1
|
Karin BR, Lough-Stevens M, Lin TE, Reilly SB, Barley AJ, Das I, Iskandar DT, Arida E, Jackman TR, McGuire JA, Bauer AM. The natural and human-mediated expansion of a human-commensal lizard into the fringes of Southeast Asia. BMC Ecol Evol 2024; 24:25. [PMID: 38378475 PMCID: PMC10880348 DOI: 10.1186/s12862-024-02212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Human-commensal species often display deep ancestral genetic structure within their native range and founder-effects and/or evidence of multiple introductions and admixture in newly established areas. We investigated the phylogeography of Eutropis multifasciata, an abundant human-commensal scincid lizard that occurs across Southeast Asia, to determine the extent of its native range and to assess the sources and signatures of human introduction outside of the native range. We sequenced over 350 samples of E. multifasciata for the mitochondrial ND2 gene and reanalyzed a previous RADseq population genetic dataset in a phylogenetic framework. RESULTS Nuclear and mitochondrial trees are concordant and show that E. multifasciata has retained high levels of genetic structure across Southeast Asia despite being frequently moved by humans. Lineage boundaries in the native range roughly correspond to several major biogeographic barriers, including Wallace's Line and the Isthmus of Kra. Islands at the outer fringe of the range show evidence of founder-effects and multiple introductions. CONCLUSIONS Most of enormous range of E. multifasciata across Southeast Asia is native and it only displays signs of human-introduction or recent expansion along the eastern and northern fringe of its range. There were at least three events of human-introductions to Taiwan and offshore islands, and several oceanic islands in eastern Indonesia show a similar pattern. In Myanmar and Hainan, there is a founder-effect consistent with post-warming expansion after the last glacial maxima or human introduction.
Collapse
Affiliation(s)
- Benjamin R Karin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.
- Department of Biology, Villanova University, Villanova, PA, 19085, USA.
| | - Michael Lough-Stevens
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Te-En Lin
- Endemic Species Research Institute, 1, Minsheng E Rd., Jiji Township, Nantou County, 55244, Taiwan
| | - Sean B Reilly
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Anthony J Barley
- Department of Evolution and Ecology, University of California, 2320 Storer Hall, Davis, CA, 95616, USA
| | - Indraneil Das
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Djoko T Iskandar
- School of Life Sciences and Technology, Bandung Institute of Technology, 10 Jalan Ganesa, Bandung, 40132, Indonesia
- Basic Sciences Commission, Indonesian Academy of Sciences, 11 Jalan Medan Merdeka Selatan, Jakarta, 10110, Indonesia
| | - Evy Arida
- Research Center for Ecology and Ethnobiology, Badan Riset dan Inovasi Nasional (BRIN), Cibinong Science Center, Jalan Raya Jakarta-Bogor km 46, Cibinong, 16911, Indonesia
| | - Todd R Jackman
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Jimmy A McGuire
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Aaron M Bauer
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| |
Collapse
|
2
|
Kanamori S, Díaz LM, Cádiz A, Yamaguchi K, Shigenobu S, Kawata M. Draft genome of six Cuban Anolis lizards and insights into genetic changes during their diversification. BMC Ecol Evol 2022; 22:129. [PMID: 36333669 PMCID: PMC9635203 DOI: 10.1186/s12862-022-02086-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Background Detecting genomic variants and their accumulation processes during species diversification and adaptive radiation is important for understanding the molecular and genetic basis of evolution. Anolis lizards in the West Indies are good models for studying evolutionary mechanisms because of the repeated evolution of their morphology and the ecology. We performed de novo genome assembly of six Cuban Anolis lizards with different ecomorphs and thermal habitats (Anolis isolepis, Anolis allisoni, Anolis porcatus, Anolis allogus, Anolis homolechis, and Anolis sagrei). We carried out a comparative analysis of these genome assemblies to investigate the genetic changes that occurred during their diversification. Results We reconstructed novel draft genomes with relatively long scaffolds and high gene completeness, with the scaffold N50 ranging from 5.56 to 39.79 Mb and vertebrate Benchmarking Universal Single-Copy Orthologs completeness ranging from 77.5% to 86.9%. Comparing the repeat element compositions and landscapes revealed differences in the accumulation process between Cuban trunk-crown and trunk-ground species and separate expansions of several families of LINE in each Cuban trunk-ground species. Duplicated gene analysis suggested that the proportional differences in duplicated gene numbers among Cuban Anolis lizards may be associated with differences in their habitat ranges. Additionally, Pairwise Sequentially Markovian Coalescent analysis suggested that the effective population sizes of each species may have been affected by Cuba’s geohistory. Conclusions We provide draft genomes of six Cuban Anolis lizards and detected species and lineage-specific transposon accumulation and gene copy number changes that may be involved in adaptive evolution. The change processes in the past effective population size was also estimated, and the factors involved were inferred. These results provide new insights into the genetic basis of Anolis lizard diversification and are expected to serve as a stepping stone for the further elucidation of their diversification mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02086-7.
