1
|
Roberts NS, Svensson EI, Liénard MA. Opsin gene expression plasticity and spectral sensitivity in male damselflies could mediate female colour morph detection. Proc Biol Sci 2025; 292:20242511. [PMID: 40393486 DOI: 10.1098/rspb.2024.2511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/20/2025] [Accepted: 04/14/2025] [Indexed: 05/22/2025] Open
Abstract
The visual systems of Odonata are characterized by many opsin genes, which form the primary light-sensitive photopigments of the eye. Female-limited colour polymorphisms are also common in Odonata, with one morph typically exhibiting male-like (androchrome) coloration and one or two morphs exhibiting female-specific coloration (gynochromes). These colour polymorphisms are thought to be maintained by frequency-dependent sexual conflict, in which males form search images for certain morphs, causing disproportionate mating harassment. Here, we investigate opsin sensitivity and gene expression plasticity in mate-searching males of the damselfly Ischnura elegans during adult maturation and across populations with different female morph frequencies. We find evidence for opsin-specific plasticity in relative and proportional opsin mRNA expression, suggesting changes in opsin regulation and visual sensitivity during sexual maturation. In particular, expression of the long-wavelength-sensitive opsin LWF2 changed over development and varied between populations with different female morph frequencies. UV-Vis analyses indicate that short- and long-wavelength opsins absorb wavelengths of light between 350 and 650 nm. Assuming opponency between photoreceptors with distinct short- and long-wavelength sensitivities, these sensitivities suggest male spectral visual discrimination ability of androchrome and gynochrome females. Overall, our results suggest that opsin sensitivity and expression changes contribute to visual tuning that could impact conspecific discrimination.
Collapse
|
2
|
Moore TI, Bright WG, Bell WE, Solomon-Lane TK, Alvarado SG, Dijkstra PD. Background color matching influences sexual behavior, growth, and mortality rate in an African cichlid fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636662. [PMID: 39975021 PMCID: PMC11839129 DOI: 10.1101/2025.02.05.636662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Phenotypic plasticity allows organisms to adapt to changing environments within their lifetimes. The cost of plastic adaptations may constrain the persistence of plasticity over evolutionary time. One potential cost is the possibility that phenotypic adjustment to specific environments can cause correlated responses that are not necessarily adaptive. Males in the African cichlid Astatotilapia burtoni are blue or yellow, and males are able adjust their body coloration to the color of the background, presumably to increase crypsis. To test whether background color influences fitness-related traits, we raised mix-sex groups of juvenile A. burtoni to adulthood in yellow or blue tanks. We found that fish in blue tanks were darker and more bluish, whereas fish reared in yellow tanks were paler and more yellow in body coloration. Males, but not females, from blue tanks showed earlier sexual maturation than those held in yellow tanks. However, across the duration of the experiment, there was a higher frequency of females mouthbrooding in groups housed in yellow tanks than those that were housed in blue tanks. In addition, fish in blue tanks exhibited reduced growth rate but higher survivorship relative to their yellow-reared counterparts. Our data suggests that background color affects important fitness-related traits in a color polymorphic cichlid, which may influence the evolution of phenotypic plasticity.
Collapse
|
3
|
Irazábal-González L, Wright DS, Maan ME. Developmental and environmental plasticity in opsin gene expression in Lake Victoria cichlid fish. Evol Dev 2024; 26:e12465. [PMID: 38041513 DOI: 10.1111/ede.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
In many organisms, sensory abilities develop and evolve according to the changing demands of navigating, foraging, and communication across different environments and life stages. Teleost fish inhabit heterogeneous light environments and exhibit a large diversity in visual system properties among species. Cichlids are a classic example of this diversity; visual system variation is generated by different tuning mechanisms that involve both genetic factors and phenotypic plasticity. Here, we document the developmental progression of visual pigment gene expression in Lake Victoria cichlids and test if these patterns are influenced by variation in light conditions. We reared two sister species of Pundamilia to adulthood in two distinct visual conditions that resemble the light environments that they naturally inhabit in Lake Victoria. We also included interspecific first-generation hybrids. We focused on the four opsins that are expressed in Pundamilia adults (using real-time quantitative polymerase chain reaction (RT-qPCR)) (SWS2B, SWS2A, RH2A, and LWS) at 17 time points. We find that opsin expression profiles progress from shorter-wavelength sensitive opsins to longer-wavelength sensitive opsins with increasing age, in both species and their hybrids. The developmental trajectories of opsin expression also responded plastically to the visual conditions. Developmental and environmental plasticity in opsin expression may provide an important stepping stone in the evolution of cichlid visual system diversity.
