1
|
Jokiniemi A, Turunen T, Kohonen M, Magris M, Ritari J, Kuusipalo L, Partanen J, Kekäläinen J. Female-mediated selective sperm activation may remodel major histocompatibility complex-based mate choice decisions in humans. Heredity (Edinb) 2025:10.1038/s41437-025-00759-9. [PMID: 40346315 DOI: 10.1038/s41437-025-00759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 05/11/2025] Open
Abstract
Major histocompatibility complex (MHC) genes are known to mediate mate choice both at the individual and gamete level. However, it has remained unclear how different episodes of MHC-associated mate choice interact and contribute to the total selection on MHC genes. Here, we clarified this interaction in humans by performing a full-factorial experiment where 10 females first ranked the attractiveness and intensity of the body odours of 11 males. Then we studied whether female odour preferences in these same 110 male-female combinations predicted sperm performance in the presence of follicular fluid (sperm-stimulating female reproductive fluid). When analyzing the total MHC similarity (including classical and non-classical MHC genes) of the male-female combinations, we found that females preferred the body odours of MHC-similar males, but that sperm motility was positively affected by the MHC dissimilarity of the male-female combinations. No associations were found for classical MHC genes only. Furthermore, odour preferences were negatively associated with sperm motility at the end of the follicular fluid treatment. Together, our results indicate that individual and gamete-level mate choice processes may act in opposing directions and that the most attractive males are not necessarily the most optimal partners at the post-copulatory level. Finally, our findings suggest that gamete-mediated mate choice may have a definitive role in disfavouring genetically incompatible partners from fertilizing oocytes.
Collapse
Affiliation(s)
- Annalaura Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Tanja Turunen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Mikko Kohonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Martina Magris
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jarmo Ritari
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | | | - Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.
| |
Collapse
|
2
|
Przesmycka K, Herdegen-Radwan M, Phillips KP, Mohammed RS, Radwan J. The quest for good genes: Epigamic traits, fitness, MHC and multilocus heterozygosity in the guppy. Mol Ecol 2023; 32:5055-5070. [PMID: 37492990 DOI: 10.1111/mec.17083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
The 'good genes' hypothesis for the evolution of male secondary sexual traits poses that female preferences for such traits are driven by indirect genetic benefits. However, support for the hypothesis remains ambiguous, and, in particular, the genetic basis for the benefits has rarely been investigated. Here, we use seminatural populations of Trinidadian guppies to investigate whether sexually selected traits (orange, black and iridescent colouration, gonopodium length and body size) predict fitness measured as the number of grandoffspring, a metric that integrates across fitness components and sexes. Furthermore, we tested whether two potential sources of genetic benefits-major histocompatibility complex (MHC) genotypes and multilocus heterozygosity (MLH)-are significant predictors of fitness and of the size of sexually selected traits. We found a significant, nonlinear effect of the area of black pigmentation and male body size on the number of grandoffspring, suggesting stabilizing selection on black area, and nonlinear selection favouring small body size. MLH was heritable (h2 = 0.14) and significantly predicted the number of grandoffspring, indicating the potential for genetic benefits based on heterozygosity. We also found support for local heterozygosity effects, which may reflect a noneven distribution of genetic load across the genome. MHC genotype was not significantly associated with any tested fitness component, or with the load of Gyrodactylus parasites. Neither MHC nor MLH was significant predictor of sexually selected traits. Overall, our results highlight the role of heterozygosity in determining fitness, but do not provide support for male sexually selected traits being indicators of genetic quality.