Collapse
Affiliation(s)
- Shunsuke Kanamori
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Luis M. Díaz
- National Museum of Natural History of Cuba, Havana, Cuba
| | - Antonio Cádiz
- grid.412165.50000 0004 0401 9462Faculty of Biology, University of Havana, Havana, Cuba ,grid.26790.3a0000 0004 1936 8606Department of Biology, University of Miami, Coral Gables, USA
| | - Katsushi Yamaguchi
- grid.419396.00000 0004 0618 8593Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Shuji Shigenobu
- grid.419396.00000 0004 0618 8593Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan ,grid.275033.00000 0004 1763 208XDepartment of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Masakado Kawata
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Geneva AJ, Park S, Bock DG, de Mello PLH, Sarigol F, Tollis M, Donihue CM, Reynolds RG, Feiner N, Rasys AM, Lauderdale JD, Minchey SG, Alcala AJ, Infante CR, Kolbe JJ, Schluter D, Menke DB, Losos JB. Chromosome-scale genome assembly of the brown anole (Anolis sagrei), an emerging model species. Commun Biol 2022; 5:1126. [PMID: 36284162 PMCID: PMC9596491 DOI: 10.1038/s42003-022-04074-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 10/06/2022] [Indexed: 12/12/2022] Open
Abstract
Rapid technological improvements are democratizing access to high quality, chromosome-scale genome assemblies. No longer the domain of only the most highly studied model organisms, now non-traditional and emerging model species can be genome-enabled using a combination of sequencing technologies and assembly software. Consequently, old ideas built on sparse sampling across the tree of life have recently been amended in the face of genomic data drawn from a growing number of high-quality reference genomes. Arguably the most valuable are those long-studied species for which much is already known about their biology; what many term emerging model species. Here, we report a highly complete chromosome-scale genome assembly for the brown anole, Anolis sagrei - a lizard species widely studied across a variety of disciplines and for which a high-quality reference genome was long overdue. This assembly exceeds the vast majority of existing reptile and snake genomes in contiguity (N50 = 253.6 Mb) and annotation completeness. Through the analysis of this genome and population resequence data, we examine the history of repetitive element accumulation, identify the X chromosome, and propose a hypothesis for the evolutionary history of fusions between autosomes and the X that led to the sex chromosomes of A. sagrei.
Collapse
Affiliation(s)
- Anthony J Geneva
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, USA.
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Dan G Bock
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Pietro L H de Mello
- Department of Ecology and Evolutionary Biology and Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
| | - Fatih Sarigol
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Marc Tollis
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Colin M Donihue
- Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
| | - R Graham Reynolds
- Department of Biology, University of North Carolina Asheville, Asheville, NC, USA
| | - Nathalie Feiner
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | - Ashley M Rasys
- Department of Genetics, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | | | | | - Aaron J Alcala
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Carlos R Infante
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Dolph Schluter
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Jonathan B Losos
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Reynolds RG, Miller AH, Pasachnik SA, Knapp CR, Welch ME, Colosimo G, Gerber GP, Drawert B, Iverson JB. Phylogenomics and historical biogeography of West Indian Rock Iguanas (genus Cyclura). Mol Phylogenet Evol 2022; 174:107548. [PMID: 35690377 DOI: 10.1016/j.ympev.2022.107548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
The genus Cyclura includes nine extant species and six subspecies of West Indian Rock Iguanas and is one of the most imperiled genera of squamate reptiles globally. An understanding of species diversity, evolutionary relationships, diversification, and historical biogeography in this group is crucial for implementing sound long-term conservation strategies. We collected DNA samples from 1 to 10 individuals per taxon from all Cyclura taxa (n = 70 ingroup individuals), focusing where possible on incorporating individuals from different populations of each species. We also collected 1-2 individuals from each of seven outgroup species of iguanas (Iguana delicatissima; five Ctenosaura species) and Anolis sagrei (n = 12 total outgroup individuals). We used targeted genomic sequence capture to isolate and to sequence 1,872 loci comprising of 687,308 base pairs (bp) from each of the 82 individuals from across the nuclear genome. We extracted mitochondrial reads and assembled and annotated mitogenomes for all Cyclura taxa plus outgroup species. We present well-supported phylogenomic gene tree/species tree analyses for all extant species of Cyclura using ASTRAL-III, SVDQuartets, and StarBEAST2 methods, and discuss the taxonomic, biogeographic, and conservation implications of these data. We find a most recent common ancestor of the genus 9.91 million years ago. The earliest divergence within Cyclura separates C. pinguis from a clade comprising all other Cyclura. Within the latter group, a clade comprising C. carinata from the southern Lucayan Islands and C. ricordii from Hispaniola is the sister taxon to a clade comprising the other Cyclura. Among the other Cyclura, the species C. cornuta and C. stejnegeri (from Hispaniola and Isla Mona) form the sister taxon to a clade of species from Jamaica (C. collei), Cuba and Cayman Islands (C. nubila and C. lewisi), and the eastern (C. rileyi) and western (C. cychlura) Lucayan Islands. Cyclura cychlura and C. rileyi form a clade whose sister taxa are C. nubila and C. lewisi. Cyclura collei is the sister taxon to these four species combined.
