1
|
Garrido-Bautista J, Comas M, Jowers MJ, Smith S, Penn DJ, Bakkali M, Moreno-Rueda G. Fine-scale genetic structure and phenotypic divergence of a passerine bird population inhabiting a continuous Mediterranean woodland. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240601. [PMID: 39253402 PMCID: PMC11382889 DOI: 10.1098/rsos.240601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 09/11/2024]
Abstract
Genetic differentiation between populations inhabiting ecologically different habitats might appear because of limited dispersal and gene flow, which may lead to patterns of phenotypic divergence and local adaptation. In this study, we use dispersal, genotypic (24 microsatellite loci) and phenotypic (body size and clutch size) data to analyse patterns of genetic structuring and phenotypic divergence in a blue tit (Cyanistes caeruleus) population inhabiting a continuous and heterogeneous woodland along a valley. The two slopes of the valley differ in their forest formations and environmental conditions. Findings showed that most blue tits reproduced within their natal slope. Accordingly, microsatellite analyses revealed that populations of blue tits established in the two slopes show subtle genetic differentiation. The two genetic populations diverged in clutch size, exceeding the level of differentiation expected based on genetic drift, hence suggesting divergent selection (or other processes promoting divergence) on this life-history trait. Our findings reveal that restricted dispersal and spatial heterogeneity may lead to genetic differentiation among bird populations at a surprisingly small scale. In this respect, it is worth highlighting that such differentiation occurs for an organism with high dispersal capacity and within a continuous woodland. Moreover, we show that small-scale ecological differences, together with limited gene flow, can result in selection favouring different phenotypes even within the same continuum population.
Collapse
Affiliation(s)
| | - Mar Comas
- Department of Zoology, University of Granada, Granada 18071, Spain
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Michael J Jowers
- Department of Zoology, University of Granada, Granada 18071, Spain
| | - Steve Smith
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna 1160, Austria
| | - Dustin J Penn
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna 1160, Austria
| | - Mohammed Bakkali
- Department of Genetics, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Gregorio Moreno-Rueda
- Department of Zoology, University of Granada, Granada 18071, Spain
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
2
|
Collins SM, Hendrix JG, Webber QMR, Boyle SP, Kingdon KA, Blackmore RJ, d'Entremont KJN, Hogg J, Ibáñez JP, Kennah JL, Lamarre J, Mejías M, Newediuk L, Richards C, Schwedak K, Wijekulathilake C, Turner JW. Bibliometric investigation of the integration of animal personality in conservation contexts. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14021. [PMID: 36285603 DOI: 10.1111/cobi.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Consistent individual differences in behavior, commonly termed animal personality, are a widespread phenomenon across taxa that have important consequences for fitness, natural selection, and trophic interactions. Animal personality research may prove useful in several conservation contexts, but which contexts remains to be determined. We conducted a structured literature review of 654 studies identified by combining search terms for animal personality and various conservation subfields. We scored the relevance of personality and conservation issues for each study to identify which studies meaningfully integrated the 2 fields as opposed to surface-level connections or vague allusions. We found a taxonomic bias toward mammals (29% of all studies). Very few amphibian or reptile studies applied personality research to conservation issues (6% each). Climate change (21%), invasive species (15%), and captive breeding and reintroduction (13%) were the most abundant conservation subfields that occurred in our search, though a substantial proportion of these papers weakly integrated conservation and animal personality (climate change 54%, invasive species 51%, captive breeding and reintroduction 40%). Based on our results, we recommend that researchers strive for consistent and broadly applicable terminology when describing consistent behavioral differences to minimize confusion and improve the searchability of research. We identify several gaps in the literature that appear to be promising and fruitful avenues for future research, such as disease transmission as a function of sociability or exploration as a driver of space use in protected areas. Practitioners can begin informing future conservation efforts with knowledge gained from animal personality research.
Collapse
Affiliation(s)
- Sydney M Collins
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jack G Hendrix
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Quinn M R Webber
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Sean P Boyle
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Katrien A Kingdon
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Robert J Blackmore
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Kyle J N d'Entremont
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jennifer Hogg
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Juan P Ibáñez
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Joanie L Kennah
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Miguel Mejías
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Levi Newediuk
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Cerren Richards
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Katrina Schwedak
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Chirathi Wijekulathilake
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Julie W Turner
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Wildlife Division, Government of Newfoundland and Labrador, Corner Brook, Newfoundland and Labrador, Canada
| |
Collapse
|
3
|
Markowski M, Minias P, Bańbura M, Glądalski M, Kaliński A, Skwarska J, Wawrzyniak J, Zieliński P, Bańbura J. Genetic structure of urban and non-urban populations differs between two common parid species. Sci Rep 2021; 11:10428. [PMID: 34001959 PMCID: PMC8128859 DOI: 10.1038/s41598-021-89847-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/30/2021] [Indexed: 02/03/2023] Open
Abstract
Landscape conversions induced by human activities can affect dispersal patterns of various bird species and, as a result, affect genetic structure of their populations. Genetic differentiation of bird populations may be enhanced by habitat variation, especially in urban-non-urban systems. The majority of population genetic studies focus on single species, which inflicts limitations for direct comparisons of genetic responses of avian populations to urbanization. Here, we used a set of microsatellite markers to examine genetic diversity, gene flow and population structure in two common parid species, great tits Parus major and blue tits Cyanistes caeruleus occupying three sites in habitats with contrasting urbanization level in central Poland. We found low but significant divergence of urban park population with both suburban and non-urban forest great tit populations, while no differentiation was found between suburban forest and non-urban forest populations. In contrast, no evidence for genetic differentiation was found between blue tit populations from the urban park, suburban forest and non-urban forest sites. We conclude that great tits and blue tits respond to urbanization-related changes in a different way, which may be a result of different rates of migration and/or dispersal, likely higher in blue tits. Some impact may be also induced by interspecific competition. We suggest that changing the focus of urban genetic research from single to multiple species may provide novel insights into how natural populations respond to the processes of urbanization.
