1
|
Nan M, Wang JB, Siokis M, St. Leger RJ. Latitudinal Clines in Climate and Sleep Patterns Shape Disease Outcomes in Drosophila melanogaster Infected by Metarhizium anisopliae. Ecol Evol 2025; 15:e71047. [PMID: 40027417 PMCID: PMC11868735 DOI: 10.1002/ece3.71047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Major latitudinal clines have been observed in Drosophila melanogaster, a human commensal that originated in tropical Africa and has subsequently dispersed globally to colonize temperate habitats. However, despite the crucial role pathogens play in species distribution, our understanding of how geographical factors influence disease susceptibility remains limited. This investigation explored the effects of latitudinal clines and biomes on disease resistance using the common fly pathogen Metarhizium anisopliae and 43 global Drosophila melanogaster populations. The findings revealed correlations between disease resistance and latitudinal gradients of sleep duration, temperature, and humidity. Although enhanced defenses may be driven by fungal diversity at tropical latitudes, the most disease-resistant tropical males also showed the highest susceptibility to desiccation. This suggests potential trade-offs between abiotic stress resistance, necessary for survival in temperate habitats, and disease resistance. Furthermore, the study uncovered interactions between sex, mating status, sleep, and abiotic stresses, affecting disease resistance. Notably, longer-sleeping males and virgin flies survived infections longer, with additional daytime sleep post-infection being protective, particularly in the most resistant fly lines. These observations support the hypothesis that sleep and disease defense are intertwined traits linked to organismal fitness and subject to joint clinal evolution.
Collapse
Affiliation(s)
- Mintong Nan
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Jonathan B. Wang
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Michail Siokis
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | | |
Collapse
|
2
|
Knoblochová D, Dharanikota M, Gáliková M, Klepsatel P. Temperature-dependent dynamics of energy stores in Drosophila. BMC Biol 2024; 22:272. [PMID: 39587589 PMCID: PMC11590623 DOI: 10.1186/s12915-024-02072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Understanding how ectotherms manage energy in response to temperature is crucial for predicting their responses to climate change. However, the complex interplay between developmental and adult thermal conditions on total energy stores remains poorly understood. Here, we present the first comprehensive quantification of this relationship in Drosophila melanogaster, a model ectotherm, across its entire thermal tolerance range. To account for potential intraspecific variation, we used flies from two distinct populations originating from different climate zones. Utilizing a full factorial design, we assessed the effects of both developmental and adult temperatures on the amount of key energy macromolecules (fat, glycogen, trehalose, and glucose). Importantly, by quantifying these macromolecules, we were able to calculate the total available energy. RESULTS Our findings reveal that the dynamic interplay between developmental and adult temperatures profoundly influences the energy balance in Drosophila. The total energy reserves exhibited a quadratic response to adult temperature, with an optimal range of 18-21 °C for maximizing energy levels. Additionally, the temperature during development considerably affected maximum energy stores, with the highest reserves observed at a developmental temperature of approximately 20-21 °C. Deviations from this relatively narrow optimal thermal range markedly reduced energy stores, with each 1 °C increase above 25 °C diminishing energy reserves by approximately 15%. CONCLUSIONS This study highlights the critical and interacting roles of both developmental and adult thermal conditions in shaping Drosophila energy reserves, with potentially profound implications for fitness, survival, and ecological interactions under future climate scenarios.
Collapse
Affiliation(s)
- Diana Knoblochová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 06, Bratislava, Slovakia
| | - Malleswara Dharanikota
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Bengaluru, Karnataka, India
| | - Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 06, Bratislava, Slovakia.
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 06, Bratislava, Slovakia.
| |
Collapse
|
3
|
Christoffersen SN, Pertoldi C, Sørensen JG, Kristensen TN, Bruhn D, Bahrndorff S. Strong acclimation effect of temperature and humidity on heat tolerance of the Arctic collembolan Megaphorura arctica. J Exp Biol 2024; 227:jeb247394. [PMID: 38841875 DOI: 10.1242/jeb.247394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
The Arctic is a highly variable environment in which extreme daily and seasonal temperature fluctuations can occur. With climate change, an increase in the occurrence of extreme high temperatures and drought events is expected. While the effects of cold and dehydration stress on polar arthropods are well studied in combination, little is known about how these species respond to the combined effects of heat and dehydration stress. In this paper, we investigated how the heat tolerance of the Arctic collembola Megaphorura arctica is affected by combinations of different temperature and humidity acclimation regimes under controlled laboratory conditions. The effect of acclimation temperature was complex and highly dependent on both acclimation time and temperature, and was found to have a positive, negative or no effect depending on experimental conditions. Further, we found marked effects of the interaction between temperature and humidity on heat tolerance, with lower humidity severely decreasing heat tolerance when the acclimation temperature was increased. This effect was more pronounced with increasing acclimation time. Lastly, the effect of acclimation on heat tolerance under a fluctuating temperature regime was dependent on acclimation temperature and time, as well as humidity levels. Together, these results show that thermal acclimation alone has moderate or no effect on heat tolerance, but that drought events, likely to be more frequent in the future, in combination with high temperature stress can have large negative impacts on heat tolerance of some Arctic arthropods.
