1
|
Lopez VM, Allen WL, Polido M, Almeida LH, Williams KA, Ferreira RG. Evolutionary Drivers of Conspicuous Spots in Velvet Ants (Hymenoptera: Dasymutilla). Ecol Evol 2025; 15:e70896. [PMID: 39896766 PMCID: PMC11782072 DOI: 10.1002/ece3.70896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Predation plays an important role in animal evolution by selecting for antipredator adaptations. Antipredator color adaptations include conspicuous spots, which are believed to provide protection by deflecting attacks to harmful or peripheral body parts, deimatic signaling, or as conspicuous warning coloration. The utility of antipredator signals is context-dependent and may be influenced by the environment. In this study, we investigated the selective forces acting on the evolution of conspicuous spots on velvet ants (Mutillidae: Dasymutilla). We tested whether conspicuous spots in 80 species of velvet ants evolved in (i) forest-dwelling species, (ii) habitat-generalist species, or (iii) species predated by diverse birds and frogs. Results show that conspicuous spots are more likely to evolve in forest-dwelling species and in areas with more canopy cover, whereas species inhabiting open areas and deserts tend to lose them. Moreover, taxa with conspicuous spots transition between open and forested habitats less often. Spot presence was not associated with predator diversity. We suggest that spots in velvet ants require complex visual environments to be effective, which may limit their habitat occurrence. In simpler environments, carrying conspicuous spots could be costly due to increased exposure to visual predators.
Collapse
Affiliation(s)
- Vinicius Marques Lopez
- Graduate Program in Entomology, Department of BiologyUniversity of São Paulo (USP)Ribeirão PretoBrazil
- Lestes LabFederal University of Triangulo Mineiro (UFTM)UberabaMinas GeraisBrazil
| | | | - Mariáh Polido
- Centre of Biological and Health SciencesFederal University of São Carlos (UFSCar)São CarlosBrazil
| | | | - Kevin Andrew Williams
- Plant Pest Diagnostics CenterCalifornia Department of Food & AgricultureSacramentoCaliforniaUSA
| | - Rhainer Guillermo Ferreira
- Graduate Program in Entomology, Department of BiologyUniversity of São Paulo (USP)Ribeirão PretoBrazil
- Lestes LabFederal University of Triangulo Mineiro (UFTM)UberabaMinas GeraisBrazil
| |
Collapse
|
2
|
Nokelainen O, Silvasti SA, Strauss SY, Wahlberg N, Mappes J. Predator selection on phenotypic variability of cryptic and aposematic moths. Nat Commun 2024; 15:1678. [PMID: 38395999 PMCID: PMC10891176 DOI: 10.1038/s41467-024-45329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Natural selection generally favours phenotypic variability in camouflaged organisms, whereas aposematic organisms are expected to evolve a more uniform warning coloration. However, no comprehensive analysis of the phenotypic consequences of predator selection in aposematic and cryptic species exists. Using state-of-the-art image analysis, we examine 2800 wing images of 82 moth species accessed via three online museum databases. We test whether anti-predator strategy (i.e., camouflage or aposematism) explains intraspecific variation in wing colour and pattern across northern hemisphere moths. In addition, we test two mutually non-exclusive, ecological hypotheses to explain variation in colour pattern: diel-activity or dietary-niche. In this work, taking into account phylogenetic relationships, moth phenotypic variability is best explained by anti-predator strategy with camouflaged moths being more variable in wing patterning than aposematic species.
Collapse
Affiliation(s)
- Ossi Nokelainen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 3, P.O. Box 65, 40014, Helsinki, Finland.
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland.
- Open Science Centre, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland.
| | - Sanni A Silvasti
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sharon Y Strauss
- Department of Evolution and Ecology, University of California at Davis, 2320 Storer Hall, One Shields Avenue, Davis, CA, 95616, USA
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, Berlin, 14193, Germany
| | - Niklas Wahlberg
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Johanna Mappes
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 3, P.O. Box 65, 40014, Helsinki, Finland.
