1
|
Darmis F, Vezyrakis A, Guenther A. Male reproductive tactics in house mice: Consistent individual differences, intrinsic factors and density effects. J Anim Ecol 2025. [PMID: 40219773 DOI: 10.1111/1365-2656.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/13/2025] [Indexed: 04/14/2025]
Abstract
Alternative reproductive tactics (ARTs) describe non-reversible or flexible alternative strategies that secure fertilization. For example, some male defend territories with females while others attempt sneaky matings. Often, ARTs are considered to be status-dependent and are explained by differences in mass or competitive ability. However, most studies on ARTs only approximate their fitness effect, ignore males that never reproduced and consider status (e.g. weight) as the sole mediator of ARTs. We used 244 male mice, Mus musculus domesticus, from semi-natural populations, to describe ARTs in Mus Musculus for the first time. We followed males throughout their life and categorized them as territorials or roamers over multiple monthly intervals, after validating our method of assigning tactics with detailed spatial data. We explored if tactic choice is repeatable, whether multiple social and/or intrinsic factors predict tactic choice and transitions between tactics, and tested for fitness and physiological differences between ARTs. Tactic choice was repeatable, but males switched flexibly between tactics. Tactic choice was associated with mass, age, the operational sex ratio and population size. Territorials had a higher probability of reproduction, but a lower gonadosomatic index. Our results reveal a personality component of ARTs, confirm equal mean fitness among tactics and suggest tactic choice as a multifaceted decision under various selective pressures.
Collapse
Affiliation(s)
- Fragkiskos Darmis
- Research Group Behavioural Ecology of Individual Differences, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alexandros Vezyrakis
- Research Group Behavioural Ecology of Individual Differences, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Anja Guenther
- Research Group Behavioural Ecology of Individual Differences, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
2
|
Rosengrave PC, Lymbery RA, Evans JP. Patterns of sperm swimming behaviour depend on male mating tactic and spawning environment in chinook salmon. Sci Rep 2024; 14:25680. [PMID: 39465254 PMCID: PMC11514174 DOI: 10.1038/s41598-024-76115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Many species exhibit alternative mating tactics (ARTs), with larger socially dominant males competing for females and smaller males adopting "sneaker" strategies to exploit fertilisation opportunities without competition or courtship. Females typically prefer larger socially dominant males, but their ability to manipulate mating or fertilisation outcomes is largely unknown. Here, using chinook salmon Oncorhynchus tshawytscha, we examined whether the female's ovarian fluid (OF) differentially influences the temporal patterns of sperm swimming traits in ejaculates from non-preferred sneaker ('parr') and preferred (dominant) males. Results demonstrate that OF improves sperm swimming speed and linearity compared to river water, regardless of male mating tactic. We report a novel tactic-specific difference in sperm linearity in which parr male sperm initially maintain straighter trajectories in river water, compared to dominant males, but then rapidly change to less linear and more circular paths over time. Intriguingly, we show that OF counteracts this change in sperm linearity in parr males so that patterns become indistinguishable from dominants when parr sperm swim in OF. Together, these results show that male chinook salmon exhibit differential sperm trait investment strategies depending on reproductive tactic.
Collapse
Affiliation(s)
| | - Rowan A Lymbery
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Department of Biodiversity, Conservation and Attractions, Kensington, WA, 6151, Australia
| | - Jonathan P Evans
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
3
|
Pinzoni L, Rasotto MB, Gasparini C. Sperm performance in the race for fertilization, the influence of female reproductive fluid. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240156. [PMID: 39086834 PMCID: PMC11289650 DOI: 10.1098/rsos.240156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/17/2024] [Indexed: 08/02/2024]
Abstract
In studies of sperm competition, particularly in external fertilizers, the importance of the fertilization environment on the paternity share among rival males often goes overlooked. The female reproductive fluid (FRF), produced and released by females, creates the microenvironment that sperm encounter on their quest for fertilization and can generate paternity biases by affecting key traits in sperm competition. Yet, whether there is a direct link between FRF effects on sperm traits and its effect on competitive fertilization dynamics remains to be explored. Here, using the zebrafish Danio rerio, we compare within-female paternity share among two competing males and predictors of fertilization success (i.e. sperm traits) in the presence/absence of FRF. Our results unequivocally reveal a direct link between the direction and magnitude of the effect of FRF on sperm traits and the change in the competitive fertilization success of each male. This study demonstrates that the FRF directly mediates post-mating female control through its differential effect on sperm performance and that the FRF's effect on sperm quality alone is sufficient to predict the magnitude of the fitness effects. These findings highlight the need to consider the role of FRF in fertilization, avoiding biases resulting from an exclusive focus on male intrinsic sperm quality.