Collapse
Affiliation(s)
| | - Cino Pertoldi
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
- Aalborg Zoo, Mølleparkvej 63, 9000 Aalborg, Denmark
| | | | | | - Dan Bruhn
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
| | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
| |
Collapse
|
4
|
Turko AJ, Firth BL, Craig PM, Eliason EJ, Raby GD, Borowiec BG. Physiological differences between wild and captive animals: a century-old dilemma. J Exp Biol 2023; 226:jeb246037. [PMID: 38031957 DOI: 10.1242/jeb.246037] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Laboratory-based research dominates the fields of comparative physiology and biomechanics. The power of lab work has long been recognized by experimental biologists. For example, in 1932, Georgy Gause published an influential paper in Journal of Experimental Biology describing a series of clever lab experiments that provided the first empirical test of competitive exclusion theory, laying the foundation for a field that remains active today. At the time, Gause wrestled with the dilemma of conducting experiments in the lab or the field, ultimately deciding that progress could be best achieved by taking advantage of the high level of control offered by lab experiments. However, physiological experiments often yield different, and even contradictory, results when conducted in lab versus field settings. This is especially concerning in the Anthropocene, as standard laboratory techniques are increasingly relied upon to predict how wild animals will respond to environmental disturbances to inform decisions in conservation and management. In this Commentary, we discuss several hypothesized mechanisms that could explain disparities between experimental biology in the lab and in the field. We propose strategies for understanding why these differences occur and how we can use these results to improve our understanding of the physiology of wild animals. Nearly a century beyond Gause's work, we still know remarkably little about what makes captive animals different from wild ones. Discovering these mechanisms should be an important goal for experimental biologists in the future.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Goleta, CA 93117, USA
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, Canada, K9L 0G2
| | - Brittney G Borowiec
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| |
Collapse
|
5
|
Baleba SBS, Mahadevan VP, Knaden M, Hansson BS. Temperature-dependent modulation of odor-dependent behavior in three drosophilid fly species of differing thermal preference. Commun Biol 2023; 6:905. [PMID: 37666902 PMCID: PMC10477191 DOI: 10.1038/s42003-023-05280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Rapid and ongoing climate change increases global temperature, impacts feeding, and reproduction in insects. The olfaction plays an important underlying role in these behaviors in most insect species. Here, we investigated how changing temperatures affect odor detection and ensuing behavior in three drosophilid flies: Drosophila novamexicana, D. virilis and D. ezoana, species adapted to life in desert, global, and subarctic climates, respectively. Using a series of thermal preference assays, we confirmed that the three species indeed exhibit distinct temperature preferences. Next, using single sensillum recording technique, we classified olfactory sensory neurons (OSNs) present in basiconic sensilla on the antenna of the three species and thereby identified ligands for each OSN type. In a series of trap assays we proceeded to establish the behavioral valence of the best ligands and chose guaiacol, methyl salicylate and isopropyl benzoate as representatives of a repellent, attractant and neutral odor. Next, we assessed the behavioral valence of these three odors in all three species across a thermal range (10-35 °C), with flies reared at 18 °C and 25 °C. We found that both developmental and experimental temperatures affected the behavioral performance of the flies. Our study thus reveals temperature-dependent changes in odor-guided behavior in drosophilid flies.
Collapse
Affiliation(s)
- Steve B S Baleba
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| |
Collapse
|
6
|
Corley RB, Dawson W, Bishop TR. A simple method to account for thermal boundary layers during the estimation of CTmax in small ectotherms. J Therm Biol 2023; 116:103673. [PMID: 37527565 DOI: 10.1016/j.jtherbio.2023.103673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
As temperatures rise, understanding how ectotherms will become impacted by thermal stress is of critical importance. In this context, many researchers quantify critical temperatures - these are the upper (CTmax) and lower (CTmin) thermal limits at which organisms can no longer function. Most studies estimate CTs using bath-based methods where organisms are submerged within a set thermal environment. Plate-based methods (i.e. hot plates), however, offer huge opportunity for automation and are readily available in many lab settings. Plates, however, generate a unidirectional thermal boundary layer above their surface which means that the temperatures experienced by organisms of different sizes is different. This boundary layer effect can bias estimates of critical temperatures. Here, we test the hypothesis that biases in critical temperature estimation on hot plates are driven by organism height. We also quantify the composition of the boundary layer in order to correct for these biases. We assayed four differently sized species of UK ants for their CTmax in dry baths (with no boundary layer) and on hot plates (with a boundary layer). We found that hot plates overestimated the CTmax values of the different ants, and that this overestimate was larger for taller species. By statistically modelling the thickness of the thermal boundary layer, and combining with estimates of species height, we were able to correct this overestimation and eliminate methodological differences. Our study provides two main findings. First, we provide evidence that organism height is positively related to the bias present in plate-based estimates of CTmax. Second, we show that a relatively simple statistical model can correct for this bias. By using simple corrections for boundary layer effects, as we have done here, researchers could open up a new possibility space in the design and implementation of thermal tolerance assays using plates rather than restrictive dry or water baths.
Collapse
Affiliation(s)
| | - Will Dawson
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Tom R Bishop
- School of Biosciences, Cardiff University, Cardiff, UK; Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
7
|
Chown SL. Macrophysiology for decision‐making. J Zool (1987) 2022. [DOI: 10.1111/jzo.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- S. L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
8
|
Huisamen EJ, Karsten M, Terblanche JS. Are Signals of Local Environmental Adaptation Diluted by Laboratory Culture? CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100048. [PMID: 36683956 PMCID: PMC9846451 DOI: 10.1016/j.cris.2022.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Insects have the ability to readily adapt to changes in environmental conditions, however the strength of local environmental adaptation signals under divergent conditions and the occurrence of trait inertia after relaxation of selection, remains poorly understood, especially for traits of climate stress resistance (CSR) and their phenotypic plasticity. The strength of environmental adaptation signals depend on several selection pressures present in the local environment, while trait inertia often occurs when there is a weakening or removal of a source of selection. Here, using Drosophila melanogaster, we asked whether signals of adaptation in CSR traits (critical thermal limits, heat and chill survival and, desiccation and starvation resistance) persist after exposure to laboratory culture for different durations (two vs. ten generations) across four climatically distinct populations. We show that culture duration has large effects on CSR traits and can both amplify or dilute signals of local adaptation. Effects were however dependent upon interactions between the source population, acclimation (adult acclimation at either 18 °C, 23 °C or 28 °C) conditions and the sex of the flies. Trait plasticity is markedly affected by the interaction between the source population, the specific acclimation conditions employed, and the duration in the laboratory. Therefore, a complex matrix of dynamic CSR trait responses is shown in space and time. Given these strong interaction effects, 'snapshot' estimates of environmental adaptation can result in misleading conclusions about the fitness consequences of climate variability.