Collapse
Affiliation(s)
- Karolina Przesmycka
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Karl P Phillips
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Ryan S Mohammed
- Department of Biology, Auburn University, Auburn, Alabama, USA
| | - Jacek Radwan
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
3
|
Horne JB, Frey A, Gaos AR, Martin S, Dutton PH. Non-random mating within an Island rookery of Hawaiian hawksbill turtles: demographic discontinuity at a small coastline scale. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221547. [PMID: 37206959 PMCID: PMC10189603 DOI: 10.1098/rsos.221547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Hawksbill sea turtles (Eretmochelys imbricata) from the Hawaiian archipelago form a small and genetically isolated population, consisting of only a few tens of individuals breeding annually. Most females nest on the island of Hawai'i, but little is known about the demographics of this rookery. This study used genetic relatedness, inferred from 135 microhaplotype markers, to determine breeding sex-ratios, estimate female nesting frequency and assess relationships between individuals nesting on different beaches. Samples were collected during the 2017 nesting season and final data included 13 nesting females and 1002 unhatched embryos, salvaged from 41 nests, of which 13 had no observed mother. Results show that most females used a single nesting beach laying 1-5 nests each. From female and offspring alleles, the paternal genotypes of 12 breeding males were reconstructed and many showed high relatedness to their mates. Pairwise relatedness of offspring revealed one instance of polygyny but otherwise suggested a 1 : 1 breeding-sex ratio. Relatedness analysis and spatial-autocorrelation of genotypes indicate that turtles from different nesting areas do not regularly interbreed, suggesting that strong natal homing tendencies in both sexes result in non-random mating across the study area. Complexes of nearby nesting beaches also showed unique patterns of inbreeding across loci, further indicating that Hawaiian hawksbill turtles have demographically discontinuous nesting populations separated by only tens of km.
Collapse
Affiliation(s)
- John B. Horne
- Southwest Fisheries Science Center, NOAA-Fisheries, La Jolla, CA, USA
| | - Amy Frey
- Southwest Fisheries Science Center, NOAA-Fisheries, La Jolla, CA, USA
| | - Alexander R. Gaos
- Pacific Islands Fisheries Science Center, NOAA-Fisheries, Honolulu, HI, USA
| | - Summer Martin
- Pacific Islands Fisheries Science Center, NOAA-Fisheries, Honolulu, HI, USA
| | - Peter H. Dutton
- Southwest Fisheries Science Center, NOAA-Fisheries, La Jolla, CA, USA
| |
Collapse
|
4
|
González-Cortés L, Labastida-Estrada E, Karam-Martínez SG, Montoya-Márquez JA, Islas-Villanueva V. Within-season shifts in multiple paternity patterns in mass-nesting olive ridley sea turtles. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiple paternity is common to all sea turtle species, but its causes and consequences are hard to ascertain and the behaviors and success of males difficult to observe. This study aims to describe patterns of multiple paternity for olive ridley turtles Lepidochelys olivacea at Playa de Escobilla, an ‘arribada’ (mass-nesting) site on the Mexican Pacific coast with over a million clutches laid each reproductive season. A total of 15 females and their hatchlings were sampled during 3 arribada events which occurred over the 2016-2017 nesting season. Females and hatchlings (N = 329) were genotyped at 5 microsatellite loci, from which we inferred the alleles of 46 contributing males. Multiple paternity was detected in 60% of the analyzed clutches, which were sired by a range of 2 to 7 males. Multiple paternity rates differed significantly across arribada events, suggesting more males achieved fertilizations earlier in the breeding season. Paternal contribution in 6 of the clutches with multiple paternity was skewed towards a single male; the remaining clutches had a homogeneous male contribution. However, our results are based on relatively small within-arribada sample sizes. The frequency of multiple paternity among turtle clutches laid on this arribada beach could be related to the density of breeding individuals in the reproductive patch off Playa de Escobilla, rather than to the nesting population size or female size.
Collapse
Affiliation(s)
- L González-Cortés
- Programa de Maestría en Ciencias: Ecología Marina, División de Estudios de Posgrado, Universidad del Mar, Campus Puerto Ángel, Ciudad Universitaria s/n, Oaxaca 70902, Mexico
| | - E Labastida-Estrada
- Programa de Maestría en Ciencias: Ecología Marina, División de Estudios de Posgrado, Universidad del Mar, Campus Puerto Ángel, Ciudad Universitaria s/n, Oaxaca 70902, Mexico
| | - SG Karam-Martínez
- Instituto de Recursos, Universidad del Mar, Campus Puerto Ángel, Ciudad Universitaria s/n, Oaxaca 70902, Mexico
| | - JA Montoya-Márquez
- Instituto de Recursos, Universidad del Mar, Campus Puerto Ángel, Ciudad Universitaria s/n, Oaxaca 70902, Mexico
| | - V Islas-Villanueva
- CONACYT, Universidad del Mar, Campus Puerto Ángel, Ciudad Universitaria s/n, Oaxaca 70902, Mexico