Collapse
Affiliation(s)
- Livia Pinzoni
- Department of Biology, University of Padova, Padova 35131, Italy
| | | | - Clelia Gasparini
- Department of Biology, University of Padova, Padova 35131, Italy
| |
Collapse
|
4
|
Nusbaumer D, Garaud L, de Guttry C, Ançay L, Wedekind C. Sperm of more colourful males are better adapted to ovarian fluids in lake char (Salmonidae). Mol Ecol 2023; 32:5369-5381. [PMID: 37602965 DOI: 10.1111/mec.17103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Fish often spawn eggs with ovarian fluids that have been hypothesized to support the sperm of some males over others (cryptic female choice). Alternatively, sperm reactions to ovarian fluids could reveal male strategies. We used wild-caught lake char (Salvelinus umbla) to experimentally test whether sperm react differently to the presence of ovarian fluid, and whether any differential sperm reaction could be predicted by male breeding coloration, male inbreeding coefficients (based of 4150 SNPs) or the kinship coefficients between males and females. Male coloration was positively linked to body size and current health (based on lymphocytosis and thrombocytosis) but was a poor predictor of inbreeding or kinship coefficients. We found that sperm of more colourful males were faster in diluted ovarian fluids than in water only, while sperm of paler males were faster in water than in ovarian fluids. We then let equal numbers of sperm compete for fertilizations in the presence or absence of ovarian fluids and genetically assigned 1464 embryos (from 70 experimental trials) to their fathers. The presence of ovarian fluids significantly increased the success of the more colourful competitors. Sperm of less inbred competitors were more successful when tested in water only than in diluted ovarian fluids. The kinship coefficients had no significant effects on sperm traits or fertilization success in the presence of ovarian fluids, although parallel stress tests on embryos had revealed that females would profit more from mating with least related males rather than most coloured ones. We conclude that sperm of more colourful males are best adapted to ovarian fluids, and that the observed reaction norms suggest male strategies rather than cryptic female choice.
Collapse
Affiliation(s)
- David Nusbaumer
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Laura Garaud
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christian de Guttry
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Laurie Ançay
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Pinzoni L, Locatello L, Gasparini C, Rasotto MB. Female reproductive fluid and male seminal fluid: a non-gametic conflict for post-mating control. Biol Lett 2023; 19:20230306. [PMID: 37752852 PMCID: PMC10523087 DOI: 10.1098/rsbl.2023.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Growing evidence shows that non-gametic components released by both males and females can significantly drive sperm competition outcomes. Seminal fluid (SF) was shown to influence paternity success by affecting rival males' sperm performance, and, in some species with male alternative reproductive tactics, to selectively decrease the fertilization success of males of the opposite tactic. Female reproductive fluid (FRF) has been proven to differentially influence ejaculates of different males and bias fertilization towards specific partners. Whether, and with what outcome, these two processes can intersect to influence sperm competition is still unknown. Here we explore this scenario in the grass goby (Zosterisessor ophiocephalus), a fish with territorial-sneaker reproductive tactics, where sneaker males can exploit the territorials' SF while penalizing territorial sperm performance with their own fluid. To test whether FRF can rebalance the ejaculate competition in favour of territorial males, we used in vitro fertilization with a SF mixture (territorial + sneaker), using increasing concentrations of FRF, to simulate the natural conditions that ejaculates encounter towards the eggs. Our findings revealed a differential effect of FRF on the different tactics' fertilization success, favouring territorial ejaculates, possibly through an attenuation of the detrimental effects of sneaker SF, and enabling females to regain control over the fertilization process.
Collapse
Affiliation(s)
- Livia Pinzoni
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Lisa Locatello
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Fano Marine Center, Fano 61032, Italy
| | - Clelia Gasparini
- Department of Biology, University of Padova, Padova 35131, Italy
| | | |
Collapse
|
6
|
Pinzoni L, Locatello L, Gasparini C, Rasotto MB. Female reproductive fluid concentrations affect sperm performance of alternative male phenotypes in an external fertilizer. J Evol Biol 2023; 36:1198-1207. [PMID: 37438920 DOI: 10.1111/jeb.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 07/14/2023]
Abstract
There is growing evidence that the female reproductive fluid (FRF) plays an important role in cryptic female choice through its differential effect on the performance of sperm from different males. In a natural spawning event, the male(s) may release ejaculate closer or further away from the spawning female. If the relative spatial proximity of competing males reflects the female pre-mating preference towards those males, then favoured males will encounter higher concentrations of FRF than unpreferred males. Despite this being a common situation in many external fertilizers, whether different concentrations of FRF can differentially influence the sperm performance of distinct male phenotypes (favoured and unfavoured by the female) remains to be elucidated. Here, we tested this hypothesis using the grass goby (Zosterisessor ophiocephalus), a fish with distinct territorial-sneaker reproductive tactics and female pre-mating preference towards territorial males, that consequently mate in an advantaged position and whose sperm experience higher concentrations of FRF. Our findings revealed a differential concentration-dependent effect of FRF over sneaker and territorial sperm motility only at low concentrations (i.e. at the distance where sneakers typically ejaculate), with increasing FRF concentrations (i.e. close to the eggs) similarly boosting the sperm performance of both sneaker and territorial males. The ability to release sperm close to the eggs is a prerogative of territorials, but FRF can likewise advantage the sperm of those sneakers that are able to get closer, allowing flexibility in the direction of female post-mating choice.