Collapse
|
9
|
Comparative analysis of temperature preference behavior and effects of temperature on daily behavior in 11 Drosophila species. Sci Rep 2022; 12:12692. [PMID: 35879333 PMCID: PMC9314439 DOI: 10.1038/s41598-022-16897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Temperature is one of the most critical environmental factors that influence various biological processes. Species distributed in different temperature regions are considered to have different optimal temperatures for daily life activities. However, how organisms have acquired various features to cope with particular temperature environments remains to be elucidated. In this study, we have systematically analyzed the temperature preference behavior and effects of temperatures on daily locomotor activity and sleep using 11 Drosophila species. We also investigated the function of antennae in the temperature preference behavior of these species. We found that, (1) an optimal temperature for daily locomotor activity and sleep of each species approximately matches with temperatures it frequently encounters in its habitat, (2) effects of temperature on locomotor activity and sleep are diverse among species, but each species maintains its daily activity and sleep pattern even at different temperatures, and (3) each species has a unique temperature preference behavior, and the contribution of antennae to this behavior is diverse among species. These results suggest that Drosophila species inhabiting different climatic environments have acquired species-specific temperature response systems according to their life strategies. This study provides fundamental information for understanding the mechanisms underlying their temperature adaptation and lifestyle diversification.
Collapse
|
10
|
Bernardini I, Poggi C, Manzi S, Bezerra-Santos MA, Beugnet F, Fourie J, Otranto D, Pombi M. Laboratory breeding of two Phortica species (Diptera: Drosophilidae), vectors of the zoonotic eyeworm Thelazia callipaeda. Parasit Vectors 2022; 15:200. [PMID: 35698211 PMCID: PMC9195204 DOI: 10.1186/s13071-022-05331-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background Some species of drosophilid flies belonging to the genus Phortica feed on ocular secretions of mammals, acting as biological vectors of the zoonotic eyeworm Thelazia callipaeda. This study describes an effective breeding protocol of Phortica variegata and Phortica oldenbergi in insectary conditions. Methods Alive gravid flies of P. oldenbergi, P. variegata and Phortica semivirgo were field collected in wooded areas of Lazio region (Italy) and allowed to oviposit singularly to obtain isofamilies. Flies were maintained in ovipots (200 ml) with a plaster-covered bottom to maintain high humidity level inside. Adult feeding was guaranteed by fresh apples and a liquid dietary supplement containing sodium chloride and mucin proteins, while larval development was obtained by Drosophila-like agar feeding medium. The breeding performances of two media were compared: a standard one based on cornmeal flour and an enriched medium based on chestnut flour. All conditions were kept in a climatic chamber with a photoperiod of 14:10 h light:dark, 26 ± 2 °C and 80 ± 10% RH. Results From a total of 130 field-collected Phortica spp., three generations (i.e. F1 = 783, F2 = 109, F3 = 6) were obtained. Phortica oldenbergi was the species with highest breeding performance, being the only species reaching F3. Chestnut-based feeding medium allowed higher adult production and survival probability in both P. oldenbergi and P. variegata. Adult production/female was promising in both species (P. oldenbergi: 13.5 F1/f; P. variegata: 4.5 F1/f). Conclusions This standardized breeding protocol, based on controlled climatic parameters and fly densities, together with the introduction of an enriched chestnut-based feeding medium, allowed to investigate aspects of life history traits of Phortica spp. involved in the transmission of T. callipaeda. Obtaining F3 generation of these species for the first time paved the road for the establishment of stable colonies, an essential requirement for future studies on these vectors in controlled conditions. Graphical abstract ![]()
Collapse
Affiliation(s)
- Ilaria Bernardini
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy.,Dipartimento Di Sanità Pubblica E Malattie Infettive, Sapienza Università Di Roma, Rome, Italy
| | - Cristiana Poggi
- Dipartimento Di Sanità Pubblica E Malattie Infettive, Sapienza Università Di Roma, Rome, Italy
| | - Sara Manzi
- Dipartimento Di Sanità Pubblica E Malattie Infettive, Sapienza Università Di Roma, Rome, Italy
| | | | | | | | - Domenico Otranto
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Bari, Valenzano, Italy
| | - Marco Pombi
- Dipartimento Di Sanità Pubblica E Malattie Infettive, Sapienza Università Di Roma, Rome, Italy.