| |
Collapse
|
5
|
How well do genetic markers inform about responses to intraspecific admixture? A comparative analysis of microsatellites and RADseq. BMC Genom Data 2021; 22:22. [PMID: 34182923 PMCID: PMC8237422 DOI: 10.1186/s12863-021-00974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022] Open
Abstract
Background Fitness consequences of intraspecific genetic admixture can vary from positive to negative depending on the genetic composition of the populations and environmental conditions. Because admixture has potential to influence the success of management and conservation efforts, genetic similarity has been suggested to be used as a proxy to predict the outcome. Studies utilizing microsatellites (a neutral marker) to investigate associations between genetic distance and admixture effects show conflicting results. Marker types that yield information on genome-wide and/or adaptive variation might be more useful for predicting responses to inter-population hybridization. In this study we utilized published data for three populations of pike (Esox lucius) to investigate associations between offspring performance (hatching success) and parental genetic similarity in experimentally purebred and admixed families, based on neutral (microsatellites), genome-wide neutral (RADseq SNPs), and adaptive (SNPs under selection) markers. Results Estimated similarity varied among the markers, likely reflecting differences in their inherent properties, but was consistently higher in purebred than admixed families. A significant interaction between marker type and admixture treatment reflected that neutral SNPs yielded higher estimates than adaptive SNPs for admixed families whereas no difference was found for purebred families, which indicates that neutral similarity was not reflective of adaptive similarity. When all samples were pooled, no association between similarity and performance was found for any marker. For microsatellites, similarity was positively correlated with hatching success in purebred families, whereas no association was found in admixed families; however, the direction of the effect differed between the population combinations. Conclusions The results strengthen the notion that, as of today, there is no proxy that can reliably predicted the outcome of admixture. This emphasizes the need of further studies to advance knowledge that can shed light on how to safeguard against negative consequences of admixture, and thereby inform management and promote conservation of biological diversity. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00974-3.
Collapse
|
6
|
Denny K, Perlut N, Strong A. Management Schemes, not Philopatry or Breeding Experience, Affect Nest Success of Songbirds in Vermont Hayfields. WILDLIFE SOC B 2021. [DOI: 10.1002/wsb.1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kylie Denny
- Department of Environmental Studies University of New England 11 Hills Beach Rd Biddeford ME 04005 USA
| | - Noah Perlut
- Department of Environmental Studies University of New England 11 Hills Beach Rd Biddeford ME 04005 USA
| | - Allan Strong
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington VT USA
| |
Collapse
|
7
|
Maurer AS, Seminoff JA, Layman CA, Stapleton SP, Godfrey MH, Reiskind MOB. Population Viability of Sea Turtles in the Context of Global Warming. Bioscience 2021. [DOI: 10.1093/biosci/biab028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Sea turtles present a model for the potential impacts of climate change on imperiled species, with projected warming generating concern about their persistence. Various sea turtle life-history traits are affected by temperature; most strikingly, warmer egg incubation temperatures cause female-biased sex ratios and higher embryo mortality. Predictions of sea turtle resilience to climate change are often focused on how resulting male limitation or reduced offspring production may affect populations. In the present article, by reviewing research on sea turtles, we provide an overview of how temperature impacts on incubating eggs may cascade through life history to ultimately affect population viability. We explore how sex-specific patterns in survival and breeding periodicity determine the differences among offspring, adult, and operational sex ratios. We then discuss the implications of skewed sex ratios for male-limited reproduction, consider the negative correlation between sex ratio skew and genetic diversity, and examine consequences for adaptive potential. Our synthesis underscores the importance of considering the effects of climate throughout the life history of any species. Lethal effects (e.g., embryo mortality) are relatively direct impacts, but sublethal effects at immature life-history stages may not alter population growth rates until cohorts reach reproductive maturity. This leaves a lag during which some species transition through several stages subject to distinct biological circumstances and climate impacts. These perspectives will help managers conceptualize the drivers of emergent population dynamics and identify existing knowledge gaps under different scenarios of predicted environmental change.