Collapse
Affiliation(s)
- R Graham Reynolds
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, USA.
| | - Aryeh H Miller
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, USA; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Charles R Knapp
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, 1200 S. Lake Shore Dr., Chicago, IL 60605, USA
| | - Mark E Welch
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762
| | - Giuliano Colosimo
- Department of Biology, University of Rome Tor Vergata, Rome, Latium 00133, Italy
| | - Glenn P Gerber
- San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Brian Drawert
- Department of Computer Science, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, USA
| | - John B Iverson
- Dept. of Biology, Earlham College, Richmond, IN 47374, USA
| |
Collapse
|
5
|
Scherrer R, Donihue CM, Reynolds RG, Losos JB, Geneva AJ. Dewlap colour variation in Anolis sagrei is maintained among habitats within islands of the West Indies. J Evol Biol 2022; 35:680-692. [PMID: 35535762 PMCID: PMC9321103 DOI: 10.1111/jeb.14002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Animal signals evolve in an ecological context. Locally adapting animal sexual signals can be especially important for initiating or reinforcing reproductive isolation during the early stages of speciation. Previous studies have demonstrated that dewlap colour in Anolis lizards can be highly variable between populations in relation to both biotic and abiotic adaptive drivers at relatively large geographical scales. Here, we investigated differentiation of dewlap coloration among habitat types at a small spatial scale, within multiple islands of the West Indies, to test the hypothesis that similar local adaptive processes occur over smaller spatial scales. We explored variation in dewlap coloration in the most widespread species of anole, Anolis sagrei, across three characteristic habitats spanning the Bahamas and the Cayman Islands, namely beach scrub, primary coppice forest and mangrove forest. Using reflectance spectrometry paired with supervised machine learning, we found significant differences in spectral properties of the dewlap between habitats within small islands, sometimes over very short distances. Passive divergence in dewlap phenotype associated with isolation-by-distance did not seem to explain our results. On the other hand, these habitat-specific dewlap differences varied in magnitude and direction across islands, and thus, our primary test for adaptation-parallel responses across islands-was not supported. We suggest that neutral processes or selection could be involved in several ways, including sexual selection. Our results shed new light on the scale at which signal colour polymorphism can be maintained in the presence of gene flow, and the relative role of local adaptation and other processes in driving these patterns of dewlap colour variation across islands.