Collapse
Affiliation(s)
- Livia Pinzoni
- Department of Biology, University of Padova, Padova, Italy
| | - Lisa Locatello
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Fano Marine Center, Fano, Italy
| | | | | |
Collapse
|
7
|
Lantiegne TH, Purchase CF. Can cryptic female choice prevent invasive hybridization in external fertilizing fish? Evol Appl 2023; 16:1412-1421. [PMID: 37622094 PMCID: PMC10445091 DOI: 10.1111/eva.13573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/08/2023] [Indexed: 08/26/2023] Open
Abstract
Polyandrous mating systems result in females mating with multiple males, generating opportunities for strong pre-mating and post-mating sexual selection. Polyandry also creates the potential for unintended matings and subsequent sperm competition with hybridizing species. Cryptic female choice allows females to bias paternity towards preferred males under sperm competition and may include conspecific sperm preference when under hybridization risk. The potential for hybridization becomes particularly important in context of invasive species that can novelly hybridize with natives, and by definition, have evolved allopatrically. We provide the first examination of conspecific sperm preference in a system of three species with the potential to hybridize: North American native Atlantic salmon (Salmo salar) and brook char (Salvelinus fontinalis), and invasive brown trout (Salmo trutta) from Europe. Using naturalized populations on the island of Newfoundland, we measured changes in sperm swimming performance, a known predictor of paternity, to determine the degree of modification in sperm swimming to female cues related to conspecific sperm preference. Compared to water alone, female ovarian fluid in general had a pronounced effect and changed sperm motility (by a mean of 53%) and swimming velocity (mean 30%), but not linearity (mean 6%). However, patterns in the degree of modification suggest there is no conspecific sperm preference in the North American populations. Furthermore, female cues from both native species tended to boost the sperm of invasive males more than their own. We conclude that cryptic female choice via ovarian fluid mediated sperm swimming modification is too weak in this system to prevent invasive hybridization and is likely insufficient to promote or maintain reproductive isolation between the native North American species.
Collapse
Affiliation(s)
- Tyler H. Lantiegne
- Department of BiologyMemorial University of NewfoundlandSt. John'sNewfoundland & LabradorCanada
| | - Craig F. Purchase
- Department of BiologyMemorial University of NewfoundlandSt. John'sNewfoundland & LabradorCanada
| |
Collapse
|
8
|
Bernos TA, Chang SL, Giglio RM, Davenport K, Fisher J, Lowery E, Bearlin A, Simmons R, Fortin M, Day CC, Landguth EL. Evaluating the evolutionary mechanisms maintaining alternative mating strategies in a simulated bull trout ( Salvelinus confluentus) population. Ecol Evol 2023; 13:e9965. [PMID: 37038529 PMCID: PMC10082177 DOI: 10.1002/ece3.9965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
The coexistence of distinct alternative mating strategies (AMS) is often explained by mechanisms involving trade-offs between reproductive traits and lifetime fitness; yet their relative importance remains poorly understood. Here, we used an established individual-based, spatially explicit model to simulate bull trout (Salvelinus confluentus) in the Skagit River (Washington, USA) and investigated the influence of female mating preference, sneaker-specific mortality, and variation in age-at-maturity on AMS persistence using global sensitivity analyses and boosted regression trees. We assumed that two genetically fixed AMS coexisted within the population: sneaker males (characterized by younger age-at-maturity, greater AMS-specific mortality, and lower reproductive fitness) and territorial males. After 300 years, variation in relative sneaker success in the system was explained by sneaker males' reproductive fitness (72%) and, to a lesser extent, the length of their reproductive lifespan (21%) and their proportion in the initial population (8%). However, under a wide range of parameter values, our simulated scenarios predicted the extinction of territorial males or their persistence in small, declining populations. Although these results do not resolve the coexistence of AMS in salmonids, they reinforce the importance of mechanisms reducing sneaker's lifetime reproductive success in favoring AMS coexistence within salmonid populations but also limit the prediction that, without any other selective mechanisms at play, strong female preference for mating with territorial males and differences in reproductive lifespan allow the stable coexistence of distinct AMS.