| |
Collapse
|
11
|
Lirakis M, Nolte V, Schlötterer C. Pool-GWAS on reproductive dormancy in Drosophila simulans suggests a polygenic architecture. G3 GENES|GENOMES|GENETICS 2022; 12:6523974. [PMID: 35137042 PMCID: PMC8895979 DOI: 10.1093/g3journal/jkac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
The genetic basis of adaptation to different environments has been of long-standing interest to evolutionary biologists. Dormancy is a well-studied adaptation to facilitate overwintering. In Drosophila melanogaster, a moderate number of genes with large effects have been described, which suggests a simple genetic basis of dormancy. On the other hand, genome-wide scans for dormancy suggest a polygenic architecture in insects. In D. melanogaster, the analysis of the genetic architecture of dormancy is complicated by the presence of cosmopolitan inversions. Here, we performed a genome-wide scan to characterize the genetic basis of this ecologically extremely important trait in the sibling species of D. melanogaster, D. simulans that lacks cosmopolitan inversions. We performed Pool-GWAS in a South African D. simulans population for dormancy incidence at 2 temperature regimes (10 and 12°C, LD 10:14). We identified several genes with SNPs that showed a significant association with dormancy (P-value < 1e-13), but the overall modest response suggests that dormancy is a polygenic trait with many loci of small effect. Our results shed light on controversies on reproductive dormancy in Drosophila and have important implications for the characterization of the genetic basis of this trait.
Collapse
Affiliation(s)
- Manolis Lirakis
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Wien, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | | |
Collapse
|
12
|
Escribano-Álvarez P, Pertierra LR, Martínez B, Chown SL, Olalla-Tárraga MÁ. Half a century of thermal tolerance studies in springtails (Collembola): A review of metrics, spatial and temporal trends. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100023. [PMID: 36003273 PMCID: PMC9387465 DOI: 10.1016/j.cris.2021.100023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
Metrics used in thermal tolerance studies in Collembola have diversified over time Cold tolerance has been assessed more often than heat tolerance Fewer data exist for tropical regions, especially for euedaphic and epedaphic organisms Thermal tolerances in Neanuridae are not as well-studied as in the other families
Global changes in soil surface temperatures are altering the abundances and distribution ranges of invertebrate species worldwide, including effects on soil microarthropods such as springtails (Collembola), which are vital for maintaining soil health and providing ecosystem services. Studies of thermal tolerance limits in soil invertebrates have the potential to provide information on demographic responses to climate change and guide assessments of possible impacts on the structure and functioning of ecosystems. Here, we review the state of knowledge of thermal tolerance limits in Collembola. Thermal tolerance metrics have diversified over time, which should be taken into account when conducting large-scale comparative studies. A temporal trend shows that the estimation of ‘Critical Thermal Limits’ (CTL) is becoming more common than investigations of ‘Supercooling Point’ (SCP), despite the latter being the most widely used metric. Indeed, most studies (66%) in Collembola have focused on cold tolerance; fewer have assessed heat tolerance. The majority of thermal tolerance data are from temperate and polar regions, with fewer assessments from tropical and subtropical latitudes. While the hemiedaphic life form represents the majority of records at low latitudes, euedaphic and epedaphic groups remain largely unsampled in these regions compared to the situation in temperate and high latitude regions, where sampling records show a more balanced distribution among the different life forms. Most CTL data are obtained during the warmest period of the year, whereas SCP and ‘Lethal Temperature’ (LT) show more variation in terms of the season when the data were collected. We conclude that more attention should be given to understudied zoogeographical regions across the tropics, as well as certain less-studied clades such as the family Neanuridae, to identify the role of thermal tolerance limits in the redistribution of species under changing climates.
Collapse
Affiliation(s)
- Pablo Escribano-Álvarez
- Dpto. Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933, Móstoles, Spain
- Corresponding author.
| | - Luis R. Pertierra
- Dpto. Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933, Móstoles, Spain
| | - Brezo Martínez
- Dpto. Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933, Móstoles, Spain
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Miguel Á. Olalla-Tárraga
- Dpto. Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933, Móstoles, Spain
| |
Collapse
|
13
|
Davis HE, Cheslock A, MacMillan HA. Chill coma onset and recovery fail to reveal true variation in thermal performance among populations of Drosophila melanogaster. Sci Rep 2021; 11:10876. [PMID: 34035382 PMCID: PMC8149885 DOI: 10.1038/s41598-021-90401-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Species from colder climates tend to be more chill tolerant regardless of the chill tolerance trait measured, but for Drosophila melanogaster, population-level differences in chill tolerance among populations are not always found when a single trait is measured in the laboratory. We measured chill coma onset temperature, chill coma recovery time, and survival after chronic cold exposure in replicate lines derived from multiple paired African and European D. melanogaster populations. The populations in our study were previously found to differ in chronic cold survival ability, which is believed to have evolved independently in each population pair; however, they did not differ in chill coma onset temperature and chill coma recovery time in a manner that reflected their geographic origins, even though these traits are known to vary with origin latitude among Drosophila species and are among the most common metrics of thermal tolerance in insects. While it is common practice to measure only one chill tolerance trait when comparing chill tolerance among insect populations, our results emphasise the importance of measuring more than one thermal tolerance trait to minimize the risk of missing real adaptive variation in insect thermal tolerance.