Collapse
Affiliation(s)
- Raphaël Scherrer
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Colin M Donihue
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Robert Graham Reynolds
- Department of Biology, University of North Carolina Asheville, Asheville, North Carolina, USA
| | - Jonathan B Losos
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Anthony J Geneva
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Keating SE, Fenelon JC, Pyne M, Pinto BJ, Guzmán-Méndez IA, Johnston SD, Renfree MB, Gamble T. Research Article Genetic sex test for the short-beaked echidna (Tachyglossus aculeatus). CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Mulcahy DG, Ibáñez R, Jaramillo CA, Crawford AJ, Ray JM, Gotte SW, Jacobs JF, Wynn AH, Gonzalez-Porter GP, McDiarmid RW, Crombie RI, Zug GR, de Queiroz K. DNA barcoding of the National Museum of Natural History reptile tissue holdings raises concerns about the use of natural history collections and the responsibilities of scientists in the molecular age. PLoS One 2022; 17:e0264930. [PMID: 35245325 PMCID: PMC8896674 DOI: 10.1371/journal.pone.0264930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
Natural history collections are essential to a wide variety of studies in biology because they maintain large collections of specimens and associated data, including genetic material (e.g., tissues) for DNA sequence data, yet they are currently under-funded and collection staff have high workloads. With the advent of aggregate databases and advances in sequencing technologies, there is an increased demand on collection staff for access to tissue samples and associated data. Scientists are rapidly developing large DNA barcode libraries, DNA sequences of specific genes for species across the tree of life, in order to document and conserve biodiversity. In doing so, mistakes are made. For instance, inconsistent taxonomic information is commonly taken from different lending institutions and deposited in data repositories, such as the Barcode of Life Database (BOLD) and GenBank, despite explicit disclaimers regarding the need for taxonomic verification by the lending institutions. Such errors can have profound effects on subsequent research based on these mis-labelled sequences in data repositories. Here, we present the production of a large DNA barcode library of reptiles from the National Museum of Natural History tissue holdings. The library contains 2,758 sequences (2,205 COI and 553 16S) from 2260 specimens (four crocodilians, 37 turtles, and 2,219 lizards, including snakes), representing 583 named species, from 52 countries. In generating this library, we noticed several common mistakes made by scientists depositing DNA barcode data in public repositories (e.g., BOLD and GenBank). Our goal is to raise awareness of these concerns and offer advice to avoid such mistakes in the future to maintain accurate DNA barcode libraries to properly document Earth’s biodiversity.
Collapse
Affiliation(s)
- Daniel G. Mulcahy
- Division of Amphibians and Reptiles, Department of Vertebrate Zoology, National Museum of Natural History, Washington, DC, United States of America
- * E-mail:
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Sistema Nacional de Investigación, SENACYT, Panamá City, República de Panamá
- Departamento de Zoología, Universidad de Panamá, Panamá City, República de Panamá
| | - Cesar A. Jaramillo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Departamento de Histología y Neuroanatomía, Facultad de Medicina, Universidad de Panamá, Panamá City, República de Panamá
| | - Andrew J. Crawford
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Department of Biological Sciences, Museo de Historia Natural C.J. Marinkelle, Universidad de los Andes, Bogotá, Colombia
| | - Julie M. Ray
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Steve W. Gotte
- Division of Amphibians and Reptiles, Department of Vertebrate Zoology, National Museum of Natural History, Washington, DC, United States of America
| | - Jeremy F. Jacobs
- Division of Amphibians and Reptiles, Department of Vertebrate Zoology, National Museum of Natural History, Washington, DC, United States of America
| | - Addison H. Wynn
- Division of Amphibians and Reptiles, Department of Vertebrate Zoology, National Museum of Natural History, Washington, DC, United States of America
| | | | - Roy W. McDiarmid
- Division of Amphibians and Reptiles, Department of Vertebrate Zoology, National Museum of Natural History, Washington, DC, United States of America
| | - Ronald I. Crombie
- Department of Herpetology, California Academy of Sciences, San Francisco, California, United States of America
| | - George R. Zug
- Division of Amphibians and Reptiles, Department of Vertebrate Zoology, National Museum of Natural History, Washington, DC, United States of America
| | - Kevin de Queiroz
- Division of Amphibians and Reptiles, Department of Vertebrate Zoology, National Museum of Natural History, Washington, DC, United States of America
| |
Collapse
|
8
|
Abstract
SignificanceGeography molds how species evolve in space. Strong geographical barriers to movement, for instance, both inhibit dispersal between regions and allow isolated populations to diverge as new species. Weak barriers, by contrast, permit species range expansion and persistence. These factors present a conundrum: How strong must a barrier be before between-region speciation outpaces dispersal? We designed a phylogenetic model of dispersal, extinction, and speciation that allows regional features to influence rates of biogeographic change and applied it to the neotropical radiation of Anolis lizards. Separation by water induces a threefold steeper barrier to movement than equivalent distances over land. Our model will help biologists detect relationships between evolutionary processes and the spatial contexts in which they operate.
