1
|
Mo XH, Sun YM, Bi YX, Zhao Y, Yu GH, Tan LL, Yang S. Characterization of C 30 carotenoid and identification of its biosynthetic gene cluster in Methylobacterium extorquens AM1. Synth Syst Biotechnol 2023; 8:527-535. [PMID: 37637201 PMCID: PMC10448405 DOI: 10.1016/j.synbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Methylobacterium species, the representative bacteria distributed in phyllosphere region of plants, often synthesize carotenoids to resist harmful UV radiations. Methylobacterium extorquens is known to produce a carotenoid pigment and recent research revealed that this carotenoid has a C30 backbone. However, its exact structure remains unknown. In the present study, the carotenoid produced by M. extorquens AM1 was isolated and its structure was determined as 4-[2-O-11Z-octadecenoyl-β-glucopyranosyl]-4,4'-diapolycopenedioc acid (1), a glycosylated C30 carotenoid. Furthermore, the genes related to the C30 carotenoid synthesis were investigated. Squalene, the precursor of the C30 carotenoid, is synthesized by the co-occurrence of META1p1815, META1p1816 and META1p1817. Further overexpression of the genes related to squalene synthesis improved the titer of carotenoid 1. By using gene deletion and gene complementation experiments, the glycosyltransferase META1p3663 and acyltransferase META1p3664 were firstly confirmed to catalyze the tailoring steps from 4,4'-diapolycopene-4,4'-dioic acid to carotenoid 1. In conclusion, the structure and biosynthetic genes of carotenoid 1 produced by M. extorquens AM1 were firstly characterized in this work, which shed lights on engineering M. extorquens AM1 for producing carotenoid 1 in high yield.
Collapse
Affiliation(s)
- Xu-Hua Mo
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yu-Man Sun
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yu-Xing Bi
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yan Zhao
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Gui-Hong Yu
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Ling-ling Tan
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Song Yang
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Price-Waldman R, Stoddard MC. Avian Coloration Genetics: Recent Advances and Emerging Questions. J Hered 2021; 112:395-416. [PMID: 34002228 DOI: 10.1093/jhered/esab015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs-which exhibit a stunning range of cryptic and conspicuous forms-inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and-increasingly-genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied-but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas-mechanistic links between color vision and color production, and speciation-that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.
Collapse
|
3
|
Khalil S, Welklin JF, McGraw KJ, Boersma J, Schwabl H, Webster MS, Karubian J. Testosterone regulates CYP2J19-linked carotenoid signal expression in male red-backed fairywrens ( Malurus melanocephalus). Proc Biol Sci 2020; 287:20201687. [PMID: 32933448 PMCID: PMC7542802 DOI: 10.1098/rspb.2020.1687] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Carotenoid pigments produce most red, orange and yellow colours in vertebrates. This coloration can serve as an honest signal of quality that mediates social and mating interactions, but our understanding of the underlying mechanisms that control carotenoid signal production, including how different physiological pathways interact to shape and maintain these signals, remains incomplete. We investigated the role of testosterone in mediating gene expression associated with a red plumage sexual signal in red-backed fairywrens (Malurus melanocephalus). In this species, males within a single population can flexibly produce either red/black nuptial plumage or female-like brown plumage. Combining correlational analyses with a field-based testosterone implant experiment and quantitative polymerase chain reaction, we show that testosterone mediates expression of carotenoid-based plumage in part by regulating expression of CYP2J19, a ketolase gene associated with ketocarotenoid metabolism and pigmentation in birds. This is, to our knowledge, the first time that hormonal regulation of a specific genetic locus has been linked to carotenoid production in a natural context, revealing how endocrine mechanisms produce sexual signals that shape reproductive success.