Collapse
Affiliation(s)
- Lucia Irazábal-González
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Daniel S Wright
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Fogg LG, Cortesi F, Gache C, Lecchini D, Marshall NJ, de Busserolles F. Developing and adult reef fish show rapid light-induced plasticity in their visual system. Mol Ecol 2023; 32:167-181. [PMID: 36261875 PMCID: PMC10099556 DOI: 10.1111/mec.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 12/29/2022]
Abstract
The visual capabilities of fish are optimized for their ecology and light environment over evolutionary time. Similarly, fish vision can adapt to regular changes in light conditions within their lifetime, e.g., ontogenetic or seasonal variation. However, we do not fully understand how vision responds to irregular short-term changes in the light environment, e.g., algal blooms and light pollution. In this study, we investigated the effect of short-term exposure to unnatural light conditions on opsin gene expression and retinal cell densities in juvenile and adult diurnal reef fish (convict surgeonfish; Acanthurus triostegus). Results revealed phenotypic plasticity in the retina across ontogeny, particularly during development. The most substantial differences at both molecular and cellular levels were found under constant dim light, while constant bright light and simulated artificial light at night had a lesser effect. Under dim light, juveniles and adults increased absolute expression of the cone opsin genes, sws2a, rh2c and lws, within a few days and juveniles also decreased densities of cones, inner nuclear layer cells and ganglion cells. These changes potentially enhanced vision under the altered light conditions. Thus, our study suggests that plasticity mainly comes into play when conditions are extremely different to the species' natural light environment, i.e., a diurnal fish in "constant night". Finally, in a rescue experiment on adults, shifts in opsin expression were reverted within 24 h. Overall, our study showed rapid, reversible light-induced changes in the retina of A. triostegus, demonstrating phenotypic plasticity in the visual system of a reef fish throughout life.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fabio Cortesi
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Camille Gache
- PSL Research University, EPHE‐UPVD‐CNRS, UAR3278 CRIOBEPapetoaiFrench Polynesia
- Laboratoire d'Excellence “CORAIL”ParisFrance
| | - David Lecchini
- PSL Research University, EPHE‐UPVD‐CNRS, UAR3278 CRIOBEPapetoaiFrench Polynesia
- Laboratoire d'Excellence “CORAIL”ParisFrance
| | - N. Justin Marshall
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fanny de Busserolles
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
Wilwert E, Etienne RS, van de Zande L, Maan ME. Contribution of opsins and chromophores to cone pigment variation across populations of Lake Victoria cichlids. JOURNAL OF FISH BIOLOGY 2022; 101:365-377. [PMID: 34860424 PMCID: PMC9543281 DOI: 10.1111/jfb.14969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/24/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Adaptation to heterogeneous sensory environments has been implicated as a key parameter in speciation. Cichlid fish are a textbook example of divergent visual adaptation, mediated by variation in the sequences and expression levels of cone opsin genes (encoding the protein component of visual pigments). In some vertebrates including fish, visual sensitivity is also tuned by the ratio of vitamin A1 /A2 -derived chromophores (i.e., the light-sensitive component of the visual pigment bound to the opsin protein), where higher proportions of A2 cause a more red-shifted wavelength absorbance. This study explores the variation in chromophore ratios across multiple cichlid populations in Lake Victoria, using as a proxy the expression of the gene Cyp27c1, which has been shown to regulate the conversion of vitamin A1 into vitamin A2 in several vertebrates. This study focuses on sympatric Pundamilia cichlids, where species with blue or red male coloration co-occur at multiple islands but occupy different depths and consequently different visual habitats. In the red species, we found higher cyp27c1 expression in populations from turbid waters than from clear waters, but there was no such pattern in the blue species. Across populations, differences between the sympatric species in cyp27c1 expression had a consistent relationship with species differences in opsin expression patterns, but the red/blue identity reversed between clear and turbid waters. To assess the contribution of heritable vs. environmental causes of variation, we tested whether light manipulations induce a change in cyp27c1 expression in the laboratory. We found that cyp27c1 expression was not influenced by experimental light conditions, suggesting that the observed variation in the wild is due to genetic differences. Nonetheless, compared to other cichlid species, cyp27c1 is expressed at very low levels in Pundamilia, suggesting that it may not be relevant for visual adaptation in this species. Conclusively, establishing the biological importance of this variation requires testing of actual A1 /A2 ratios in the eye, as well as its consequences for visual performance.