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, Berlin, 14193, Germany.
| |
Collapse
|
3
|
McLellan CF, Cuthill IC, Montgomery SH. Pattern variation is linked to anti-predator coloration in butterfly larvae. Proc Biol Sci 2023; 290:20230811. [PMID: 37357867 PMCID: PMC10291709 DOI: 10.1098/rspb.2023.0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
Prey animals typically try to avoid being detected and/or advertise to would-be predators that they should be avoided. Both anti-predator strategies primarily rely on colour to succeed, but the specific patterning used is also important. While the role of patterning in camouflage is relatively clear, the design features of aposematic patterns are less well understood. Here, we use a comparative approach to investigate how pattern use varies across a phylogeny of 268 species of cryptic and aposematic butterfly larvae, which also vary in social behaviour. We find that longitudinal stripes are used more frequently by cryptic larvae, and that patterns putatively linked to crypsis are more likely to be used by solitary larvae. By contrast, aposematic larvae are more likely to use horizontal bands and spots, but we find no differences in the use of individual pattern elements between solitary and gregarious aposematic species. However, solitary aposematic larvae are more likely to display multiple pattern elements, whereas those with no pattern are more likely to be gregarious. Our study advances our understanding of how pattern variation, coloration and social behaviour covary across lepidopteran larvae, and highlights new questions about how patterning affects larval detectability and predator responses to aposematic prey.
Collapse
Affiliation(s)
- Callum F. McLellan
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Innes C. Cuthill
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
4
|
Tsubuki M, Hayashi F. Pupal Warning Coloration of Three Species of Cystidia (Lepidoptera: Geometridae: Ennominae) in Relation to Their Pupation Sites. INSECTS 2022; 14:38. [PMID: 36661966 PMCID: PMC9865983 DOI: 10.3390/insects14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Many insects display a cryptic color to avoid detection by predators that search for prey by sight. However, some species with chemicals that predators dislike may display a warning color (aposematism) to predators. The predators can learn easier that the species is unsuitable as prey if the color is more conspicuous. Therefore, it is assumed that the acquisition of the warning color requires not only unpalatability, but also exposure of the color to predators and the ability of predators to recognize and learn it unpalatable. In the moths of the subfamily Ennominae, almost all of genera produce uniformly brown or green pupae, but the pupae of the genus Cystidia have conspicuous coloration of yellow background and black spots. In this study, to clarify whether the color of these pupae is the warning color or not, we compared the coloration, pupation site, and palatability among the three species of this genus: C. couaggaria, C. truncangulata, and C. stratonice. Learning by the predators was also examined using lizards as a potential predator of the moths. The results showed that all three species were repelled (unpalatable) by the lizards, and that repeated providing of the pupae to the lizards decreased their willingness to prey on them (probably due to learning). Pupation sites of C. couaggaria and C. truncangulata were located on the surface of branches and leaves high above the ground, whereas C. stratonice pupated in the space of leaves spun with course silk at lower site above the ground. Thus, the conspicuous coloration of pupal Cystidia is considered to be a warning color, but the pupae of C. stratonice are more blackish than those of the most closely related C. truncangulata. The pupal color of C. stratonice is likely to have a dual meaning as cryptic and warning colors. The dark colored pupa may be inconspicuous when hidden within the leaf space, but once detected by the predators, the yellow color of the pupa may function as a warning color.
Collapse
|
5
|
Spatial differentiation of background matching strategies along a Late Pleistocene range expansion route. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Barzaghi B, Melotto A, Cogliati P, Manenti R, Ficetola GF. Factors determining the dorsal coloration pattern of aposematic salamanders. Sci Rep 2022; 12:17090. [PMID: 36224211 PMCID: PMC9556531 DOI: 10.1038/s41598-022-19466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
Aposematic bright colors have a key role for animal defense and can be expressed through metabolic production or by acquiring pigments from diet. Aposematic coloration can be related to both local adaptations and availability of trophic resources. The European fire salamander (Salamandra salamandra) shows significant color variability and occurs across a broad range of habitats. Here we combined field observations with common rearing experiments to disentangle the role of environmental conditions and local adaptations in determining aposematic coloration of salamander populations. We assessed color variation and measured habitat features and food availability in adults from 25 populations. Furthermore, we reared newborn larvae from 10 populations under different food availability and analyzed color of metamorphs. To assess color pattern, we measured the percentage of yellow covering the body, and the Hue, Saturation and Value of yellow coloration. Adult showed strong variation of color pattern; variation was strongly related to the individual's size, to habitat productivity and to food availability. Under common garden conditions, differences between populations were not anymore evident, and coloration was only affected by resource availability during larval development. Our results suggest that environmental conditions and food availability are more important than local adaptations in determining differences in aposematic color pattern.