Collapse
Affiliation(s)
- Thaïs A. Bernos
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Sarah L. Chang
- Department of BiologyUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Rachael M. Giglio
- Department of Ecology, Evolution, and Organismal BiologyOhio State UniversityColumbusOhioUSA
- United States Department of AgricultureNational Wildlife Research CenterOttawaOntarioUSA
| | - Kaeli Davenport
- Department of Wildlife BiologyUniversity of MontanaMissoulaMontanaUSA
| | | | | | | | | | - Marie‐Josée Fortin
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Casey C. Day
- School of Public and Community Health SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Erin L. Landguth
- School of Public and Community Health SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
9
|
Decanter N, Normand R, Souissi A, Labbé C, Edeline E, Evanno G. Sperm competition experiments reveal low prezygotic postmating isolation between parasitic and nonparasitic lamprey ecotypes. Ecol Evol 2023; 13:e9970. [PMID: 37021081 PMCID: PMC10067809 DOI: 10.1002/ece3.9970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
The role of postmating sexual selection as a potential reproductive barrier in speciation is not well understood. Here, we studied the effects of sperm competition and cryptic female choice as putative postmating barriers in two lamprey ecotypes with a partial reproductive isolation. The European river lamprey Lampetra fluviatilis is anadromous and parasitic of other fish species, whereas the brook lamprey Lampetra planeri is freshwater resident and nonparasitic. We measured sperm traits in both ecotypes and designed sperm competition experiments to test the occurrence of cryptic female choice. We also performed sperm competition experiments either at equal semen volume or equal sperm number to investigate the role of sperm velocity on fertilization success. We observed distinct sperm traits between ecotypes with a higher sperm concentration and a lower sperm velocity for L. planeri compared with L. fluviatilis. The outcomes of sperm competition reflected these differences in sperm traits, and there was no evidence for cryptic female choice irrespective of female ecotype. At equal semen volume, L. planeri males had a higher fertilization success than L. fluviatilis and vice versa at equal sperm number. Our results demonstrate that different sperm traits between ecotypes can influence the male reproductive success and thus gene flow between L. planeri and L. fluviatilis. However, postmating prezygotic barriers are absent and thus cannot explain the partial reproductive isolation between ecotypes.
Collapse
Affiliation(s)
- Nolwenn Decanter
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMERRennesFrance
| | - Romane Normand
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMERRennesFrance
| | - Ahmed Souissi
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMERRennesFrance
| | - Catherine Labbé
- INRAE, UMR1037 LPGP, Fish Physiology and GenomicsCampus de Beaulieu35000RennesFrance
| | - Eric Edeline
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMERRennesFrance
| | - Guillaume Evanno
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMERRennesFrance
| |
Collapse
|
10
|
Dougherty LR, Skirrow MJA, Jennions MD, Simmons LW. Male alternative reproductive tactics and sperm competition: a meta-analysis. Biol Rev Camb Philos Soc 2022; 97:1365-1388. [PMID: 35229450 PMCID: PMC9541908 DOI: 10.1111/brv.12846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/16/2023]
Abstract
In many animal species, males may exhibit one of several discrete, alternative ways of obtaining fertilisations, known as alternative reproductive tactics (ARTs). Males exhibiting ARTs typically differ in the extent to which they invest in traits that improve their mating success, or the extent to which they face sperm competition. This has led to the widespread prediction that males exhibiting ARTs associated with a high sperm competition risk, or lower investment into traits that improve their competitiveness before mating, should invest more heavily into traits that improve their competitiveness after mating, such as large ejaculates and high-quality sperm. However, despite many studies investigating this question since the 1990s, evidence for differences in sperm and ejaculate investment between male ARTs is mixed, and there has been no quantitative summary of this field. Following a systematic review of the literature, we performed a meta-analysis examining how testes size, sperm number and sperm traits differ between males exhibiting ARTs that face either a high or low sperm competition risk, or high or low investment in traits that increase mating success. We obtained data from 92 studies and 67 species from across the animal kingdom. Our analyses showed that male fish exhibiting ARTs facing a high sperm competition risk had significantly larger testes (after controlling for body size) than those exhibiting tactics facing a low sperm competition risk. However, this effect appears to be due to the inappropriate use of the gonadosomatic index as a body-size corrected measure of testes investment, which overestimates the difference in testes investment between male tactics in most cases. We found no significant difference in sperm number between males exhibiting different ARTs, regardless of whether sperm were measured from the male sperm stores or following ejaculation. We also found no significant difference in sperm traits between males exhibiting different ARTs, with the exception of sperm adenosine triphosphate (ATP) content in fish. Finally, the difference in post-mating investment between male ARTs was not influenced by the extent to which tactics were flexible, or by the frequency of sneakers in the population. Overall, our results suggest that, despite clear theoretical predictions, there is little evidence that male ARTs differ substantially in investment into sperm and ejaculates across species. The incongruence between theoretical and empirical results could be explained if (i) theoretical models fail to account for differences in overall resource levels between males exhibiting different ARTs or fundamental trade-offs between investment into different ejaculate and sperm traits, and (ii) studies often use sperm or ejaculate traits that do not reflect overall post-mating investment accurately or affect fertilisation success.