Collapse
Affiliation(s)
- Elodie Wilwert
- Groningen Institute for Evolutionary Life Sciences (GELIFES)GroningenThe Netherlands
| | - Rampal S. Etienne
- Groningen Institute for Evolutionary Life Sciences (GELIFES)GroningenThe Netherlands
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences (GELIFES)GroningenThe Netherlands
| | - Martine E. Maan
- Groningen Institute for Evolutionary Life Sciences (GELIFES)GroningenThe Netherlands
| |
Collapse
|
6
|
Singh P, Irisarri I, Torres‐Dowdall J, Thallinger GG, Svardal H, Lemmon EM, Lemmon AR, Koblmüller S, Meyer A, Sturmbauer C. Phylogenomics of trophically diverse cichlids disentangles processes driving adaptive radiation and repeated trophic transitions. Ecol Evol 2022; 12:e9077. [PMID: 35866021 PMCID: PMC9288888 DOI: 10.1002/ece3.9077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Cichlid fishes of the tribe Tropheini are a striking case of adaptive radiation, exemplifying multiple trophic transitions between herbivory and carnivory occurring in sympatry with other established cichlid lineages. Tropheini evolved highly specialized eco-morphologies to exploit similar trophic niches in different ways repeatedly and rapidly. To better understand the evolutionary history and trophic adaptations of this lineage, we generated a dataset of 532 targeted loci from 21 out of the 22 described Tropheini species. We resolved the Tropheini into seven monophyletic genera and discovered one to be polyphyletic. The polyphyletic genus, Petrochromis, represents three convergent origins of the algae grazing trophic specialization. This repeated evolution of grazing may have been facilitated by adaptive introgression as we found evidence for gene flow among algae grazing genera. We also found evidence of gene flow among algae browsing genera, but gene flow was restricted between herbivorous and carnivorous genera. Furthermore, we observed no evidence supporting a hybrid origin of this radiation. Our molecular evolutionary analyses suggest that opsin genes likely evolved in response to selection pressures associated with trophic ecology in the Tropheini. We found surprisingly little evidence of positive selection in coding regions of jaw-shaping genes in this trophically diverse lineage. This suggests low degrees of freedom for further change in these genes, and possibly a larger role for regulatory variation in driving jaw adaptations. Our study emphasizes Tropheini cichlids as an important model for studying the evolution of trophic specialization and its role in speciation.