Collapse
Affiliation(s)
- Benedetta Barzaghi
- grid.4708.b0000 0004 1757 2822Department of Environmental Science and Policy, University of Milano, Milan, Italy
| | - Andrea Melotto
- grid.11956.3a0000 0001 2214 904XCentre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7600 South Africa
| | - Paola Cogliati
- grid.4708.b0000 0004 1757 2822Department of Environmental Science and Policy, University of Milano, Milan, Italy
| | - Raoul Manenti
- grid.4708.b0000 0004 1757 2822Department of Environmental Science and Policy, University of Milano, Milan, Italy
| | - Gentile Francesco Ficetola
- grid.4708.b0000 0004 1757 2822Department of Environmental Science and Policy, University of Milano, Milan, Italy ,grid.11956.3a0000 0001 2214 904XCentre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7600 South Africa ,grid.450307.50000 0001 0944 2786Laboratoire D’Ecologie Alpine (LECA), CNRS, Univ. Grenoble Alpes, Grenoble, France
| |
Collapse
|
7
|
|
8
|
Eacock A, Rowland HM, van’t Hof AE, Yung CJ, Edmonds N, Saccheri IJ. Adaptive colour change and background choice behaviour in peppered moth caterpillars is mediated by extraocular photoreception. Commun Biol 2019; 2:286. [PMID: 31396566 PMCID: PMC6677728 DOI: 10.1038/s42003-019-0502-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/13/2019] [Indexed: 12/26/2022] Open
Abstract
Light sensing by tissues distinct from the eye occurs in diverse animal groups, enabling circadian control and phototactic behaviour. Extraocular photoreceptors may also facilitate rapid colour change in cephalopods and lizards, but little is known about the sensory system that mediates slow colour change in arthropods. We previously reported that slow colour change in twig-mimicking caterpillars of the peppered moth (Biston betularia) is a response to achromatic and chromatic visual cues. Here we show that the perception of these cues, and the resulting phenotypic responses, does not require ocular vision. Caterpillars with completely obscured ocelli remained capable of enhancing their crypsis by changing colour and choosing to rest on colour-matching twigs. A suite of visual genes, expressed across the larval integument, likely plays a key role in the mechanism. To our knowledge, this is the first evidence that extraocular colour sensing can mediate pigment-based colour change and behaviour in an arthropod.
Collapse
Affiliation(s)
- Amy Eacock
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745 Germany
| | - Hannah M. Rowland
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745 Germany
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Arjen E. van’t Hof
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Carl J. Yung
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Nicola Edmonds
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Ilik J. Saccheri
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| |
Collapse
|
9
|
Briolat ES, Burdfield‐Steel ER, Paul SC, Rönkä KH, Seymoure BM, Stankowich T, Stuckert AMM. Diversity in warning coloration: selective paradox or the norm? Biol Rev Camb Philos Soc 2019; 94:388-414. [PMID: 30152037 PMCID: PMC6446817 DOI: 10.1111/brv.12460] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
Abstract
Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: genetic mechanisms, differences among predators and predator behaviour, and alternative selection pressures upon the signal. The mechanisms producing warning coloration are also important. Detailed studies of the genetic basis of warning signals in some species, most notably Heliconius butterflies, are beginning to shed light on the genetic architecture facilitating or limiting key processes such as the evolution and maintenance of polymorphisms, hybridisation, and speciation. Work on predator behaviour is changing our perception of the predator community as a single homogenous selective agent, emphasising the dynamic nature of predator-prey interactions. Predator variability in a range of factors (e.g. perceptual abilities, tolerance to chemical defences, and individual motivation), suggests that the role of predators is more complicated than previously appreciated. With complex selection regimes at work, polytypisms and polymorphisms may even occur in Müllerian mimicry systems. Meanwhile, phenotypes are often multifunctional, and thus subject to additional biotic and abiotic selection pressures. Some of these selective pressures, primarily sexual selection and thermoregulation, have received considerable attention, while others, such as disease risk and parental effects, offer promising avenues to explore. As well as reviewing the existing evidence from both empirical studies and theoretical modelling, we highlight hypotheses that could benefit from further investigation in aposematic species. Finally by collating known instances of variation in warning signals, we provide a valuable resource for understanding the taxonomic spread of diversity in aposematic signalling and with which to direct future research. A greater appreciation of the extent of variation in aposematic species, and of the selective pressures and constraints which contribute to this once-paradoxical phenomenon, yields a new perspective for the field of aposematic signalling.
