DOI: 10.1098/rsos.181876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/05/2019] [Indexed: 06/04/2023]
Abstract
When different genotypes choose different habitats to better match their phenotypes, genetic differentiation within a population may be promoted. Mating within those habitats may subsequently contribute to reproductive isolation. In cichlid fish, visual adaptation to alternative visual environments is hypothesized to contribute to speciation. Here, we investigated whether variation in visual sensitivity causes different visual habitat preferences, using two closely related cichlid species that occur at different but overlapping water depths in Lake Victoria and that differ in visual perception (Pundamilia spp.). In addition to species differences, we explored potential effects of visual plasticity, by rearing fish in two different light conditions: broad-spectrum (mimicking shallow water) and red-shifted (mimicking deeper waters). Contrary to expectations, fish did not prefer the light environment that mimicked their typical natural habitat. Instead, we found an overall preference for the broad-spectrum environment. We also found a transient influence of the rearing condition, indicating that the assessment of microhabitat preference requires repeated testing to control for familiarity effects. Together, our results show that cichlid fish exert visual habitat preference but do not support straightforward visual habitat matching.
Collapse
Affiliation(s)
- Daniel Mameri
- CEF – Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Corina van Kammen
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Van Hall Larenstein University of Applied Sciences, Leeuwarden, The Netherlands
| | - Ton G. G. Groothuis
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Martine E. Maan
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Akcali CK, Porter CK. Comment on Van Belleghem et al. 2016: Habitat choice mechanisms in speciation and other forms of diversification. Evolution 2017; 71:2754-2761. [DOI: 10.1111/evo.13375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Christopher K. Akcali
- Department of Biology; University of North Carolina; Chapel Hill North Carolina 27599 USA
- North Carolina Museum of Natural Sciences; Raleigh North Carolina 27601 USA
| | - Cody K. Porter
- Department of Zoology and Physiology; University of Wyoming; Laramie Wyoming 82071 USA
| |
Collapse
|
15
|
Lohman BK, Stutz WE, Bolnick DI. Gene expression stasis and plasticity following migration into a foreign environment. Mol Ecol 2017; 26:4657-4670. [DOI: 10.1111/mec.14234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Brian K. Lohman
- Department of Integrative Biology; University of Texas at Austin; Austin TX USA
| | - William E. Stutz
- Office of Institutional Research; Western Michigan University; Kalamazoo MI USA
| | - Daniel I. Bolnick
- Department of Integrative Biology; University of Texas at Austin; Austin TX USA
| |
Collapse
|
16
|
Spiller L, Grierson PF, Davies PM, Hemmi J, Collin SP, Kelley JL. Functional diversity of the lateral line system among populations of a native Australian freshwater fish. J Exp Biol 2017; 220:2265-2276. [PMID: 28396354 DOI: 10.1242/jeb.151530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/06/2017] [Indexed: 11/20/2022]
Abstract
Fishes use their mechanoreceptive lateral line system to sense nearby objects by detecting slight fluctuations in hydrodynamic motion within their immediate environment. Species of fish from different habitats often display specialisations of the lateral line system, in particular the distribution and abundance of neuromasts, but the lateral line can also exhibit considerable diversity within a species. Here, we provide the first investigation of the lateral line system of the Australian western rainbowfish (Melanotaenia australis), a species that occupies a diversity of freshwater habitats across semi-arid northwest Australia. We collected 155 individuals from eight populations and surveyed each habitat for environmental factors that may contribute to lateral line specialisation, including water flow, predation risk, habitat structure and prey availability. Scanning electron microscopy and fluorescent dye labelling were used to describe the lateral line system in M. australis, and to examine whether the abundance and arrangement of superficial neuromasts (SNs) varied within and among populations. We found that the SNs of M. australis were present in distinct body regions rather than lines. The abundance of SNs within each body region was highly variable, and also differed among populations and individuals. Variation in SN abundance among populations was best explained by habitat structure and the availability of invertebrate prey. Our finding that specific environmental factors explain among-population variation in a key sensory system suggests that the ability to acquire sensory information is specialised for the particular behavioural needs of the animal.
Collapse
Affiliation(s)
- Lindsey Spiller
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Pauline F Grierson
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Peter M Davies
- Centre of Excellence in Natural Resource Management, The University of Western Australia, Albany, Western Australia 6332, Australia
| | - Jan Hemmi
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.,UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Shaun P Collin
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.,UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Jennifer L Kelley
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
17
|
Emami A, Yaghobi R, Moattari A, Baseri Salehi M, Roozbeh J. Noncoding Control Region Pattern of BK polyomavirus in Kidney Transplant Patients With Nephropathy. EXP CLIN TRANSPLANT 2017; 15:150-156. [PMID: 26517063 DOI: 10.6002/ect.2014.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Adaptation of BK polyomavirus with infected host cells may cause rearrangement of the noncoding control region of viral genomic DNA. Archetype, the prearranged transmissible form of the virus, actively replicates in the tubular epithelial cells, whereas isolates with rearranged noncoding control region sequences are found in other parts of the kidney. Clinical observations highlighted the importance of the noncoding control region rearrangements in BK virus-associated nephropathy. Therefore, we evaluated the sequence pattern of the noncoding control region in kidney transplant patients suspected of having BK virus-associated nephropathy. MATERIALS AND METHODS In this single-center, cross-sectional study, 129 kidney transplant patients suspected of having BK virus-associated nephropathy and who were admitted to Namazi Hospital were enrolled for analysis between years 2010 and 2013. Blood samples were collected from each patient. The BK polyomavirus infection was diagnosed using quantitative real-time polymerase chain reaction. The BK polyomavirus-infected patient plasma samples were amplified using in-house nested polymerase chain reaction and sequenced. The contiguous alignment noncoding control region sequences were analyzed with software. RESULTS The BK polyomavirus infection was observed in plasma samples of 11 of 129 (8.5%) patients after kidney transplant. Sequence alignments showed that BK polyomavirus noncoding control region sequences in all viral infected patients with BK virus-associated nephropathy showed a complete rearranged algorithm compared with the archetype sequences. The most prevalent noncoding control region sequences were registered in a genetic sequence database (National Institutes of Health). No association was observed between risk factors and BK polyomavirus infection. There were 3 BK polyomavirus-infected patients who simultaneously had active cytomegalovirus infection. CONCLUSIONS Determination of the rearranged pattern of the noncoding control region sequences in BK polyomavirus isolates from plasma samples may help improve the diagnostic and therapeutic protocols against this viral infection in patients with BK virus-associated nephropathy.
Collapse
Affiliation(s)
- Amir Emami
- >From the Department of Microbiology, Science and Research Branch, Islamic Azad University, Fars, Iran
| | | | | | | | | |
Collapse
|