Collapse
Affiliation(s)
- Andrew S Maurer
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, in the United States; he is also a research associate with the Jumby Bay Hawksbill Project in Antigua, West Indies
| | - Jeffrey A Seminoff
- Marine Turtle Ecology and Assessment Program, National Oceanic and Atmospheric Administration's Southwest Fisheries Science Center, La Jolla, California, United States
| | - Craig A Layman
- Center for Energy, Environment, and Sustainability, Wake Forest University, in Winston-Salem, North Carolina, in the United States
| | - Seth P Stapleton
- Conservation and animal health sciences, Minnesota Zoo, Apple Valley, Minnesota; he is also an adjunct faculty member in the Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, in Minneapolis, Minnesota, in the United States
| | - Matthew H Godfrey
- North Carolina Wildlife Resources Commission, Raleigh, North Carolina, United States
| | - Martha O Burford Reiskind
- Martha Burford Reiskind is an assistant professor in the Department of Biological Sciences and the director of the Genetics and Genomics Scholars program, North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
8
|
Banerjee SM, Frey A, Kurle CM, Perrault JR, Stewart KR. Morphological variation in leatherback (Dermochelys coriacea) hatchlings at Sandy Point National Wildlife Refuge, US Virgin Islands. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Understanding species’ mating systems provides important information about their ecology, life history, and behavior. Direct observations of mating behaviors can be challenging, but molecular techniques can reveal information about mating systems and paternal identity in difficult-to-observe species such as sea turtles. Genetic markers can be used to assess the paternity of a clutch and to assign hatchlings to a father. Leatherback turtles Dermochelys coriacea sometimes mate with multiple individuals, resulting in clutches with mixed paternity; however, the effects of multiple paternity on hatchling quality are unclear. Leatherback hatchlings at Sandy Point National Wildlife Refuge, St. Croix, US Virgin Islands, exhibit visible variation in individual body size, sometimes within the same clutch. We collected morphometrics and tissue samples from hatchlings across multiple nesting seasons (2009, 2012, 2013, 2015, and 2016) and found that hatchlings exhibited small but statistically significant differences in morphometrics between years. We used maternal and hatchling microsatellite genotypes to reconstruct paternal genotypes, assigning fathers to each hatchling. We found multiple paternity in 5 of 17 clutches analyzed and compared differences in morphometrics between full-siblings with differences between half-siblings. We found no significant differences between morphometrics of hatchlings from the same mother but different fathers. We compared within-clutch variances in morphometrics for clutches with and without multiple paternity and found no significant difference in morphological variation between them. Therefore, we could not attribute differences in hatchling size within a clutch to paternal contribution. Understanding other factors affecting hatchling morphology, and other possible fitness metrics, may reveal insights into the benefits, or lack thereof, of polyandry in sea turtles.
Collapse
Affiliation(s)
- SM Banerjee
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA, ORCID: 0000-0003-1210-2162
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - A Frey
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA
| | - CM Kurle
- Division of Biological Sciences, Ecology, Behavior, and Evolution Section, University of California, San Diego, La Jolla, CA 92093, USA, ORCID: 0000-0003-1121-9924
| | - JR Perrault
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- Loggerhead Marinelife Center, Juno Beach, FL 33408, USA, ORCID: 0000-0002-5046-6701
| | - KR Stewart
- The Ocean Foundation, Washington, DC 20036, USA, ORCID: 0000-0002-8673-5192
| |
Collapse
|
9
|
Multiple Paternity in a Reintroduced Rookery of Kemp's Ridley Sea Turtles on South Padre Island, Texas. J HERPETOL 2020. [DOI: 10.1670/18-003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Moss JB, Gerber GP, Welch ME. Heterozygosity-Fitness Correlations Reveal Inbreeding Depression in Neonatal Body Size in a Critically Endangered Rock Iguana. J Hered 2019; 110:818-829. [PMID: 31617903 DOI: 10.1093/jhered/esz060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/09/2019] [Indexed: 01/16/2023] Open
Abstract
Inbreeding depression, though challenging to identify in nature, may play an important role in regulating the dynamics of small and isolated populations. Conversely, greater expression of genetic load can enhance opportunities for natural selection. Conditional expression concentrates these opportunities for selection and may lead to failure of detection. This study investigates the possibility for age-dependent expression of inbreeding depression in a critically endangered population of rock iguanas, Cyclura nubila caymanensis. We employ heterozygote-fitness correlations to examine the contributions of individual genetic factors to body size, a fitness-related trait. Nonsignificant reductions in homozygosity (up to 7%) were detected between neonates and individuals surviving past their first year, which may reflect natural absorption of inbreeding effects by this small, fecund population. The majority of variation in neonate body size was attributed to maternal or environmental effects (i.e., clutch identity and incubation length); however, heterozygosity across 22 microsatellite loci also contributed significantly and positively to model predictions. Conversely, effects of heterozygosity on fitness were not detectable when adults were examined, suggesting that inbreeding depression in body size may be age dependent in this taxon. Overall, these findings emphasize the importance of taking holistic, cross-generational approaches to genetic monitoring of endangered populations.