Collapse
Affiliation(s)
- Liam R Dougherty
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Crown Street, Liverpool, L69 7RB, U.K
| | - Michael J A Skirrow
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Michael D Jennions
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
11
|
Strategic adjustment of ejaculate quality in response to variation of the socio-sexual environment. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03032-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Kustra MC, Alonzo SH. Sperm and alternative reproductive tactics: a review of existing theory and empirical data. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200075. [PMID: 33070732 PMCID: PMC7661440 DOI: 10.1098/rstb.2020.0075] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Males that exhibit alternative reproductive tactics (ARTs) often differ in the risk of sperm competition and the energetic trade-offs they experience. The resulting patterns of selection could lead to between-tactic differences in ejaculate traits. Despite extensive research on male ARTs, there is no comprehensive review of whether and what differences in sperm traits exist between male ARTs. We review existing theory on ejaculate evolution relevant to ARTs and then conduct a comprehensive vote-counting review of the empirical data comparing sperm traits between males adopting ARTs. Despite the general expectation that sneaker males should produce sperm that are more competitive (e.g. higher quality or performance), we find that existing theory does not predict explicitly how males adopting ARTs should differ in sperm traits. The majority of studies find no significant difference in sperm performance traits between dominant and sneaker males. However, when there is a difference, sneaker males tend to have higher sperm performance trait values than dominant males. We propose ways that future theoretical and empirical research can improve our understanding of the evolution of ejaculate traits in ARTs. We then highlight how studying ejaculate traits in species with ARTs will improve our broader knowledge of ejaculate evolution. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Matthew C. Kustra
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
13
|
Dittman AH, Quinn TP. Amino acid cues emanating from Pacific salmon eggs and ovarian fluid. JOURNAL OF FISH BIOLOGY 2020; 97:1408-1414. [PMID: 32829515 DOI: 10.1111/jfb.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The eggs of salmonid fishes are an important food source for many aquatic predators that detect eggs using olfaction. Moreover, chemicals from eggs and ovarian fluid aid sperm cells in detecting and locating eggs for fertilization, and ovarian fluid is attractive to conspecific males. Thus chemicals from eggs and ovarian fluid may facilitate reproduction but may also attract egg predators. The authors sampled mature females of three Pacific salmon species - Chinook (Oncorhynchus tshawytscha), coho (Oncorhynchus kisutch) and sockeye (Oncorhynchus nerka) - and determined the proportional representation of amino acids, potent fish odorants, from their eggs and ovarian fluid (Chinook and coho salmon only). They then tested juvenile coho salmon, an egg predator, for responses to ovarian fluid and egg odours using the electro-olfactogram (EOG) recording technique. The amino acid compositions of the salmon species were significantly and positively correlated with each other, and the interspecific differences were comparable to those between individuals of the same species. The egg water samples were, on average, dominated by lysine, alanine and glutamine (12.6%, 12.4% and 10.9%, respectively). The ovarian fluid samples were dominated by lysine (20.5%), followed by threonine (9.7%), glycine (9.2%) and arginine (8.8%). EOG recordings demonstrated the ability of juvenile coho salmon to detect the chemical traces of eggs and ovarian fluid. It is concluded that salmon eggs are a potent source of odours for potential predators but likely not highly differentiated among salmon species.