Collapse
Affiliation(s)
- Pooja Singh
- Institute of BiologyUniversity of GrazGrazAustria
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Iker Irisarri
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
- Leibniz Institute for the Analysis of Biodiversity Change (LIB), Zoological Museum HamburgHamburgGermany
| | - Julián Torres‐Dowdall
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
| | - Gerhard G. Thallinger
- Institute of Biomedical InformaticsGraz University of TechnologyGrazAustria
- OMICS Center Graz, BioTechMed GrazGrazAustria
| | - Hannes Svardal
- Department of BiologyUniversity of AntwerpAntwerpBelgium
- Naturalis Biodiversity CenterLeidenThe Netherlands
| | - Emily Moriarty Lemmon
- Department of Biological ScienceFlorida State University, Biomedical Research FacilityTallahasseeFloridaUSA
| | - Alan R. Lemmon
- Department of Biological ScienceFlorida State University, Biomedical Research FacilityTallahasseeFloridaUSA
| | | | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
| | | |
Collapse
|
7
|
Ricci V, Ronco F, Musilova Z, Salzburger W. Molecular evolution and depth-related adaptations of rhodopsin in the adaptive radiation of cichlid fishes in Lake Tanganyika. Mol Ecol 2022; 31:2882-2897. [PMID: 35302684 PMCID: PMC9314932 DOI: 10.1111/mec.16429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022]
Abstract
The visual sensory system is essential for animals to perceive their environment and is thus under strong selection. In aquatic environments, light intensity and spectrum differ primarily along a depth gradient. Rhodopsin (RH1) is the only opsin responsible for dim‐light vision in vertebrates and has been shown to evolve in response to the respective light conditions, including along a water depth gradient in fishes. In this study, we examined the diversity and sequence evolution of RH1 in virtually the entire adaptive radiation of cichlid fishes in Lake Tanganyika, focusing on adaptations to the environmental light with respect to depth. We show that Tanganyikan cichlid genomes contain a single copy of RH1. The 76 variable amino acid sites detected in RH1 across the radiation were not uniformly distributed along the protein sequence, and 31 of these variable sites show signals of positive selection. Moreover, the amino acid substitutions at 15 positively selected sites appeared to be depth‐related, including three key tuning sites that directly mediate shifts in the peak spectral sensitivity, one site involved in protein stability and 11 sites that may be functionally important on the basis of their physicochemical properties. Among the strongest candidate sites for deep‐water adaptations are two known key tuning sites (positions 292 and 299) and three newly identified variable sites (37, 104 and 290). Our study, which is the first comprehensive analysis of RH1 evolution in a massive adaptive radiation of cichlid fishes, provides novel insights into the evolution of RH1 in a freshwater environment.
Collapse
Affiliation(s)
- Virginie Ricci
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Gustafsson ALS, Gussarova G, Borgen L, Ikeda H, Antonelli A, Marie-Orleach L, Rieseberg LH, Brochmann C. Rapid evolution of post-zygotic reproductive isolation is widespread in Arctic plant lineages. ANNALS OF BOTANY 2022; 129:171-184. [PMID: 34643673 PMCID: PMC8796670 DOI: 10.1093/aob/mcab128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/05/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The Arctic tundra, with its extreme temperatures and short growing season, is evolutionarily young and harbours one of the most species-poor floras on Earth. Arctic species often show little phenotypic and genetic divergence across circumpolar ranges. However, strong intraspecific post-zygotic reproductive isolation (RI) in terms of hybrid sterility has frequently evolved within selfing Arctic species of the genus Draba. Here we assess whether incipient biological species are common in the Arctic flora. METHODS We conducted an extensive crossing experiment including six species representing four phylogenetically distant families collected across the circumpolar Arctic. We crossed conspecific parental populations representing different spatial scales, raised 740 F1 hybrids to maturity and measured fertility under laboratory conditions. We examined genetic divergence between populations for two of these species (Cardamine bellidifolia and Ranunculus pygmaeus). KEY RESULTS In five of the six species, we find extensive reduction in pollen fertility and seed set in F1 hybrids; 219 (46 %) of the 477 F1 hybrids generated between parents separated by ≥427 km had <20 % pollen fertility. Isolation with migration (IM) and *BEAST analyses of sequences of eight nuclear genes in C. bellidifolia suggests that reproductively isolated populations of this species diverged during, or even after, the last glaciation. Likewise, Arctic populations of R. pygmaeus were genetically very similar despite exhibiting strongly reduced fertility in crosses, suggesting that RI evolved recently also in this species. CONCLUSION We show that post-zygotic RI has developed multiple times within taxonomically recognized Arctic species belonging to several distantly related lineages, and that RI may have developed over just a few millennia. Rapid and widespread evolution of incipient biological species in the Arctic flora might be associated with frequent bottlenecks due to glacial cycles, and/or selfing mating systems, which are common in the harsh Arctic environment where pollinators are scarce.