Collapse
Affiliation(s)
- Jeanette B Moss
- Biological Sciences Department, Mississippi State University, Mississippi State, MS
| | - Glenn P Gerber
- Institute for Conservation Research, San Diego Zoo Global, Escondido, CA
| | - Mark E Welch
- Biological Sciences Department, Mississippi State University, Mississippi State, MS
| |
Collapse
|
11
|
Baums IB, Baker AC, Davies SW, Grottoli AG, Kenkel CD, Kitchen SA, Kuffner IB, LaJeunesse TC, Matz MV, Miller MW, Parkinson JE, Shantz AA. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01978. [PMID: 31332879 PMCID: PMC6916196 DOI: 10.1002/eap.1978] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 05/06/2023]
Abstract
Active coral restoration typically involves two interventions: crossing gametes to facilitate sexual larval propagation; and fragmenting, growing, and outplanting adult colonies to enhance asexual propagation. From an evolutionary perspective, the goal of these efforts is to establish self-sustaining, sexually reproducing coral populations that have sufficient genetic and phenotypic variation to adapt to changing environments. Here, we provide concrete guidelines to help restoration practitioners meet this goal for most Caribbean species of interest. To enable the persistence of coral populations exposed to severe selection pressure from many stressors, a mixed provenance strategy is suggested: genetically unique colonies (genets) should be sourced both locally as well as from more distant, environmentally distinct sites. Sourcing three to four genets per reef along environmental gradients should be sufficient to capture a majority of intraspecies genetic diversity. It is best for practitioners to propagate genets with one or more phenotypic traits that are predicted to be valuable in the future, such as low partial mortality, high wound healing rate, high skeletal growth rate, bleaching resilience, infectious disease resilience, and high sexual reproductive output. Some effort should also be reserved for underperforming genets because colonies that grow poorly in nurseries sometimes thrive once returned to the reef and may harbor genetic variants with as yet unrecognized value. Outplants should be clustered in groups of four to six genets to enable successful fertilization upon maturation. Current evidence indicates that translocating genets among distant reefs is unlikely to be problematic from a population genetic perspective but will likely provide substantial adaptive benefits. Similarly, inbreeding depression is not a concern given that current practices only raise first-generation offspring. Thus, proceeding with the proposed management strategies even in the absence of a detailed population genetic analysis of the focal species at sites targeted for restoration is the best course of action. These basic guidelines should help maximize the adaptive potential of reef-building corals facing a rapidly changing environment.
Collapse
Affiliation(s)
- Iliana B. Baums
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| | - Andrew C. Baker
- Department of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida33149USA
| | - Sarah W. Davies
- Department of BiologyBoston UniversityBostonMassachusetts02215USA
| | | | - Carly D. Kenkel
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCalifornia90007USA
| | - Sheila A. Kitchen
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| | - Ilsa B. Kuffner
- U.S. Geological Survey600 4th Street S.St. PetersburgFlorida33701USA
| | - Todd C. LaJeunesse
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| | - Mikhail V. Matz
- Department of Integrative BiologyThe University of Texas at AustinAustinTexas78712USA
| | | | - John E. Parkinson
- SECORE InternationalMiamiFlorida33145USA
- Department of Integrative BiologyUniversity of South FloridaTampaFlorida33620USA
| | - Andrew A. Shantz
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| |
Collapse
|
12
|
O’Brien DM, Keogh JS, Silla AJ, Byrne PG. Female choice for related males in wild red-backed toadlets (Pseudophryne coriacea). Behav Ecol 2019. [DOI: 10.1093/beheco/arz031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AbstractMate choice for genetic benefits is assumed to be widespread in nature, yet very few studies have comprehensively examined relationships between female mate choice and male genetic quality in wild populations. Here, we use exhaustive sampling and single nucleotide polymorphisms to provide a partial test of the “good genes as heterozygosity” hypothesis and the “genetic compatibility” hypothesis in an entire population of terrestrial breeding red-backed toadlets, Pseudophryne coriacea. We found that successful males did not display higher heterozygosity, despite a positive relationship between male heterozygosity and offspring heterozygosity. Rather, in the larger of 2 breeding events, we found that successful males were more genetically similar to their mate than expected under random mating, indicating that females can use pre- or post-copulatory mate choice mechanisms to bias paternity toward more related males. These findings provide no support for the good genes as heterozygosity hypothesis but lend support to the genetic compatibility hypothesis. A complete test of this hypothesis will now require evaluating how parental genetic similarity impacts offspring fitness. Terrestrial toadlets show a high degree of site fidelity, high levels of genetic structuring between populations, and frequently hybridize with sister species. As such, female mate choice for related males may be an adaptive strategy to reduce outbreeding depression. Our findings provide the first population-wide evidence for non-random preferential inbreeding in a wild amphibian. We argue that such reproductive patterns may be common in amphibians because extreme genetic differentiation within meta-populations creates an inherently high risk of outbreeding depression.