Collapse
Affiliation(s)
- Emmanuelle S. Briolat
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
| | - Emily R. Burdfield‐Steel
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
| | - Sarah C. Paul
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
- Department of Chemical EcologyBielefeld UniversityUniversitätsstraße 25, 33615, BielefeldGermany
| | - Katja H. Rönkä
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki, 00014Finland
| | - Brett M. Seymoure
- Department of BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
| | - Theodore Stankowich
- Department of Biological SciencesCalifornia State UniversityLong BeachCA 90840U.S.A.
| | - Adam M. M. Stuckert
- Department of BiologyEast Carolina University1000 E Fifth St, GreenvilleNC 27858U.S.A.
| |
Collapse
|
10
|
Briolat ES, Zagrobelny M, Olsen CE, Blount JD, Stevens M. No evidence of quantitative signal honesty across species of aposematic burnet moths (Lepidoptera: Zygaenidae). J Evol Biol 2018; 32:31-48. [PMID: 30317689 PMCID: PMC6378400 DOI: 10.1111/jeb.13389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 11/30/2022]
Abstract
Many defended species use conspicuous visual warning signals to deter potential predators from attacking. Traditional theory holds that these signals should converge on similar forms, yet variation in visual traits and the levels of defensive chemicals is common, both within and between species. It is currently unclear how the strength of signals and potency of defences might be related: conflicting theories suggest that aposematic signals should be quantitatively honest, or, in contrast, that investment in one component should be prioritized over the other, while empirical tests have yielded contrasting results. Here, we advance this debate by examining the relationship between defensive chemicals and signal properties in a family of aposematic Lepidoptera, accounting for phylogenetic relationships and quantifying coloration from the perspective of relevant predators. We test for correlations between toxin levels and measures of wing colour across 14 species of day‐flying burnet and forester moths (Lepidoptera: Zygaenidae), protected by highly aversive cyanogenic glucosides, and find no clear evidence of quantitative signal honesty. Significant relationships between toxin levels and coloration vary between sexes and sampling years, and several trends run contrary to expectations for signal honesty. Although toxin concentration is positively correlated with increasing luminance contrast in forewing pattern in 1 year, higher toxin levels are also associated with paler and less chromatically salient markings, at least in females, in another year. Our study also serves to highlight important factors, including sex‐specific trends and seasonal variation, that should be accounted for in future work on signal honesty in aposematic species.
Collapse
Affiliation(s)
- Emmanuelle S Briolat
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, UK
| | - Mika Zagrobelny
- Plant Biochemistry Laboratory and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carl E Olsen
- Plant Biochemistry Laboratory and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan D Blount
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, UK
| | - Martin Stevens
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, UK
| |
Collapse
|
11
|
Dell'Aglio DD, Troscianko J, McMillan WO, Stevens M, Jiggins CD. The appearance of mimetic Heliconius butterflies to predators and conspecifics. Evolution 2018; 72:2156-2166. [PMID: 30129174 PMCID: PMC6221148 DOI: 10.1111/evo.13583] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 02/05/2023]
Abstract
Adaptive coloration is under conflicting selection pressures: choosing potential mates and warning signaling against visually guided predators. Different elements of the color signal may therefore be tuned by evolution for different functions. We investigated how mimicry in four pairs of Heliconius comimics is potentially seen both from the perspective of butterflies and birds. Visual sensitivities of eight candidate avian predators were predicted through genetic analysis of their opsin genes. Using digital image color analysis, combined with bird and butterfly visual system models, we explored how predators and conspecifics may visualize mimetic patterns. Ultraviolet vision (UVS) birds are able to discriminate between the yellow and white colors of comimics better than violet vision (VS) birds. For Heliconius vision, males and females differ in their ability to discriminate comimics. Female vision and red filtering pigments have a significant effect on the perception of the yellow forewing band and the red ventral forewing pattern. A behavioral experiment showed that UV cues are used in mating behavior; removal of such cues was associated with an increased tendency to approach comimics as compared to conspecifics. We have therefore shown that visual signals can act to both reduce the cost of confusion in courtship and maintain the advantages of mimicry.
