1
|
Yamasaki YY, Toyoda A, Kadota M, Kuraku S, Kitano J. 3D Genome Constrains Breakpoints of Inversions That Can Act as Barriers to Gene Flow in the Stickleback. Mol Ecol 2025:e17814. [PMID: 40448401 DOI: 10.1111/mec.17814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/01/2025] [Accepted: 05/19/2025] [Indexed: 06/02/2025]
Abstract
DNA within the nucleus is organised into a well-regulated three-dimensional (3D) structure. However, how such 3D genome structures influence speciation processes remains largely elusive. Recent studies have shown that 3D genome structures influence mutation rates, including the occurrence of chromosomal rearrangement. For example, breakpoints of chromosomal rearrangements tend to be located at topologically associating domain (TAD) boundaries. Here, we hypothesised that TAD structures may constrain the location of chromosomal inversions and thereby shape the genomic landscape of divergence between species with ongoing gene flow, given that inversions can act as barriers to gene flow. To test this hypothesis, we used a pair of Japanese stickleback species, Gasterosteus nipponicus (Japan Sea stickleback) and G. aculeatus (three-spined stickleback). We first constructed chromosome-scale genome assemblies of both species using high fidelity long reads and high-resolution proximity ligation data and identified several chromosomal inversions. Second, via population genomic analyses, we revealed higher genetic differentiation in inverted regions than in colinear regions and no gene flow within inversions, which contrasts with the significant gene flow in colinear regions. Third, using Hi-C data, we revealed 3D genome structures of sticklebacks, delineated by A/B compartments and TADs. Finally, we found that inversion breakpoints tend to be located at TAD boundaries. Thus, our study demonstrates that the 3D genome constrains breakpoints of inversions that can act as barriers to gene flow in the stickleback. Further integration of 3D genome analyses with population genomics could provide novel insights into how the 3D genome influences speciation.
Collapse
Affiliation(s)
- Yo Y Yamasaki
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Genetics Course, The Graduate University for Advanced Studies, Mishima, Shizuoka, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| | - Shigehiro Kuraku
- Genetics Course, The Graduate University for Advanced Studies, Mishima, Shizuoka, Japan
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Genetics Course, The Graduate University for Advanced Studies, Mishima, Shizuoka, Japan
| |
Collapse
|
2
|
Bakner NW, Masto NM, Lavretsky P, Highway CJ, Keever AC, Blake‐Bradshaw AG, Askren RJ, Hagy HM, Feddersen JC, Osborne DC, Cohen BS. Mallard Hybridization With Domesticated Lineages Alters Spring Migration Behavior and Timing. Ecol Evol 2025; 15:e70706. [PMID: 39744458 PMCID: PMC11685176 DOI: 10.1002/ece3.70706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/29/2025] Open
Abstract
Introgressive hybridization, the interbreeding and gene flow between different species, has become increasingly common in the Anthropocene, where human-induced ecological changes and the introduction of captively reared individuals are increasing secondary contact among closely related species, leading to gene flow between wild and domesticated lineages. As a result, domesticated-wild hybridization may potentially affect individual fitness, leading to maladaptive effects such as shifts in behavior or life-history decisions (e.g., migration patterns), which could influence population demographics. In North America, the release of captive-reared game-farm mallards (Anas platyrhynchos) for hunting has led to extensive hybridization with wild mallards, altering the genetic structure in the Atlantic and Mississippi flyways. We aimed to investigate differences in spring migratory behavior among 296 GPS-tagged mallards captured during winter in Tennessee and Arkansas with varying levels of hybridization. Despite relatively low levels of genetic introgression of game-farm genes, mallards with higher percentages of game-farm ancestry exhibited later departure and arrival times, shorter migration distances, and a tendency to establish residency at lower latitudes. Specifically, for every 10% increase in game-farm genetics, mallards departed 17.7% later, arrived 22.1% later, settled 3.3% farther south, and traveled 7.1% shorter distances during migration. These findings suggest that genetic introgression from game-farm mallards influences migratory behavior, potentially reducing fitness, and contributing to population declines in wild mallards. Our study presents a need for understanding how domestic hybridization effects fitness and behavioral change of other species.