Collapse
Affiliation(s)
- Daniel M O’Brien
- School of Earth, Atmospheric and Lifesciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - J Scott Keogh
- Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Aimee J Silla
- School of Earth, Atmospheric and Lifesciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Lifesciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
13
|
Portanier E, Garel M, Devillard S, Maillard D, Poissant J, Galan M, Benabed S, Poirel MT, Duhayer J, Itty C, Bourgoin G. Both candidate gene and neutral genetic diversity correlate with parasite resistance in female Mediterranean mouflon. BMC Ecol 2019; 19:12. [PMID: 30836982 PMCID: PMC6402107 DOI: 10.1186/s12898-019-0228-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Parasite infections can have substantial impacts on population dynamics and are accordingly a key challenge for wild population management. Here we studied genetic mechanisms driving parasite resistance in a large herbivore through a comprehensive approach combining measurements of neutral (16 microsatellites) and adaptive (MHC DRB1 exon 2) genetic diversity and two types of gastrointestinal parasites (nematodes and coccidia). RESULTS While accounting for other extrinsic and intrinsic predictors known to impact parasite load, we show that both neutral genetic diversity and DRB1 are associated with resistance to gastrointestinal nematodes. Intermediate levels of multi-locus heterozygosity maximized nematodes resistance, suggesting that both in- and outbreeding depression might occur in the population. DRB1 heterozygosity and specific alleles effects were detected, suggesting the occurrence of heterozygote advantage, rare-allele effects and/or fluctuating selection. On the contrary, no association was detected between genetic diversity and resistance to coccidia, indicating that different parasite classes are impacted by different genetic drivers. CONCLUSIONS This study provides important insights for large herbivores and wild sheep pathogen management, and in particular suggests that factors likely to impact genetic diversity and allelic frequencies, including global changes, are also expected to impact parasite resistance.
Collapse
Affiliation(s)
- Elodie Portanier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, 69100 Villeurbanne, France
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, Z.I. Mayencin, 38610 Gières, France
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, BP 83, 69280 Marcy l’Etoile, France
| | - Mathieu Garel
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, Z.I. Mayencin, 38610 Gières, France
| | - Sébastien Devillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, 69100 Villeurbanne, France
| | - Daniel Maillard
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, Z.I. Mayencin, 38610 Gières, France
| | - Jocelyn Poissant
- Department of Ecosystem and Public Health, University of Calgary, Calgary, Canada
| | - Maxime Galan
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, 34980 Montferrier Sur Lez, France
| | - Slimania Benabed
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, BP 83, 69280 Marcy l’Etoile, France
| | - Marie-Thérèse Poirel
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, BP 83, 69280 Marcy l’Etoile, France
| | - Jeanne Duhayer
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, Z.I. Mayencin, 38610 Gières, France
| | - Christian Itty
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, Z.I. Mayencin, 38610 Gières, France
| | - Gilles Bourgoin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, 69100 Villeurbanne, France
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, BP 83, 69280 Marcy l’Etoile, France
| |
Collapse
|
14
|
Bichet C, Vedder O, Sauer‐Gürth H, Becker PH, Wink M, Bouwhuis S. Contrasting heterozygosity‐fitness correlations across life in a long‐lived seabird. Mol Ecol 2019; 28:671-685. [DOI: 10.1111/mec.14979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 01/14/2023]
Affiliation(s)
| | - Oscar Vedder
- Institute of Avian Research Wilhelmshaven Germany
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Hedwig Sauer‐Gürth
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Heidelberg Germany
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Heidelberg Germany
| | | |
Collapse
|
15
|
Barbanti A, Martin C, Blumenthal JM, Boyle J, Broderick AC, Collyer L, Ebanks-Petrie G, Godley BJ, Mustin W, Ordóñez V, Pascual M, Carreras C. How many came home? Evaluating ex situ conservation of green turtles in the Cayman Islands. Mol Ecol 2019; 28:1637-1651. [PMID: 30636347 DOI: 10.1111/mec.15017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 01/15/2023]