Collapse
Affiliation(s)
- Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Thomas P Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Gasparini C, Pilastro A, Evans JP. The role of female reproductive fluid in sperm competition. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200077. [PMID: 33070736 DOI: 10.1098/rstb.2020.0077] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of non-gametic components of the ejaculate (seminal fluid) in fertility and sperm competitiveness is now well established. Surprisingly, however, we know far less about female reproductive fluid (FRF) in the context of sexual selection, and insights into male-FRF interactions in the context of sperm competition have only recently emerged. Despite this limited knowledge, evidence from taxonomically diverse species has revealed insights into the effects of FRF on sperm traits that have previously been implicated in studies of sperm competition. Specifically, through the differential effects of FRF on a range of sperm traits, including chemoattraction and alterations in sperm velocity, FRF has been shown to exert positive phenotypic effects on the sperm of males that are preferred as mating partners, or those from the most compatible or genetically diverse males. Despite these tantalizing insights into the putative sexually selected functions of FRF, we largely lack a mechanistic understanding of these processes. Taken together, the evidence presented here highlights the likely ubiquity of FRF-regulated biases in fertilization success across a diverse range of taxa, thus potentially elevating the importance of FRF to other non-gametic components that have so far been studied largely in males. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Clelia Gasparini
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Andrea Pilastro
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 6009 WA, Australia
| |
Collapse
|
15
|
Lüpold S, Reil JB, Manier MK, Zeender V, Belote JM, Pitnick S. How female × male and male × male interactions influence competitive fertilization in Drosophila melanogaster. Evol Lett 2020; 4:416-429. [PMID: 33014418 PMCID: PMC7523561 DOI: 10.1002/evl3.193] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 01/01/2023] Open
Abstract
How males and females contribute to joint reproductive success has been a long‐standing question in sexual selection. Under postcopulatory sexual selection, paternity success is predicted to derive from complex interactions among females engaging in cryptic female choice and males engaging in sperm competition. Such interactions have been identified as potential sources of genetic variation in sexually selected traits but are also expected to inhibit trait diversification. To date, studies of interactions between females and competing males have focused almost exclusively on genotypes and not phenotypic variation in sexually selected traits. Here, we characterize within‐ and between‐sex interactions in Drosophila melanogaster using isogenic lines with heritable variation in both male and female traits known to influence competitive fertilization. We confirmed, and expanded on, previously reported genotypic interactions within and between the sexes, and showed that several reproductive events, including sperm transfer, female sperm ejection, and sperm storage, were explained by two‐ and three‐way interactions among sex‐specific phenotypes. We also documented complex interactions between the lengths of competing males’ sperm and the female seminal receptacle, which are known to have experienced rapid female‐male co‐diversification. Our results highlight the nonindependence of sperm competition and cryptic female choice and demonstrate that complex interactions between the sexes do not limit the ability of multivariate systems to respond to directional sexual selection.
Collapse
Affiliation(s)
- Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich CH-8057 Switzerland.,Department of Biology Syracuse University Syracuse New York 13244
| | - Jonathan Bradley Reil
- Department of Entomology Cornell University Ithaca New York 14853.,Department of Plant and Environmental Protection Sciences University of Hawaii at Mānoa Honolulu Hawaii 96822
| | - Mollie K Manier
- Department of Biology Syracuse University Syracuse New York 13244.,Department of Biological Sciences George Washington University Washington DC 20052
| | - Valérian Zeender
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich CH-8057 Switzerland
| | - John M Belote
- Department of Biology Syracuse University Syracuse New York 13244
| | - Scott Pitnick
- Department of Biology Syracuse University Syracuse New York 13244
| |
Collapse
|
16
|
Pitnick S, Wolfner MF, Dorus S. Post-ejaculatory modifications to sperm (PEMS). Biol Rev Camb Philos Soc 2020; 95:365-392. [PMID: 31737992 PMCID: PMC7643048 DOI: 10.1111/brv.12569] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Mammalian sperm must spend a minimum period of time within a female reproductive tract to achieve the capacity to fertilize oocytes. This phenomenon, termed sperm 'capacitation', was discovered nearly seven decades ago and opened a window into the complexities of sperm-female interaction. Capacitation is most commonly used to refer to a specific combination of processes that are believed to be widespread in mammals and includes modifications to the sperm plasma membrane, elevation of intracellular cyclic AMP levels, induction of protein tyrosine phosphorylation, increased intracellular Ca2+ levels, hyperactivation of motility, and, eventually, the acrosome reaction. Capacitation is only one example of post-ejaculatory modifications to sperm (PEMS) that are widespread throughout the animal kingdom. Although PEMS are less well studied in non-mammalian taxa, they likely represent the rule rather than the exception in species with internal fertilization. These PEMS are diverse in form and collectively represent the outcome of selection fashioning complex maturational trajectories of sperm that include multiple, sequential phenotypes that are specialized for stage-specific functionality within the female. In many cases, PEMS are critical for sperm to migrate successfully through the female reproductive tract, survive a protracted period of storage, reach the site of fertilization and/or achieve the capacity to fertilize eggs. We predict that PEMS will exhibit widespread phenotypic plasticity mediated by sperm-female interactions. The successful execution of PEMS thus has important implications for variation in fitness and the operation of post-copulatory sexual selection. Furthermore, it may provide a widespread mechanism of reproductive isolation and the maintenance of species boundaries. Despite their possible ubiquity and importance, the investigation of PEMS has been largely descriptive, lacking any phylogenetic consideration with regard to divergence, and there have been no theoretical or empirical investigations of their evolutionary significance. Here, we (i) clarify PEMS-related nomenclature; (ii) address the evolutionary origin, maintenance and divergence in PEMS in the context of the protracted life history of sperm and the complex, selective environment of the female reproductive tract; (iii) describe taxonomically widespread types of PEMS: sperm activation, chemotaxis and the dissociation of sperm conjugates; (iv) review the occurence of PEMS throughout the animal kingdom; (v) consider alternative hypotheses for the adaptive value of PEMS; (vi) speculate on the evolutionary implications of PEMS for genomic architecture, sexual selection, and reproductive isolation; and (vii) suggest fruitful directions for future functional and evolutionary analyses of PEMS.