Collapse
Affiliation(s)
- Marcin Markowski
- grid.10789.370000 0000 9730 2769Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90–237 Łódź, Poland
| | - Piotr Minias
- grid.10789.370000 0000 9730 2769Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90–237 Łódź, Poland
| | - Mirosława Bańbura
- grid.10789.370000 0000 9730 2769Museum of Natural History, Faculty of Biology and Environmental Protection, University of Łódź, Kilińskiego 101, 90-011 Łódź, Poland
| | - Michał Glądalski
- grid.10789.370000 0000 9730 2769Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90–237 Łódź, Poland
| | - Adam Kaliński
- grid.10789.370000 0000 9730 2769Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90–237 Łódź, Poland
| | - Joanna Skwarska
- grid.10789.370000 0000 9730 2769Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90–237 Łódź, Poland
| | - Jarosław Wawrzyniak
- grid.10789.370000 0000 9730 2769Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90–237 Łódź, Poland
| | - Piotr Zieliński
- grid.10789.370000 0000 9730 2769Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Jerzy Bańbura
- grid.10789.370000 0000 9730 2769Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90–237 Łódź, Poland
| |
Collapse
|
4
|
Perrier C, Rougemont Q, Charmantier A. Demographic history and genomics of local adaptation in blue tit populations. Evol Appl 2020; 13:1145-1165. [PMID: 32684952 PMCID: PMC7359843 DOI: 10.1111/eva.13035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
Understanding the genomic processes underlying local adaptation is a central aim of modern evolutionary biology. This task requires identifying footprints of local selection but also estimating spatio‐temporal variations in population demography and variations in recombination rate and in diversity along the genome. Here, we investigated these parameters in blue tit populations inhabiting deciduous versus evergreen forests, and insular versus mainland areas, in the context of a previously described strong phenotypic differentiation. Neighboring population pairs of deciduous and evergreen habitats were weakly genetically differentiated (FST = 0.003 on average), nevertheless with a statistically significant effect of habitat type on the overall genetic structure. This low differentiation was consistent with the strong and long‐lasting gene flow between populations inferred by demographic modeling. In turn, insular and mainland populations were moderately differentiated (FST = 0.08 on average), in line with the inference of moderate ancestral migration, followed by isolation since the end of the last glaciation. Effective population sizes were large, yet smaller on the island than on the mainland. Weak and nonparallel footprints of divergent selection between deciduous and evergreen populations were consistent with their high connectivity and the probable polygenic nature of local adaptation in these habitats. In turn, stronger footprints of divergent selection were identified between long isolated insular versus mainland birds and were more often found in regions of low recombination, as expected from theory. Lastly, we identified a genomic inversion on the mainland, spanning 2.8 Mb. These results provide insights into the demographic history and genetic architecture of local adaptation in blue tit populations at multiple geographic scales.
Collapse
Affiliation(s)
- Charles Perrier
- Centre d'Ecologie Fonctionnelle et Evolutive UMR 5175 CNRS Univ Montpellier CNRS EPHE IRD Univ Paul Valéry Montpellier 3 Montpellier France.,Centre de Biologie pour la Gestion des Populations UMR CBGP INRAE CIRAD IRD Montpellier SupAgro Univ Montpellier Montpellier France
| | - Quentin Rougemont
- Département de Biologie Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Québec Canada
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et Evolutive UMR 5175 CNRS Univ Montpellier CNRS EPHE IRD Univ Paul Valéry Montpellier 3 Montpellier France
| |
Collapse
|
5
|
Caro SP, Cornil CA, van Oers K, Visser ME. Personality and gonadal development as sources of individual variation in response to GnRH challenge in female great tits. Proc Biol Sci 2020; 286:20190142. [PMID: 31039718 DOI: 10.1098/rspb.2019.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Seasonal timing of reproduction is a key life-history trait, but we know little about the mechanisms underlying individual variation in female endocrine profiles associated with reproduction. In birds, 17β-oestradiol is a key reproductive hormone that links brain neuroendocrine mechanisms, involved in information processing and decision-making, to downstream mechanisms in the liver, where egg-yolk is produced. Here, we test, using a simulated induction of the reproductive system through a Gonadotropin-Releasing Hormone (GnRH) challenge, whether the ovary of pre-breeding female great tits responds to brain stimulation by increasing oestradiol. We also assess how this response is modified by individual-specific traits like age, ovarian follicle size, and personality, using females from lines artificially selected for divergent levels of exploratory behaviour. We show that a GnRH injection leads to a rapid increase in circulating concentrations of oestradiol, but responses varied among individuals. Females with more developed ovarian follicles showed stronger responses and females from lines selected for fast exploratory behaviour showed stronger increases compared to females from the slow line, indicating a heritable component. This study shows that the response of the ovary to reproductive stimulation from the brain greatly varies among individuals and that this variation can be attributed to several commonly measured individual traits, which sheds light on the mechanisms shaping heritable endocrine phenotypes.