Collapse
Affiliation(s)
| | - Galina Gussarova
- Natural History Museum, University of Oslo, Oslo, Norway
- Botany Department, Faculty of Biology and Soil Science, St Petersburg, Russia
- Tromsø University Museum, University of Tromsø, Tromsø, Norway
| | - Liv Borgen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Hajime Ikeda
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Lucas Marie-Orleach
- Natural History Museum, University of Oslo, Oslo, Norway
- ECOBIO—Écosystèmes, Biodiversité, Évolution, Rennes, France
| | - Loren H Rieseberg
- Botany Department, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
9
|
Musilova Z, Salzburger W, Cortesi F. The Visual Opsin Gene Repertoires of Teleost Fishes: Evolution, Ecology, and Function. Annu Rev Cell Dev Biol 2021; 37:441-468. [PMID: 34351785 DOI: 10.1146/annurev-cellbio-120219-024915] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive from the ultraviolet to the red spectrum of the light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Department of Zoology, Charles University, Prague 128 44, Czech Republic;
| | | | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Queensland, Australia;
| |
Collapse
|
10
|
Carleton KL, Yourick MR. Axes of visual adaptation in the ecologically diverse family Cichlidae. Semin Cell Dev Biol 2020; 106:43-52. [PMID: 32439270 PMCID: PMC7486233 DOI: 10.1016/j.semcdb.2020.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
The family Cichlidae contains approximately 2000 species that live in diverse freshwater habitats including murky lakes, turbid rivers, and clear lakes from both the Old and New Worlds. Their visual systems are similarly diverse and have evolved specific sensitivities that differ along several axes of variation. Variation in cornea and lens transmission affect which wavelengths reach the retina. Variation in photoreceptor number and distribution affect brightness sensitivity, spectral sensitivity and resolution. Probably their most dynamic characteristic is the variation in visual pigment peak sensitivities. Visual pigments can be altered through changes in chromophore, opsin sequence and opsin expression. Opsin expression varies by altering which of the seven available cone opsins in their genomes are turned on. These opsins can even be coexpressed to produce seemingly infinitely tunable cone sensitivities. Both chromophore and opsin expression can vary on either rapid (hours or days), slower (seasonal or ontogenetic) or evolutionary timescales. Such visual system shifts have enabled cichlids to adapt to different habitats and foraging styles. Through both short term plasticity and longer evolutionary adaptations, cichlids have proven to be ecologically successful and an excellent model for studying organismal adaptation.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Miranda R Yourick
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
11
|
Penso-Dolfin L, Man A, Mehta T, Haerty W, Di Palma F. Analysis of structural variants in four African cichlids highlights an association with developmental and immune related genes. BMC Evol Biol 2020; 20:69. [PMID: 32564776 PMCID: PMC7309985 DOI: 10.1186/s12862-020-01629-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND East African lake cichlids are one of the most impressive examples of an adaptive radiation. Independently in Lake Victoria, Tanganyika, and Malawi, several hundreds of species arose within the last 10 million to 100,000 years. Whereas most analyses in cichlids focused on nucleotide substitutions across species to investigate the genetic bases of this explosive radiation, to date, no study has investigated the contribution of structural variants (SVs) in the evolution of adaptive traits across the three Great Lakes of East Africa. RESULTS Here, we annotate and characterize the repertoires and evolutionary potential of different SV classes (deletion, duplication, inversion, insertions and translocations) in four cichlid species: Haplochromis burtoni, Metriaclima zebra, Neolamprologus brichardi and Pundamilia nyererei. We investigate the patterns of gain and loss evolution for each SV type, enabling the identification of lineage specific events. Both deletions and inversions show a significant overlap with SINE elements, while inversions additionally show a limited, but significant association with DNA transposons. Inverted regions are enriched for genes regulating behaviour, or involved in skeletal and visual system development. We also find that duplicated regions show enrichment for genes associated with "antigen processing and presentation" and other immune related categories. Our pipeline and results were further tested by PCR validation of selected deletions and inversions, which confirmed respectively 7 out of 10 and 6 out of 9 events. CONCLUSIONS Altogether, we provide the first comprehensive overview of rearrangement evolution in East African cichlids, and some important insights into their likely contribution to adaptation.
Collapse
Affiliation(s)
- Luca Penso-Dolfin
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| | - Angela Man
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| | - Tarang Mehta
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| |
Collapse
|