Abstract
Ex situ management is an important conservation tool that allows the preservation of biological diversity outside natural habitats while supporting survival in the wild. Captive breeding followed by re-introduction is a possible approach for endangered species conservation and preservation of genetic variability. The Cayman Turtle Centre Ltd was established in 1968 to market green turtle (Chelonia mydas) meat and other products and replenish wild populations, thought to be locally extirpated, through captive breeding. We evaluated the effects of this re-introduction programmme using molecular markers (13 microsatellites, 800-bp D-loop and simple tandem repeat mitochondrial DNA sequences) from captive breeders (N = 257) and wild nesting females (N = 57) (sampling period: 2013-2015). We divided the captive breeders into three groups: founders (from the original stock), and then two subdivisions of F1 individuals corresponding to two different management strategies, cohort 1995 ("C1995") and multicohort F1 ("MCF1"). Loss of genetic variability and increased relatedness was observed in the captive stock over time. We found no significant differences in diversity among captive and wild groups, and similar or higher levels of haplotype variability when compared to other natural populations. Using parentage and sibship assignment, we determined that 90% of the wild individuals were related to the captive stock. Our results suggest a strong impact of the re-introduction programmme on the present recovery of the wild green turtle population nesting in the Cayman Islands. Moreover, genetic relatedness analyses of captive populations are necessary to improve future management actions to maintain genetic diversity in the long term and avoid inbreeding depression.
Collapse
Affiliation(s)
- Anna Barbanti
- Department of Genetics, Microbiology and Statistics and IRBio, Universitat de Barcelona, Barcelona, Spain
| | - Clara Martin
- Department of Genetics, Microbiology and Statistics and IRBio, Universitat de Barcelona, Barcelona, Spain
| | | | - Jack Boyle
- Department of Environment, Grand Cayman, Cayman Islands
| | | | - Lucy Collyer
- Department of Environment, Grand Cayman, Cayman Islands
| | | | - Brendan J Godley
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | | | - Víctor Ordóñez
- Department of Genetics, Microbiology and Statistics and IRBio, Universitat de Barcelona, Barcelona, Spain
| | - Marta Pascual
- Department of Genetics, Microbiology and Statistics and IRBio, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Carreras
- Department of Genetics, Microbiology and Statistics and IRBio, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Judson JLM, Knapp CR, Welch ME. Age-dependent, negative heterozygosity-fitness correlations and local effects in an endangered Caribbean reptile, Iguana delicatissima. Ecol Evol 2018; 8:2088-2096. [PMID: 29468027 PMCID: PMC5817140 DOI: 10.1002/ece3.3826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/15/2023] Open
Abstract
Inbreeding depression can have alarming impacts on threatened species with small population sizes. Assessing inbreeding has therefore become an important focus of conservation research. In this study, heterozygosity-fitness correlations (HFCs) were measured by genotyping 7 loci in 83 adult and 184 hatchling Lesser Antillean Iguanas, Iguana delicatissima, at a communal nesting site in Dominica to assess the role of inbreeding depression on hatchling fitness and recruitment to the adult population in this endangered species. We found insignificant correlations between multilocus heterozygosity and multiple fitness proxies in hatchlings and adults. Further, multilocus heterozygosity did not differ significantly between hatchlings and adults, which suggests that the survivorship of homozygous hatchlings does not differ markedly from that of their heterozygous counterparts. However, genotypes at two individual loci were correlated with hatching date, a finding consistent with the linkage between specific marker loci and segregating deleterious recessive alleles. These results provide only modest evidence that inbreeding depression influences the population dynamics of I. delicatissima on Dominica.
Collapse
Affiliation(s)
| | - Charles R. Knapp
- San Diego Zoo Institute for Conservation ResearchEscondidoCAUSA
- Present address:
Daniel P. Haerter Center for Conservation and ResearchJohn G. Shedd AquariumChicagoILUSA
| | - Mark E. Welch
- Department of Biological SciencesMississippi State UniversityMississippi StateMSUSA
| |
Collapse
|