Collapse
Affiliation(s)
- Samuel P Caro
- 1 Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands.,2 Centre d'Ecologie Fonctionnelle et Evolutive (CEFE-CNRS), Unité Mixte de Recherche CNRS 5175 , Montpellier , France
| | | | - Kees van Oers
- 1 Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands
| | - Marcel E Visser
- 1 Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands
| |
Collapse
|
6
|
Li Z, Löytynoja A, Fraimout A, Merilä J. Effects of marker type and filtering criteria on Q ST- F ST comparisons. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190666. [PMID: 31827824 PMCID: PMC6894560 DOI: 10.1098/rsos.190666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Comparative studies of quantitative and neutral genetic differentiation (Q ST-F ST tests) provide means to detect adaptive population differentiation. However, Q ST-F ST tests can be overly liberal if the markers used deflate F ST below its expectation, or overly conservative if methodological biases lead to inflated F ST estimates. We investigated how marker type and filtering criteria for marker selection influence Q ST-F ST comparisons through their effects on F ST using simulations and empirical data on over 18 000 in silico genotyped microsatellites and 3.8 million single-locus polymorphism (SNP) loci from four populations of nine-spined sticklebacks (Pungitius pungitius). Empirical and simulated data revealed that F ST decreased with increasing marker variability, and was generally higher with SNPs than with microsatellites. The estimated baseline F ST levels were also sensitive to filtering criteria for SNPs: both minor alleles and linkage disequilibrium (LD) pruning influenced F ST estimation, as did marker ascertainment. However, in the case of stickleback data used here where Q ST is high, the choice of marker type, their genomic location, ascertainment and filtering made little difference to outcomes of Q ST-F ST tests. Nevertheless, we recommend that Q ST-F ST tests using microsatellites should discard the most variable loci, and those using SNPs should pay attention to marker ascertainment and properly account for LD before filtering SNPs. This may be especially important when level of quantitative trait differentiation is low and levels of neutral differentiation high.
Collapse
Affiliation(s)
- Zitong Li
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Antoine Fraimout
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
7
|
Qu J, Réale D, Fletcher QE, Zhang Y. Among-population divergence in personality is linked to altitude in plateau pikas ( Ochotona curzoniae ). Front Zool 2019; 16:26. [PMID: 31320918 PMCID: PMC6615196 DOI: 10.1186/s12983-019-0329-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Animals inhabiting high altitudes consistently show slow life-histories. The pace-of-life syndrome (POLS) hypothesis posits behavioural, physiological and/or morphological traits that mediate the trade-off between current and future reproduction or survival, which have coevolved along a slow-fast life history continuum. Previous studies have shown that the life histories of plateau pikas varied across altitude, high-altitude individuals showed slow pace of life which were characterized by few litters per year with small litter sizes. Thus, we hypothesized that pikas populations at higher altitudes would also express personalities characteristic associated with slow life history, such as high sociability, low activity or aggressiveness. We tested this hypothesis by comparing the activity and docility of three plateau pika (Ochotona curzoniae) populations distributed along an altitudinal gradient of the Tibetan Plateau. We predicted that high-altitude pika would be more docile and less active. RESULTS The behaviour of 556 pikas, from which 120 individuals were measured at least twice, was quantified. We observed that plateau pikas at high altitudes were less active and more docile than pika at lower altitudes. Activity and docility were significantly and negatively correlated in populations from high altitudes but not in populations from low altitudes. CONCLUSIONS Our results support the POLS hypothesis, highlight the existence of personality variation among populations distributed along an altitudinal gradient and emphasise the importance of environmental selection on personality divergence.
Collapse
Affiliation(s)
- Jiapeng Qu
- Key laboratory of adaptation and evolution of plateau biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008 China
- State Key Laboratory of Grassland Agro-ecosystems SKLGAE, Lanzhou University, Lanzhou, 730000 China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Qinghai, 810008 China
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3P 3P8 Canada
| | - Quinn E. Fletcher
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB R3B 2E9 Canada
| | - Yanming Zhang
- Key laboratory of adaptation and evolution of plateau biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008 China
| |
Collapse
|