Collapse
Affiliation(s)
- Denise Dalbosco Dell'Aglio
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, United Kingdom.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Jolyon Troscianko
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Martin Stevens
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Chris D Jiggins
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, United Kingdom.,Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
12
|
Phenotype-dependent mate choice and the influence of mixed-morph lineage on the reproductive success of a polymorphic and aposematic moth. Evol Ecol 2018. [DOI: 10.1007/s10682-018-9944-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Briolat ES, Zagrobelny M, Olsen CE, Blount JD, Stevens M. Sex differences but no evidence of quantitative honesty in the warning signals of six-spot burnet moths (Zygaena filipendulae L.). Evolution 2018; 72:1460-1474. [PMID: 29767461 PMCID: PMC6099377 DOI: 10.1111/evo.13505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/22/2018] [Accepted: 05/05/2018] [Indexed: 11/29/2022]
Abstract
The distinctive black and red wing pattern of six-spot burnet moths (Zygaena filipendulae, L.) is a classic example of aposematism, advertising their potent cyanide-based defences. While such warning signals provide a qualitatively honest signal of unprofitability, the evidence for quantitative honesty, whereby variation in visual traits could provide accurate estimates of individual toxicity, is more equivocal. Combining measures of cyanogenic glucoside content and wing color from the perspective of avian predators, we investigate the relationship between coloration and defences in Z. filipendulae, to test signal honesty both within and across populations. There were no significant relationships between mean cyanogenic glucoside concentration and metrics of wing coloration across populations in males, yet in females higher cyanogenic glucoside levels were associated with smaller and lighter red forewing markings. Trends within populations were similarly inconsistent with quantitative honesty, and persistent differences between the sexes were apparent: larger females, carrying a greater total cyanogenic glucoside load, displayed larger but less conspicuous markings than smaller males, according to several color metrics. The overall high aversiveness of cyanogenic glucosides and fluctuations in color and toxin levels during an individual's lifetime may contribute to these results, highlighting generally important reasons why signal honesty should not always be expected in aposematic species.
Collapse
Affiliation(s)
- Emmanuelle Sophie Briolat
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynCornwall TR10 9FEUnited Kingdom
| | - Mika Zagrobelny
- Plant Biochemistry Laboratory and Copenhagen Plant Science CentreDepartment of Plant and Environmental SciencesUniversity of Copenhagen40 Thorvaldsensvej, DK‐1871 Frederiksberg CCopenhagenDenmark
| | - Carl Erik Olsen
- Plant Biochemistry Laboratory and Copenhagen Plant Science CentreDepartment of Plant and Environmental SciencesUniversity of Copenhagen40 Thorvaldsensvej, DK‐1871 Frederiksberg CCopenhagenDenmark
| | - Jonathan D. Blount
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynCornwall TR10 9FEUnited Kingdom
| | - Martin Stevens
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynCornwall TR10 9FEUnited Kingdom
| |
Collapse
|
14
|
Tan EJ, Reid CAM, Symonds MRE, Jurado-Rivera JA, Elgar MA. The Role of Life-History and Ecology in the Evolution of Color Patterns in Australian Chrysomeline Beetles. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Eacock A, Rowland HM, Edmonds N, Saccheri IJ. Colour change of twig-mimicking peppered moth larvae is a continuous reaction norm that increases camouflage against avian predators. PeerJ 2017; 5:e3999. [PMID: 29158965 PMCID: PMC5691783 DOI: 10.7717/peerj.3999] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/17/2017] [Indexed: 01/15/2023] Open
Abstract
Camouflage, and in particular background-matching, is one of the most common anti-predator strategies observed in nature. Animals can improve their match to the colour/pattern of their surroundings through background selection, and/or by plastic colour change. Colour change can occur rapidly (a few seconds), or it may be slow, taking hours to days. Many studies have explored the cues and mechanisms behind rapid colour change, but there is a considerable lack of information about slow colour change in the context of predation: the cues that initiate it, and the range of phenotypes that are produced. Here we show that peppered moth (Biston betularia) larvae respond to colour and luminance of the twigs they rest on, and exhibit a continuous reaction norm of phenotypes. When presented with a heterogeneous environment of mixed twig colours, individual larvae specialise crypsis towards one colour rather than developing an intermediate colour. Flexible colour change in this species has likely evolved in association with wind dispersal and polyphagy, which result in caterpillars settling and feeding in a diverse range of visual environments. This is the first example of visually induced slow colour change in Lepidoptera that has been objectively quantified and measured from the visual perspective of natural predators.
Collapse
Affiliation(s)
- Amy Eacock
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Hannah M. Rowland
- Predators and Prey Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicola Edmonds
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ilik J. Saccheri
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|