Collapse
Affiliation(s)
- Hannah E Davis
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada
| | - Alexandra Cheslock
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada.
| |
Collapse
|
14
|
Kingsolver JG, Moore ME, Hill CA, Augustine KE. Growth, stress, and acclimation responses to fluctuating temperatures in field and domesticated populations of Manduca sexta. Ecol Evol 2020; 10:13980-13989. [PMID: 33391696 PMCID: PMC7771122 DOI: 10.1002/ece3.6991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Diurnal fluctuations in temperature are ubiquitous in terrestrial environments, and insects and other ectotherms have evolved to tolerate or acclimate to such fluctuations. Few studies have examined whether ectotherms acclimate to diurnal temperature fluctuations, or how natural and domesticated populations differ in their responses to diurnal fluctuations. We examine how diurnally fluctuating temperatures during development affect growth, acclimation, and stress responses for two populations of Manduca sexta: a field population that typically experiences wide variation in mean and fluctuations in temperature, and a laboratory population that has been domesticated in nearly constant temperatures for more than 300 generations. Laboratory experiments showed that diurnal fluctuations throughout larval development reduced pupal mass for the laboratory but not the field population. The differing effects of diurnal fluctuations were greatest at higher mean temperature (30°C): Here diurnal fluctuations reduced pupal mass and increased pupal development time for the laboratory population, but had little effect for the field population. We also evaluated how mean and fluctuations in temperature during early larval development affected growth rate during the final larval instar as a function of test temperature. At an intermediate (25°C) mean temperature, both the laboratory and field population showed a positive acclimation response to diurnal fluctuations, in which subsequent growth rate was significantly higher at most test temperatures. In contrast at higher mean temperature (30°C), diurnal fluctuations significantly reduced subsequent growth rate at most test temperatures for the laboratory population, but not for the field population. These results suggest that during domestication in constant temperatures, the laboratory population has lost the capacity to tolerate or acclimate to high and fluctuating temperatures. Population differences in acclimation capacity in response to temperature fluctuations have not been previously demonstrated, but they may be important for understanding the evolution of reaction norms and performance curves.
Collapse
Affiliation(s)
| | | | | | - Kate E. Augustine
- Department of BiologyUniversity of North CarolinaChapel HillNCUSA
- Manaaki Whenua – Landcare ResearchAucklandNew Zealand
| |
Collapse
|
15
|
Sørensen JG, Manenti T, Bechsgaard JS, Schou MF, Kristensen TN, Loeschcke V. Pronounced Plastic and Evolutionary Responses to Unpredictable Thermal Fluctuations in Drosophila simulans. Front Genet 2020; 11:555843. [PMID: 33193631 PMCID: PMC7655653 DOI: 10.3389/fgene.2020.555843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Organisms are exposed to temperatures that vary, for example on diurnal and seasonal time scales. Thus, the ability to behaviorally and/or physiologically respond to variation in temperatures is a fundamental requirement for long-term persistence. Studies on thermal biology in ectotherms are typically performed under constant laboratory conditions, which differ markedly from the variation in temperature across time and space in nature. Here, we investigate evolutionary adaptation and environmentally induced plastic responses of Drosophila simulans to no fluctuations (constant), predictable fluctuations or unpredictable fluctuations in temperature. We whole-genome sequenced populations exposed to 20 generations of experimental evolution under the three thermal regimes and examined the proteome after short-term exposure to the same three regimes. We find that unpredictable fluctuations cause the strongest response at both genome and proteome levels. The loci showing evolutionary responses were generally unique to each thermal regime, but a minor overlap suggests either common laboratory adaptation or that some loci were involved in the adaptation to multiple thermal regimes. The evolutionary response, i.e., loci under selection, did not coincide with induced responses of the proteome. Thus, genes under selection in fluctuating thermal environments are distinct from genes important for the adaptive plastic response observed within a generation. This information is key to obtain a better understanding and prediction of the effects of future increases in both mean and variability of temperatures.
Collapse
Affiliation(s)
| | | | | | - Mads F. Schou
- Department of Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
16
|
Zarubin M, Yakhnenko A, Kravchenko E. Transcriptome analysis of Drosophila melanogaster laboratory strains of different geographical origin after long-term laboratory maintenance. Ecol Evol 2020; 10:7082-7093. [PMID: 32760513 PMCID: PMC7391317 DOI: 10.1002/ece3.6410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 01/18/2023] Open
Abstract
Positive selection may be the main factor of the between-population divergence in gene expression. Expression profiles of two Drosophila melanogaster laboratory strains of different geographical origin and long-term laboratory maintenance were analyzed using microchip arrays encompassing probes for 18,500 transcripts. The Russian strain D18 and the North American strain Canton-S were compared. A set of 223 known or putative genes demonstrated significant changes in expression levels between these strains. Differentially expressed genes (DEG) were enriched in response to DDT (p = .0014), proteolysis (p = 2.285E-5), transmembrane transport (p = 1.03E-4), carbohydrate metabolic process (p = .0317), protein homotetramerization (p = .0444), and antibacterial humoral response (p = 425E-4). The expression in subset of genes from different categories was verified by qRT-PCR. Analysis of transcript abundance between Canton-S and D18 strains allowed to select several genes to estimate their participation in latitude adaptation. Expression of selected genes was analyzed in five D. melanogaster lines of different geographic origins by qRT-PCR, and we found two candidate genes that may be associated with latitude adaptation in adult flies-smp-30 and Cda9. Quite possible that several alleles of these genes may be important for insect survival in the environments of global warming. It is interesting that the number of genes involved in local adaptation demonstrates expression level appropriate to their geographical origin even after decades of laboratory maintenance.