Collapse
Affiliation(s)
- Scott Pitnick
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Steve Dorus
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| |
Collapse
|
17
|
Purchase CF, Rooke AC. Freezing ovarian fluid does not alter how it affects fish sperm swimming performance: creating a cryptic female choice 'spice rack' for use in split-ejaculate experimentation. JOURNAL OF FISH BIOLOGY 2020; 96:693-699. [PMID: 31985071 DOI: 10.1111/jfb.14263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Cryptic female choice is often mediated chemically in external fertilizers by ovarian fluid (OF), which can change sperm swimming performance and bias paternity under sperm competition. Assessing cryptic female choice is hindered by the necessity of using fresh gametes and the short time window available to obtain diverse samples from wild animals. Using split-ejaculate experimental designs and samples from lake trout, brown trout and Atlantic salmon, we evaluated whether freezing OF alters the way in which it modifies sperm swimming. Sperm had improved swimming performance in the presence of OF over plain water, and the effect did not depend on whether the OF had previously been frozen. Freezing OF does not seem to alter the way it influences sperm. This allows the researcher to create a 'spice rack' of OF samples that can be used in studies on cryptic female choice, and opens up the possibility to compare animals mating under large spatial and temporal variability.
Collapse
Affiliation(s)
- Craig F Purchase
- Department of Biology, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Anna C Rooke
- Department of Biology, Memorial University, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
18
|
Orbach DN, Rooke AC, Evans JP, Pitcher TE, Purchase CF. Assessing the potential for post-ejaculatory female choice in a polyandrous beach-spawning fish. J Evol Biol 2020; 33:449-459. [PMID: 31860764 DOI: 10.1111/jeb.13579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/27/2022]
Abstract
In species with limited opportunities for pre-ejaculatory sexual selection (behavioural components), post-ejaculatory mechanisms may provide opportunities for mate choice after gametes have been released. Recent evidence from a range of taxa has revealed that cryptic female choice (i.e., female-mediated differential fertilization bias), through chemical cues released with or from eggs, can differentially regulate the swimming characteristics of sperm from various males and ultimately determine male fertilization success under sperm competition. We assessed the potential role that such female-modulated chemical cues play in influencing sperm swimming characteristics in beach-spawning capelin (Mallotus villosus), an externally fertilizing fish that mates as couples (one male and one female) or threesomes (two males and one female) with presumably limited opportunities for pre-ejaculatory sexual selection. We assayed sperm swimming characteristics under varying doses and donor origins of egg cues and also examined the possibility of assortative mating based on body size. We found mating groups were not associated by size, larger males did not produce better quality ejaculates, and egg cues (regardless of dosage or donor identity) did not influence sperm swimming characteristics. Our findings suggest that intersexual pre-ejaculatory sexual selection and cryptic female choice mediated by female chemical cues are poorly developed in capelin, possibly due to unique natural selection constraints on reproduction.
Collapse
Affiliation(s)
- Dara N Orbach
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA.,Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Anna C Rooke
- Department of Biology, Memorial University, St. John's, NL, Canada
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Trevor E Pitcher
- Great Lakes Institute for Environmental Research and Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Craig F Purchase
- Department of Biology, Memorial University, St. John's, NL, Canada
| |
Collapse
|
19
|
Kleppe SA, Nordeide JT, Rudolfsen G, Figenschou L, Larsen B, Reiss K, Folstad I. No support for cryptic choice by ovarian fluid in an external fertilizer. Ecol Evol 2018; 8:11763-11774. [PMID: 30598774 PMCID: PMC6303707 DOI: 10.1002/ece3.4628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/01/2022] Open
Abstract
Whether the ovarian fluid (OF) represents a selective environment influencing cryptic female choice was tested using an external fertilizer experiencing intense sperm competition and large effects of OF on sperm swimming behavior-the Arctic charr (Salvelinus alpinus). We physically separated the OF from the eggs of reproductively active females and reintroduced either their own OF or fluid from another female to the eggs. The eggs were then fertilized in vitro in a replicated split-brood design with sperm from two males under synchronized sperm competition trials, while also measuring sperm velocity of the individual males in the individual OFs. We found large effects of males, but no effect of females (i.e., eggs) on paternity, determined from microsatellites. More important, we found no effect of OF treatments on the relative paternity of the two competing males in each pair. This experimental setup does not provide support for the hypothesis that OF plays an important role as medium for cryptic female choice in charr. Power analyses revealed that our sample size is large enough to detect medium-sized changes in relative paternity (medium-sized effect sizes), but not large enough to detect small changes in relative paternity. More studies are needed before a conclusion can be drawn about OF's potential influence on paternity under sperm competition-even in charr.