Collapse
|
9
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
10
|
Changes in selection pressure can facilitate hybridization during biological invasion in a Cuban lizard. Proc Natl Acad Sci U S A 2021; 118:2108638118. [PMID: 34654747 DOI: 10.1073/pnas.2108638118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 11/18/2022] Open
Abstract
Hybridization is among the evolutionary mechanisms most frequently hypothesized to drive the success of invasive species, in part because hybrids are common in invasive populations. One explanation for this pattern is that biological invasions coincide with a change in selection pressures that limit hybridization in the native range. To investigate this possibility, we studied the introduction of the brown anole (Anolis sagrei) in the southeastern United States. We find that native populations are highly genetically structured. In contrast, all invasive populations show evidence of hybridization among native-range lineages. Temporal sampling in the invasive range spanning 15 y showed that invasive genetic structure has stabilized, indicating that large-scale contemporary gene flow is limited among invasive populations and that hybrid ancestry is maintained. Additionally, our results are consistent with hybrid persistence in invasive populations resulting from changes in natural selection that occurred during invasion. Specifically, we identify a large-effect X chromosome locus associated with variation in limb length, a well-known adaptive trait in anoles, and show that this locus is often under selection in the native range, but rarely so in the invasive range. Moreover, we find that the effect size of alleles at this locus on limb length is much reduced in hybrids among divergent lineages, consistent with epistatic interactions. Thus, in the native range, epistasis manifested in hybrids can strengthen extrinsic postmating isolation. Together, our findings show how a change in natural selection can contribute to an increase in hybridization in invasive populations.
Collapse
|
11
|
Macedonia JM, Clark DL, Fonley MR. Analysis of Bobbing Displays in the Grahami Series Anoles from Jamaica and Grand Cayman. HERPETOLOGICAL MONOGRAPHS 2021. [DOI: 10.1655/herpmonographs-d-20-00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - David L. Clark
- Department of Biology, Alma College, Alma, MI 48801, USA
| | | |
Collapse
|
12
|
Kavanagh KD. Evolution of island lizards remains a mystery. eLife 2020; 9:62230. [PMID: 32958136 PMCID: PMC7508555 DOI: 10.7554/elife.62230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
Lizards that live in the Greater Antilles exploit a large range of skeletal variations to adapt to similar habitats, in defiance of the theory of plasticity-led evolution.
Collapse
Affiliation(s)
- Kathryn D Kavanagh
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, United States
| |
Collapse
|
13
|
Beatty AE, Schwartz TS. Gene expression of the IGF hormones and IGF binding proteins across time and tissues in a model reptile. Physiol Genomics 2020; 52:423-434. [PMID: 32776803 PMCID: PMC7509249 DOI: 10.1152/physiolgenomics.00059.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
The insulin and insulin-like signaling (IIS) network regulates cellular processes including pre- and postnatal growth, cellular development, wound healing, reproduction, and longevity. Despite their importance in the physiology of vertebrates, the study of the specific functions of the top regulators of the IIS network, insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs), has been mostly limited to a few model organisms. To expand our understanding of this network, we performed quantitative gene expression of IGF hormones in liver and qualitative expression of IGFBPs across tissues and developmental stages in a model reptile, the brown anole lizard (Anolis sagrei). We found that lizards express IGF2 across all life stages (preoviposition embryos to adulthood) and at a higher level than IGF1, which is opposite to patterns seen in laboratory rodents but similar to those seen in humans and other vertebrate models. IGFBP expression was ubiquitous across tissues (brain, gonad, heart, liver, skeletal muscle, tail, and regenerating tail) in adults, apart from IGFBP5, which was variable. These findings provide an essential foundation for further developing the anole lizard as a physiological and biomedical reptile model, as well as expanding our understanding of the function of the IIS network across species.
Collapse
Affiliation(s)
- Abby E Beatty
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| |
Collapse
|
14
|
Fisher SR, Del Pinto LA, Fisher RN. Establishment of brown anoles ( Anolis sagrei) across a southern California county and potential interactions with a native lizard species. PeerJ 2020; 8:e8937. [PMID: 32296613 PMCID: PMC7150543 DOI: 10.7717/peerj.8937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/17/2020] [Indexed: 11/30/2022] Open
Abstract
The brown anole, Anolis sagrei, is a native species to the Caribbean; however, A. sagrei has invaded multiple parts of the USA, including Florida, Louisiana, Hawai'i and more recently California. The biological impacts of A. sagrei invading California are currently unknown. Evidence from the invasion in Taiwan shows that they spread quickly and when immediate action is not taken eradication stops being a viable option. In Orange County, California, five urban sites, each less than 100 ha, were surveyed for an average of 49.2 min. Approximately 200 A. sagrei were seen and verified across all survey sites. The paucity of native lizards encountered during the surveys within these sites suggests little to no overlap between the dominant diurnal western fence lizard, Sceloporus occidentalis, and A. sagrei. This notable lack of overlap could indicate a potentially disturbing reality that A. sagrei are driving local extirpations of S. occidentalis.
Collapse
Affiliation(s)
| | | | - Robert N. Fisher
- Western Ecological Research Center, US Geological Survey, San Diego, CA, USA
| |
Collapse
|