Collapse
Affiliation(s)
- Mikhail Zarubin
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
| | - Alena Yakhnenko
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
- Laboratory of Analytical and Bioorganic ChemistryLimnological InstituteSiberian Branch of the Russian Academy of ScienceIrkutskRussia
| | - Elena Kravchenko
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
| |
Collapse
|
17
|
Liu WPA, Phillips LM, Terblanche JS, Janion‐Scheepers C, Chown SL. Strangers in a strange land: Globally unusual thermal tolerance in Collembola from the Cape Floristic Region. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- W. P. Amy Liu
- School of Biological Sciences Monash University Melbourne VIC Australia
| | - Laura M. Phillips
- School of Biological Sciences Monash University Melbourne VIC Australia
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology Stellenbosch University Matieland South Africa
| | - Charlene Janion‐Scheepers
- Department of Biological Sciences University of Cape Town Cape Town South Africa
- Iziko South African Museum Rondebosch South Africa
| | - Steven L. Chown
- School of Biological Sciences Monash University Melbourne VIC Australia
| |
Collapse
|
18
|
Alston MA, Lee J, Moore ME, Kingsolver JG, Willett CS. The ghost of temperature past: interactive effects of previous and current thermal conditions on gene expression in Manduca sexta. J Exp Biol 2020; 223:jeb213975. [PMID: 32127377 DOI: 10.1242/jeb.213975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
Abstract
High temperatures can negatively impact the performance and survival of organisms, particularly ectotherms. While an organism's response to high temperature stress clearly depends on current thermal conditions, its response may also be affected by the temporal pattern and duration of past temperature exposures. We used RNA sequencing of Manduca sexta larvae fat body tissue to evaluate how diurnal temperature fluctuations during development affected gene expression both independently and in conjunction with subsequent heat stress. Additionally, we compared gene expression between two M. sexta populations, a lab colony and a genetically related field population that have been separated for >300 generations and differ in their thermal sensitivities. Lab-adapted larvae were predicted to show increased expression responses to both single and repeated thermal stress, whereas recurrent exposure could decrease later stress responses for field individuals. We found large differences in overall gene expression patterns between the two populations across all treatments, as well as population-specific transcriptomic responses to temperature; more differentially expressed genes were upregulated in the field compared with lab larvae. Developmental temperature fluctuations alone had minimal effects on long-term gene expression patterns, with the exception of a somewhat elevated stress response in the lab population. Fluctuating rearing conditions did alter gene expression during exposure to later heat stress, but this effect depended on both the population and the particular temperature conditions. This study contributes to increased knowledge of molecular mechanisms underlying physiological responses of organisms to temperature fluctuations, which is needed for the development of more accurate thermal performance models.
Collapse
Affiliation(s)
- Meggan A Alston
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeeyun Lee
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - M Elizabeth Moore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joel G Kingsolver
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher S Willett
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Critical Thermal Limits Do Not Vary between Wild-caught and Captive-bred Tadpoles of Agalychnis spurrelli (Anura: Hylidae). DIVERSITY-BASEL 2020. [DOI: 10.3390/d12020043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Captive-bred organisms are widely used in ecology, evolution and conservation research, especially in scenarios where natural populations are scarce or at risk of extinction. Yet, it is still unclear whether captivity may alter thermal tolerances, crucial traits to predict species resilience to global warming. Here, we study whether captive-bred tadpoles of the gliding treefrog (Agalychnis spurrelli) show different thermal tolerances than wild-caught individuals. Our results show that there are no differences between critical thermal limits (CTmax and CTmin) of captive-bred and wild-caught tadpoles exposed to three-day acclimatization at 20 °C. Therefore, we suggest that the use of captive-bred amphibians is valid and may be appropriate in experimental comparisons to thermal physiological studies of wild populations.
Collapse
|
20
|
Comparison of overwintering survival and fertility of Zaprionus indianus (Diptera: Drosophilidae) flies from native and invaded ranges. J Therm Biol 2020; 87:102470. [DOI: 10.1016/j.jtherbio.2019.102470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/31/2019] [Accepted: 11/24/2019] [Indexed: 11/20/2022]
|
21
|
Lau MJ, Endersby-Harshman NM, Axford JK, Ritchie SA, Hoffmann AA, Ross PA. Measuring the Host-Seeking Ability of Aedes aegypti Destined for Field Release. Am J Trop Med Hyg 2020; 102:223-231. [PMID: 31769394 PMCID: PMC6947783 DOI: 10.4269/ajtmh.19-0510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
Host seeking is an essential process in mosquito reproduction. Field releases of modified mosquitoes for population replacement rely on successful host seeking by female mosquitoes, but host-seeking ability is rarely tested in a realistic context. We tested the host-seeking ability of female Aedes aegypti mosquitoes using a semi-field system. Females with different Wolbachia infection types (wMel-, wAlbB-infected, and uninfected) or from different origins (laboratory and field) were released at one end of a semi-field cage and recaptured as they landed on human experimenters 15 m away. Mosquitoes from each population were then identified with molecular tools or through minimal dusting with fluorescent powder. Wolbachia-infected and uninfected populations had similar average durations to landing and overall recapture proportions, as did laboratory and field-sourced Ae. aegypti. These results indicate that the host-seeking ability of mosquitoes is not negatively affected by Wolbachia infection or long-term laboratory maintenance. This method provides an approach to study the host-seeking ability of mosquitoes in a realistic setting, which will be useful when evaluating strains of mosquitoes that are planned for releases into the field to suppress arbovirus transmission.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Nancy M. Endersby-Harshman
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Jason K. Axford
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Scott A. Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
22
|
Sørensen JG, Giribets MP, Tarrío R, Rodríguez-Trelles F, Schou MF, Loeschcke V. Expression of thermal tolerance genes in two Drosophila species with different acclimation capacities. J Therm Biol 2019; 84:200-207. [DOI: 10.1016/j.jtherbio.2019.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
|
23
|
MacLean HJ, Sørensen JG, Kristensen TN, Loeschcke V, Beedholm K, Kellermann V, Overgaard J. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180548. [PMID: 31203763 DOI: 10.1098/rstb.2018.0548] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The thermal biology of ectotherms is often used to infer species' responses to changes in temperature. It is often proposed that temperate species are more cold-tolerant, less heat-tolerant, more plastic, have broader thermal performance curves (TPCs) and lower optimal temperatures when compared to tropical species. However, relatively little empirical work has provided support for this using large interspecific studies. In the present study, we measure thermal tolerance limits and thermal performance in 22 species of Drosophila that developed under common conditions. Specifically, we measure thermal tolerance (CTmin and CTmax) as well as the fitness components viability, developmental speed and fecundity at seven temperatures to construct TPCs for each of these species. For 10 of the species, we also measure thermal tolerance and thermal performance following developmental acclimation to three additional temperatures. Using these data, we test several fundamental hypotheses about the evolution and plasticity of heat and cold resistance and thermal performance. We find that cold tolerance (CTmin) varied between the species according to the environmental temperature in the habitat from which they originated. These data support the idea that the evolution of cold tolerance has allowed species to persist in colder environments. However, contrary to expectation, we find that optimal temperature ( Topt) and the breadth of thermal performance ( Tbreadth) are similar in temperate, widespread and tropical species and we also find that the plasticity of TPCs was constrained. We suggest that the temperature range for optimal thermal performance is either fixed or under selection by the more similar temperatures that prevail during growing seasons. As a consequence, we find that Topt and Tbreadth are of limited value for predicting past, present and future distributions of species. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.