Collapse
Affiliation(s)
- Nicholas W. Bakner
- College of Arts and SciencesTennessee Technological UniversityCookevilleTennesseeUSA
| | - Nicholas M. Masto
- College of Arts and SciencesTennessee Technological UniversityCookevilleTennesseeUSA
- Cornell Lab of OrnithologyCornell UniversityIthacaNew YorkUSA
| | - Philip Lavretsky
- Department of Biological SciencesUniversity of Texas at El PasoEl PasoTexasUSA
| | - Cory J. Highway
- College of Arts and SciencesTennessee Technological UniversityCookevilleTennesseeUSA
| | - Allison C. Keever
- College of Arts and SciencesTennessee Technological UniversityCookevilleTennesseeUSA
| | - Abigail G. Blake‐Bradshaw
- College of Arts and SciencesTennessee Technological UniversityCookevilleTennesseeUSA
- Illinois Natural History Survey, Forbes Biological Station–Bellrose Waterfowl Research Center, Prairie Research InstituteUniversity of Illinois at Urbana‐ChampaignHavanaIllinoisUSA
| | - Ryan J. Askren
- Division of Agriculture Experiment Station and Arkansas Forest Resources CenterUniversity of ArkansasMonticelloArkansasUSA
| | - Heath M. Hagy
- U.S. Fish and Wildlife Service, Region 6Habitat and Population Evaluation TeamBismarckNorth DakotaUSA
| | - Jamie C. Feddersen
- Migratory Gamebird ProgramTennessee Wildlife Resources AgencyNashvilleTennesseeUSA
| | - Douglas C. Osborne
- Division of Agriculture Experiment Station and Arkansas Forest Resources CenterUniversity of ArkansasMonticelloArkansasUSA
| | - Bradley S. Cohen
- College of Arts and SciencesTennessee Technological UniversityCookevilleTennesseeUSA
| |
Collapse
|
3
|
Glasenapp MR, Pogson GH. Selection Shapes the Genomic Landscape of Introgressed Ancestry in a Pair of Sympatric Sea Urchin Species. Genome Biol Evol 2024; 16:evae124. [PMID: 38874390 PMCID: PMC11212366 DOI: 10.1093/gbe/evae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
A growing number of recent studies have demonstrated that introgression is common across the tree of life. However, we still have a limited understanding of the fate and fitness consequence of introgressed variation at the whole-genome scale across diverse taxonomic groups. Here, we implemented a phylogenetic hidden Markov model to identify and characterize introgressed genomic regions in a pair of well-diverged, nonsister sea urchin species: Strongylocentrotus pallidus and Strongylocentrotus droebachiensis. Despite the old age of introgression, a sizable fraction of the genome (1% to 5%) exhibited introgressed ancestry, including numerous genes showing signals of historical positive selection that may represent cases of adaptive introgression. One striking result was the overrepresentation of hyalin genes in the identified introgressed regions despite observing considerable overall evidence of selection against introgression. There was a negative correlation between introgression and chromosome gene density, and two chromosomes were observed with considerably reduced introgression. Relative to the nonintrogressed genome-wide background, introgressed regions had significantly reduced nucleotide divergence (dXY) and overlapped fewer protein-coding genes, coding bases, and genes with a history of positive selection. Additionally, genes residing within introgressed regions showed slower rates of evolution (dN, dS, dN/dS) than random samples of genes without introgressed ancestry. Overall, our findings are consistent with widespread selection against introgressed ancestry across the genome and suggest that slowly evolving, low-divergence genomic regions are more likely to move between species and avoid negative selection following hybridization and introgression.
Collapse
Affiliation(s)
- Matthew R Glasenapp
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA
| | - Grant H Pogson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA
| |
Collapse
|
4
|
Stubbs RL, Theodoridis S, Mora-Carrera E, Keller B, Potente G, Yousefi N, Jay P, Léveillé-Bourret É, Choudhury RR, Celep F, Kochjarová J, Conti E. The genomes of Darwin's primroses reveal chromosome-scale adaptive introgression and differential permeability of species boundaries. THE NEW PHYTOLOGIST 2024; 241:911-925. [PMID: 37921572 DOI: 10.1111/nph.19361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Introgression is an important source of genetic variation that can determine species adaptation to environmental conditions. Yet, definitive evidence of the genomic and adaptive implications of introgression in nature remains scarce. The widespread hybrid zones of Darwin's primroses (Primula elatior, Primula veris, and Primula vulgaris) provide a unique natural laboratory for studying introgression in flowering plants and the varying permeability of species boundaries. Through analysis of 650 genomes, we provide evidence of an introgressed genomic region likely to confer adaptive advantage in conditions of soil toxicity. We also document unequivocal evidence of chloroplast introgression, an important precursor to species-wide chloroplast capture. Finally, we provide the first evidence that the S-locus supergene, which controls heterostyly in primroses, does not introgress in this clade. Our results contribute novel insights into the adaptive role of introgression and demonstrate the importance of extensive genomic and geographical sampling for illuminating the complex nature of species boundaries.