Collapse
Affiliation(s)
| | | | - Geir Rudolfsen
- Faculty of Bioscience, Fishery and EconomyUiT The Arctic University of NorwayTromsøNorway
| | - Lars Figenschou
- University Library, UiT The Arctic University of NorwayTromsøNorway
| | | | - Katrin Reiss
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Ivar Folstad
- Faculty of Bioscience, Fishery and EconomyUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
20
|
Poli F, Locatello L, Rasotto MB. Seminal fluid enhances competitiveness of territorial males' sperm in a fish with alternative male reproductive tactics. ACTA ACUST UNITED AC 2018; 221:jeb.175976. [PMID: 29844197 DOI: 10.1242/jeb.175976] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/22/2018] [Indexed: 12/16/2022]
Abstract
The most common adaptation to sperm competition in males is represented by an increase in the sperm number and/or quality released at mating, to raise their probability of egg fertilization. However, rapidly mounting evidence highlights that seminal fluid may directly influence the competitive fertilization success of a male by affecting either own and/or rival sperm performance. In the black goby, Gobius niger, an external fertilizer with guard-sneaker mating tactics and high sperm competition level, sneaker ejaculates contain less seminal fluid and more sperm, that are also of better quality, than those of territorial males. However, territorial males gain a higher paternity success inside natural nests. Here, we ask whether the seminal fluid can contribute to the reproductive success of territorial males by enhancing their sperm performance and/or by decreasing that of sneaker males. Using sperm and seminal fluid manipulation and in vitro fertilization tests, we found that own seminal fluid influences the velocity and fertilization ability of sperm only in territorial males, making them as fast as those of sneakers and with a similar fertilization rate. Moreover, both sneaker and territorial sperm remain unaffected by the seminal fluid of rival males. Thus, black goby males respond to the different level of sperm competition faced by differential allocation of sperm and non-sperm components of the ejaculate, with sneakers primarily investing in sperm of intrinsic high quality and territorial males relying on the effect of seminal fluid to increase the lower intrinsic quality of their sperm.
Collapse
Affiliation(s)
- Federica Poli
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Lisa Locatello
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Maria B Rasotto
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| |
Collapse
|
21
|
Lehnert SJ, Helou L, Pitcher TE, Heath JW, Heath DD. Sperm competition, but not major histocompatibility divergence, drives differential fertilization success between alternative reproductive tactics in Chinook salmon. J Evol Biol 2017; 31:88-97. [PMID: 29055057 DOI: 10.1111/jeb.13199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/17/2017] [Accepted: 10/15/2017] [Indexed: 01/15/2023]
Abstract
Post-copulatory sexual selection processes, including sperm competition and cryptic female choice (CFC), can operate based on major histocompatibility (MH) genes. We investigated sperm competition between male alternative reproductive tactics [jack (sneaker) and hooknose (guard)] of Chinook salmon (Oncorhynchus tshawytscha). Using a full factorial design, we examined in vitro competitive fertilization success of paired jack and hooknose males at three time points after sperm activation (0, 15 and 60 s) to test for male competition, CFC and time effects on male fertilization success. We also examined egg-mediated CFC at two MH genes by examining both the relationship between competitive fertilization success and MH divergence as well as inheritance patterns of MH alleles in resulting offspring. We found that jacks sired more offspring than hooknose males at 0 s post-activation; however, jack fertilization success declined over time post-activation, suggesting a trade-off between sperm speed and longevity. Enhanced fertilization success of jacks (presumably via higher sperm quality) may serve to increase sneaker tactic competitiveness relative to dominant hooknose males. We also found evidence of egg-mediated CFC (i.e. female × male interaction) influencing competitive fertilization success; however, CFC was not acting on the MH genes as we found no relationship between fertilization success and MH II β1 or MH I α1 divergence and we found no deviations from Mendelian inheritance of MH alleles in the offspring. Our study provides insight into evolutionary mechanisms influencing variation in male mating success within alternative reproductive tactics, thus underscoring different strategies that males can adopt to attain success.
Collapse
Affiliation(s)
- S J Lehnert
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - L Helou
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - T E Pitcher
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada.,Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - J W Heath
- Yellow Island Aquaculture Ltd., Heriot Bay, BC, Canada
| | - D D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada.,Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| |
Collapse
|