Collapse
Affiliation(s)
- Heidi J MacLean
- 1 Department of Bioscience, Aarhus University , Ny Munkegade 116, DK-8000 Aarhus , Denmark
| | - Jesper G Sørensen
- 1 Department of Bioscience, Aarhus University , Ny Munkegade 116, DK-8000 Aarhus , Denmark
| | - Torsten N Kristensen
- 1 Department of Bioscience, Aarhus University , Ny Munkegade 116, DK-8000 Aarhus , Denmark.,2 Department of Chemistry and Bioscience, Aalborg University , 9220 Aalborg , Denmark
| | - Volker Loeschcke
- 1 Department of Bioscience, Aarhus University , Ny Munkegade 116, DK-8000 Aarhus , Denmark
| | - Kristian Beedholm
- 1 Department of Bioscience, Aarhus University , Ny Munkegade 116, DK-8000 Aarhus , Denmark
| | - Vanessa Kellermann
- 3 School of Biological Sciences, Monash University , Melbourne 3800 , Australia
| | - Johannes Overgaard
- 1 Department of Bioscience, Aarhus University , Ny Munkegade 116, DK-8000 Aarhus , Denmark
| |
Collapse
|
24
|
Enriquez T, Colinet H. Cold acclimation triggers lipidomic and metabolic adjustments in the spotted wing drosophila Drosophila suzukii (Matsumara). Am J Physiol Regul Integr Comp Physiol 2019; 316:R751-R763. [DOI: 10.1152/ajpregu.00370.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic cold exposure is detrimental to chill susceptible insects that may accumulate chill injuries. To cope with deleterious effects of cold temperature, insects employ a variety of physiological strategies and metabolic adjustments, such as production of cryoprotectants, or remodeling of cellular membranes. Cold tolerance is a key element determining the fundamental niche of species. Because Drosophila suzukii is an invasive fruit pest, originating from East Asia, knowledge about its thermal biology is urgently needed. Physiological mechanisms underlying cold tolerance plasticity remain poorly understood in this species. Here, we explored metabolic and lipidomic modifications associated with the acquisition of cold tolerance in D. suzukii using Omics technologies (LC- and GC-MS/MS). In both cold-acclimated males and females, we observed physiological changes consistent with homeoviscous/homeophasic adaptation of membranes: reshuffling of phospholipid head groups and increasing unsaturation rate of fatty acids. Modification of fatty acids unsaturation were also observed in triacylglycerides, which would likely increase accessibility of lipid reserves. At the metabolic level, we observed clear-cut differentiation of metabolic profiles with cold-acclimated metabotypes showing accumulation of several potential cryoprotectants (sugars and amino acids). Metabolic pathway analyses indicated a remodeling of various processes, including purine metabolism and aminoacyl tRNA biosynthesis. These data provide a large-scale characterization of lipid rearrangements and metabolic pathway modifications in D. suzukii in response to cold acclimation and contribute to characterizing the strategies used by this species to modulate cold tolerance.
Collapse
Affiliation(s)
- Thomas Enriquez
- Université Rennes 1, Centre National de la Recherche Scientifique, Rennes, France
| | - Hervé Colinet
- Université Rennes 1, Centre National de la Recherche Scientifique, Rennes, France
| |
Collapse
|
25
|
Moghadam NN, Kurbalija Novicic Z, Pertoldi C, Kristensen TN, Bahrndorff S. Effects of photoperiod on life-history and thermal stress resistance traits across populations of Drosophila subobscura. Ecol Evol 2019; 9:2743-2754. [PMID: 30891213 PMCID: PMC6405525 DOI: 10.1002/ece3.4945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Organisms use environmental cues to match their phenotype with the future availability of resources and environmental conditions. Changes in the magnitude and frequency of environmental cues such as photoperiod and temperature along latitudes can be used by organisms to predict seasonal changes. While the role of temperature variation on the induction of plastic and seasonal responses is well established, the importance of photoperiod for predicting seasonal changes is less explored. MATERIALS AND METHODS Here we studied changes in life-history and thermal stress resistance traits in Drosophila subobscura in response to variation in photoperiod (6:18, 12:12 and 18:6 light:dark cycles) mimicking seasonal variations in day length. The populations of D. subobscura were collected from five locations along a latitudinal gradient (from North Africa and Europe). These populations were exposed to different photoperiods for two generations, whereafter egg-to-adult viability, productivity, dry body weight, thermal tolerance, and starvation resistance were assessed. RESULTS We found strong effects of photoperiod, origin of populations, and their interactions on life-history and stress resistance traits. Thermal resistance varied between the populations and the effect of photoperiod depended on the trait and the method applied for the assessment of thermal resistance. PERSPECTIVES Our results show a strong effect of the origin of population and photoperiod on a range of fitness-related traits and provide evidence for local adaptation to environmental cues (photoperiod by population interaction). The findings emphasize an important and often neglected role of photoperiod in studies on thermal resistance and suggest that cues induced by photoperiod may provide some buffer enabling populations to cope with a more variable and unpredictable future climate.