Collapse
Affiliation(s)
- Rebecca L Stubbs
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Spyros Theodoridis
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, 60325, Germany
| | - Emiliano Mora-Carrera
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Narjes Yousefi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, 1350, Denmark
| | - Étienne Léveillé-Bourret
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montreal, QC, H1X 2B2, Canada
| | | | - Ferhat Celep
- Department of Biology, Faculty of Arts and Sciences, Kırıkkale University, Kırıkkale, 71450, Turkey
| | - Judita Kochjarová
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, 96001, Slovak Republic
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| |
Collapse
|
5
|
Wong ELY, Filatov DA. The role of recombination landscape in species hybridisation and speciation. FRONTIERS IN PLANT SCIENCE 2023; 14:1223148. [PMID: 37484464 PMCID: PMC10361763 DOI: 10.3389/fpls.2023.1223148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
It is now well recognised that closely related species can hybridize and exchange genetic material, which may promote or oppose adaptation and speciation. In some cases, interspecific hybridisation is very common, making it surprising that species identity is preserved despite active gene exchange. The genomes of most eukaryotic species are highly heterogeneous with regard to gene density, abundance of repetitive DNA, chromatin compactisation etc, which can make certain genomic regions more prone or more resistant to introgression of genetic material from other species. Heterogeneity in local recombination rate underpins many of the observed patterns across the genome (e.g. actively recombining regions are typically gene rich and depleted for repetitive DNA) and it can strongly affect the permeability of genomic regions to interspecific introgression. The larger the region lacking recombination, the higher the chance for the presence of species incompatibility gene(s) in that region, making the entire non- or rarely recombining block impermeable to interspecific introgression. Large plant genomes tend to have highly heterogeneous recombination landscape, with recombination frequently occurring at the ends of the chromosomes and central regions lacking recombination. In this paper we review the relationship between recombination and introgression in plants and argue that large rarely recombining regions likely play a major role in preserving species identity in actively hybridising plant species.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | | |
Collapse
|
6
|
Burley JT, Orzechowski SCM, Sin SYW, Edwards SV. Whole-genome phylogeography of the blue-faced honeyeater (Entomyzon cyanotis) and discovery and characterization of a neo-Z chromosome. Mol Ecol 2023; 32:1248-1270. [PMID: 35797346 DOI: 10.1111/mec.16604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Whole-genome surveys of genetic diversity and geographic variation often yield unexpected discoveries of novel structural variation, which long-read DNA sequencing can help clarify. Here, we report on whole-genome phylogeography of a bird exhibiting classic vicariant geographies across Australia and New Guinea, the blue-faced honeyeater (Entomyzon cyanotis), and the discovery and characterization of a novel neo-Z chromosome by long-read sequencing. Using short-read genome-wide SNPs, we inferred population divergence events within E. cyanotis across the Carpentarian and other biogeographic barriers during the Pleistocene (~0.3-1.7 Ma). Evidence for introgression between nonsister populations supports a hypothesis of reticulate evolution around a triad of dynamic barriers around Pleistocene Lake Carpentaria between Australia and New Guinea. During this phylogeographic survey, we discovered a large (134 Mbp) neo-Z chromosome and we explored its diversity, divergence and introgression landscape. We show that, as in some sylvioid passerine birds, a fusion occurred between chromosome 5 and the Z chromosome to form a neo-Z chromosome; and in E. cyanotis, the ancestral pseudoautosomal region (PAR) appears nonrecombinant between Z and W, along with most of the fused chromosome 5. The added recombination-suppressed portion of the neo-Z (~37.2 Mbp) displays reduced diversity and faster population genetic differentiation compared with the ancestral-Z. Yet, the new PAR (~17.4 Mbp) shows elevated diversity and reduced differentiation compared to autosomes, potentially resulting from introgression. In our case, long-read sequencing helped clarify the genomic landscape of population divergence on autosomes and sex chromosomes in a species where prior knowledge of genome structure was still incomplete.