Collapse
Affiliation(s)
- Sarah Khalil
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Joseph F. Welklin
- Macaulay Library, Cornell Laboratory of Ornithology, Ithaca, NY, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Kevin J. McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jordan Boersma
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Hubert Schwabl
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael S. Webster
- Macaulay Library, Cornell Laboratory of Ornithology, Ithaca, NY, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
4
|
Merwin JT, Seeholzer GF, Smith BT. Macroevolutionary bursts and constraints generate a rainbow in a clade of tropical birds. BMC Evol Biol 2020; 20:32. [PMID: 32093609 PMCID: PMC7041239 DOI: 10.1186/s12862-020-1577-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bird plumage exhibits a diversity of colors that serve functional roles ranging from signaling to camouflage and thermoregulation. However, birds must maintain a balance between evolving colorful signals to attract mates, minimizing conspicuousness to predators, and optimizing adaptation to climate conditions. Examining plumage color macroevolution provides a framework for understanding this dynamic interplay over phylogenetic scales. Plumage evolution due to a single overarching process, such as selection, may generate the same macroevolutionary pattern of color variation across all body regions. In contrast, independent processes may partition plumage and produce region-specific patterns. To test these alternative scenarios, we collected color data from museum specimens of an ornate clade of birds, the Australasian lorikeets, using visible-light and UV-light photography, and comparative methods. We predicted that the diversification of homologous feather regions, i.e., patches, known to be involved in sexual signaling (e.g., face) would be less constrained than patches on the back and wings, where new color states may come at the cost of crypsis. Because environmental adaptation may drive evolution towards or away from color states, we tested whether climate more strongly covaried with plumage regions under greater or weaker macroevolutionary constraint. RESULTS We found that alternative macroevolutionary models and varying rates best describe color evolution, a pattern consistent with our prediction that different plumage regions evolved in response to independent processes. Modeling plumage regions independently, in functional groups, and all together showed that patches with similar macroevolutionary models clustered together into distinct regions (e.g., head, wing, belly), which suggests that plumage does not evolve as a single trait in this group. Wing patches, which were conserved on a macroevolutionary scale, covaried with climate more strongly than plumage regions (e.g., head), which diversified in a burst. CONCLUSIONS Overall, our results support the hypothesis that the extraordinary color diversity in the lorikeets was generated by a mosaic of evolutionary processes acting on plumage region subsets. Partitioning of plumage regions in different parts of the body provides a mechanism that allows birds to evolve bright colors for signaling and remain hidden from predators or adapt to local climatic conditions.
Collapse
Affiliation(s)
- Jon T Merwin
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, 10027, USA.
| | - Glenn F Seeholzer
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| |
Collapse
|
5
|
Wheeler LC, Smith SD. Computational Modeling of Anthocyanin Pathway Evolution: Biases, Hotspots, and Trade-offs. Integr Comp Biol 2020; 59:585-598. [PMID: 31120530 DOI: 10.1093/icb/icz049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The alteration of metabolic pathways is a common mechanism underlying the evolution of new phenotypes. Flower color is a striking example of the importance of metabolic evolution in a complex phenotype, wherein shifts in the activity of the underlying pathway lead to a wide range of pigments. Although experimental work has identified common classes of mutations responsible for transitions among colors, we lack a unifying model that relates pathway function and activity to the evolution of distinct pigment phenotypes. One challenge in creating such a model is the branching structure of pigment pathways, which may lead to evolutionary trade-offs due to competition for shared substrates. In order to predict the effects of shifts in enzyme function and activity on pigment production, we created a simple kinetic model of a major plant pigmentation pathway: the anthocyanin pathway. This model describes the production of the three classes of blue, purple, and red anthocyanin pigments, and accordingly, includes multiple branches and substrate competition. We first studied the general behavior of this model using a naïve set of parameters. We then stochastically evolved the pathway toward a defined optimum and analyzed the patterns of fixed mutations. This approach allowed us to quantify the probability density of trajectories through pathway state space and identify the types and number of changes. Finally, we examined whether our simulated results qualitatively align with experimental observations, i.e., the predominance of mutations which change color by altering the function of branching genes in the pathway. These analyses provide a theoretical framework that can be used to predict the consequences of new mutations in terms of both pigment phenotypes and pleiotropic effects.
Collapse
Affiliation(s)
- L C Wheeler
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80302, USA
| | - S D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80302, USA
| |
Collapse
|
6
|
Badyaev AV, Posner AB, Morrison ES, Higginson DM. Cycles of external dependency drive evolution of avian carotenoid networks. Nat Commun 2019; 10:1596. [PMID: 30962432 PMCID: PMC6453931 DOI: 10.1038/s41467-019-09579-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/19/2019] [Indexed: 01/01/2023] Open
Abstract
All organisms depend on input of exogenous compounds that cannot be internally produced. Gain and loss of such dependencies structure ecological communities and drive species' evolution, yet the evolution of mechanisms that accommodate these variable dependencies remain elusive. Here, we show that historical cycles of gains and losses of external dependencies in avian carotenoid-producing networks are linked to their evolutionary diversification. This occurs because internalization of metabolic controls-produced when gains in redundancy of dietary inputs coincide with increased branching of their derived products-enables rapid and sustainable exploration of an existing network by shielding it from environmental fluctuations in inputs. Correspondingly, loss of internal controls constrains evolution to the rate of the gains and losses of dietary precursors. Because internalization of a network's controls necessarily bridges diet-specific enzymatic modules within a network, it structurally links local adaptation and continuous evolution even for traits fully dependent on contingent external inputs.
Collapse
Affiliation(s)
- Alexander V Badyaev
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Alexander B Posner
- Department of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Erin S Morrison
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| | - Dawn M Higginson
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|