Collapse
Affiliation(s)
- Neda N. Moghadam
- Department of Chemistry and BioscienceAalborg UniversityAalborg EDenmark
- Department of Biological and Environmental Science, Centre of Excellence in Biological InteractionsUniversity of JyvaskylaJyväskyläFinland
| | - Zorana Kurbalija Novicic
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology CenterUppsala UniversityUppsalaSweden
| | - Cino Pertoldi
- Department of Chemistry and BioscienceAalborg UniversityAalborg EDenmark
- Aalborg ZooAalborgDenmark
| | - Torsten N. Kristensen
- Department of Chemistry and BioscienceAalborg UniversityAalborg EDenmark
- Department of BioscienceAarhus UniversityAarhus CDenmark
| | - Simon Bahrndorff
- Department of Chemistry and BioscienceAalborg UniversityAalborg EDenmark
| |
Collapse
|
26
|
Ross PA, Endersby‐Harshman NM, Hoffmann AA. A comprehensive assessment of inbreeding and laboratory adaptation in Aedes aegypti mosquitoes. Evol Appl 2019; 12:572-586. [PMID: 30828375 PMCID: PMC6383739 DOI: 10.1111/eva.12740] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/04/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022] Open
Abstract
Modified Aedes aegypti mosquitoes reared in laboratories are being released around the world to control wild mosquito populations and the diseases they transmit. Several efforts have failed due to poor competitiveness of the released mosquitoes. We hypothesized that colonized mosquito populations could suffer from inbreeding depression and adapt to laboratory conditions, reducing their performance in the field. We established replicate populations of Ae. aegypti mosquitoes collected from Queensland, Australia, and maintained them in the laboratory for twelve generations at different census sizes. Mosquito colonies maintained at small census sizes (≤100 individuals) suffered from inbreeding depression due to low effective population sizes which were only 25% of the census size as estimated by SNP markers. Populations that underwent full-sib mating for nine consecutive generations had greatly reduced performance across all traits measured. We compared the established laboratory populations with their ancestral population resurrected from quiescent eggs for evidence of laboratory adaptation. The overall performance of laboratory populations maintained at a large census size (400 individuals) increased, potentially reflecting adaptation to artificial rearing conditions. However, most individual traits were unaffected, and patterns of adaptation were not consistent across populations. Differences between replicate populations may indicate that founder effects and drift affect experimental outcomes. Though we find limited evidence of laboratory adaptation, mosquitoes maintained at low population sizes can clearly suffer fitness costs, compromising the success of "rear-and-release" strategies for arbovirus control.
Collapse
Affiliation(s)
- Perran A. Ross
- Bio21 Institute and the School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | | | - Ary A. Hoffmann
- Bio21 Institute and the School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
27
|
Holmstrup M. Screening of cold tolerance in fifteen springtail species. J Therm Biol 2018; 77:1-6. [PMID: 30196888 DOI: 10.1016/j.jtherbio.2018.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/04/2018] [Accepted: 07/22/2018] [Indexed: 11/20/2022]
Abstract
Springtails (Collembola) are ubiquitous and help ecosystem processes such as the decomposition of dead plant material. Their ability to survive low winter temperatures is an important trait that partly defines their geographic distribution. The cold tolerances of 15 laboratory-reared species of springtails were investigated. Springtails were cold acclimated in the laboratory over two months in order to simulate a seasonal change in temperature during autumn. Springtails were then exposed to decreasing sub-zero temperatures and at the same time simulating the moisture conditions in frozen soil. The cold tolerance of the species reflected well the climate of region of origin. Differential scanning calorimetry of individual springtails showed that melting points of body fluids did not become lower due to long-term cold acclimation (from 20° to 1.5°C). However, both water content and melting point of two arctic species (Hypogastrura viatica and Protaphorura macfadyeni) decreased drastically during exposure to sub-zero temperatures indicating cryoprotective dehydration (CPD). These arctic species survived exposure to - 9 °C for two weeks and - 20 °C for at least one week using CPD. Four other subarctic or cool temperate species also used CPD and survived - 9 °C for weeks, whereas springtails in culture from less cool temperate regions had poor cold tolerance.
Collapse
Affiliation(s)
- Martin Holmstrup
- Section of Soil Fauna Ecology and Ecotoxicology, Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Arctic Research Center, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark.
| |
Collapse
|
28
|
Kellermann V, Sgrò CM. Evidence for lower plasticity in
CT
MAX
at warmer developmental temperatures. J Evol Biol 2018; 31:1300-1312. [DOI: 10.1111/jeb.13303] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Vanessa Kellermann
- School of Biological Sciences Monash University Clayton Melbourne Vic. Australia
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Clayton Melbourne Vic. Australia
| |
Collapse
|