Collapse
Affiliation(s)
- John T Burley
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA.,Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden.,Department of Ecology Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA.,Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | | | - Simon Yung Wa Sin
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA.,School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Scott V Edwards
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Stubbs RL, Theodoridis S, Mora‐Carrera E, Keller B, Yousefi N, Potente G, Léveillé‐Bourret É, Celep F, Kochjarová J, Tedoradze G, Eaton DAR, Conti E. Whole-genome analyses disentangle reticulate evolution of primroses in a biodiversity hotspot. THE NEW PHYTOLOGIST 2023; 237:656-671. [PMID: 36210520 PMCID: PMC10099377 DOI: 10.1111/nph.18525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Biodiversity hotspots, such as the Caucasus mountains, provide unprecedented opportunities for understanding the evolutionary processes that shape species diversity and richness. Therefore, we investigated the evolution of Primula sect. Primula, a clade with a high degree of endemism in the Caucasus. We performed phylogenetic and network analyses of whole-genome resequencing data from the entire nuclear genome, the entire chloroplast genome, and the entire heterostyly supergene. The different characteristics of the genomic partitions and the resulting phylogenetic incongruences enabled us to disentangle evolutionary histories resulting from tokogenetic vs cladogenetic processes. We provide the first phylogeny inferred from the heterostyly supergene that includes all species of Primula sect. Primula. Our results identified recurrent admixture at deep nodes between lineages in the Caucasus as the cause of non-monophyly in Primula. Biogeographic analyses support the 'out-of-the-Caucasus' hypothesis, emphasizing the importance of this hotspot as a cradle for biodiversity. Our findings provide novel insights into causal processes of phylogenetic discordance, demonstrating that genome-wide analyses from partitions with contrasting genetic characteristics and broad geographic sampling are crucial for disentangling the diversification of species-rich clades in biodiversity hotspots.
Collapse
Affiliation(s)
- Rebecca L. Stubbs
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Spyros Theodoridis
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F)Frankfurt am Main60325Germany
| | - Emiliano Mora‐Carrera
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Narjes Yousefi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Giacomo Potente
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Étienne Léveillé‐Bourret
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV)Université de MontréalQuébecH1X 2B2Canada
| | - Ferhat Celep
- Department of Biology, Faculty of Arts and SciencesKırıkkale UniversityKırıkkale71450Turkey
| | - Judita Kochjarová
- Department of Phytology, Faculty of ForestryTechnical University in ZvolenZvolen96001Slovak Republic
| | - Giorgi Tedoradze
- Department of Plant Systematics and Geography, Institute of BotanyIlia State UniversityTbilisi0105Georgia
| | - Deren A. R. Eaton
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNY10027USA
| | - Elena Conti
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| |
Collapse
|
8
|
Westram AM, Stankowski S, Surendranadh P, Barton N. What is reproductive isolation? J Evol Biol 2022; 35:1143-1164. [PMID: 36063156 PMCID: PMC9542822 DOI: 10.1111/jeb.14005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Reproductive isolation (RI) is a core concept in evolutionary biology. It has been the central focus of speciation research since the modern synthesis and is the basis by which biological species are defined. Despite this, the term is used in seemingly different ways, and attempts to quantify RI have used very different approaches. After showing that the field lacks a clear definition of the term, we attempt to clarify key issues, including what RI is, how it can be quantified in principle, and how it can be measured in practice. Following other definitions with a genetic focus, we propose that RI is a quantitative measure of the effect that genetic differences between populations have on gene flow. Specifically, RI compares the flow of neutral alleles in the presence of these genetic differences to the flow without any such differences. RI is thus greater than zero when genetic differences between populations reduce the flow of neutral alleles between populations. We show how RI can be quantified in a range of scenarios. A key conclusion is that RI depends strongly on circumstances-including the spatial, temporal and genomic context-making it difficult to compare across systems. After reviewing methods for estimating RI from data, we conclude that it is difficult to measure in practice. We discuss our findings in light of the goals of speciation research and encourage the use of methods for estimating RI that integrate organismal and genetic approaches.
Collapse
Affiliation(s)
- Anja M. Westram
- IST AustriaKlosterneuburgAustria
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | | | | | | |
Collapse
|
9
|
Ramesh A, Domingues MM, Stamhuis EJ, Groothuis TGG, Weissing FJ, Nicolaus M. Does genetic differentiation underlie behavioral divergence in response to migration barriers in sticklebacks? A common garden experiment. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03097-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
Water management measures in the 1970s in the Netherlands have produced a large number of “resident” populations of three-spined sticklebacks that are no longer able to migrate to the sea. This may be viewed as a replicated field experiment, allowing us to study how the resident populations are coping with human-induced barriers to migration. We have previously shown that residents are smaller, bolder, more exploratory, more active, and more aggressive and exhibited lower shoaling and lower migratory tendencies compared to their ancestral “migrant” counterparts. However, it is not clear if these differences in wild-caught residents and migrants reflect genetic differentiation, rather than different developmental conditions. To investigate this, we raised offspring of four crosses (migrant ♂ × migrant ♀, resident ♂ × resident ♀, migrant ♂ × resident ♀, resident ♂ × migrant ♀) under similar controlled conditions and tested for differences in morphology and behavior as adults. We found that lab-raised resident sticklebacks exhibited lower shoaling and migratory tendencies as compared to lab-raised migrants, retaining the differences in their wild-caught parents. This indicates genetic differentiation of these traits. For all other traits, the lab-raised sticklebacks of the various crosses did not differ significantly, suggesting that the earlier-found contrast between wild-caught fish reflects differences in their environment. Our study shows that barriers to migration can lead to rapid differentiation in behavioral tendencies over contemporary timescales (~ 50 generations) and that part of these differences reflects genetic differentiation.
Significance statement
Many organisms face changes to their habitats due to human activities. Much research is therefore dedicated to the question whether and how organisms are able to adapt to novel conditions. We address this question in three-spined sticklebacks, where water management measures cut off some populations, prohibiting their seasonal migration to the North Sea. In a previous study, we showed that wild-caught “resident” fish exhibited markedly different behavior than migrants. To disentangle whether these differences reflect genetic differentiation or differences in the conditions under which the wild-caught fish grew up, we conducted crosses, raising the F1 offspring under identical conditions. As their wild-caught parents, the F1 of resident × resident crosses exhibited lower migratory and shoaling tendencies than the F1 of migrant × migrant crosses, while the F1 of hybrid crosses were intermediate. This suggests that ~ 50 years of isolation are sufficient to induce behaviorally relevant genetic differentiation.
Collapse
|
10
|
Faria R, Johannesson K, Stankowski S. Speciation in marine environments: Diving under the surface. J Evol Biol 2021; 34:4-15. [PMID: 33460491 DOI: 10.1111/jeb.13756] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022]
Abstract
Marine environments are inhabited by a broad representation of the tree of life, yet our understanding of speciation in marine ecosystems is extremely limited compared with terrestrial and freshwater environments. Developing a more comprehensive picture of speciation in marine environments requires that we 'dive under the surface' by studying a wider range of taxa and ecosystems is necessary for a more comprehensive picture of speciation. Although studying marine evolutionary processes is often challenging, recent technological advances in different fields, from maritime engineering to genomics, are making it increasingly possible to study speciation of marine life forms across diverse ecosystems and taxa. Motivated by recent research in the field, including the 14 contributions in this issue, we highlight and discuss six axes of research that we think will deepen our understanding of speciation in the marine realm: (a) study a broader range of marine environments and organisms; (b) identify the reproductive barriers driving speciation between marine taxa; (c) understand the role of different genomic architectures underlying reproductive isolation; (d) infer the evolutionary history of divergence using model-based approaches; (e) study patterns of hybridization and introgression between marine taxa; and (f) implement highly interdisciplinary, collaborative research programmes. In outlining these goals, we hope to inspire researchers to continue filling this critical knowledge gap surrounding the origins of marine biodiversity.
Collapse
Affiliation(s)
- Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Kerstin Johannesson
- Department of Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Sean Stankowski
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,IST Austria, Klosterneuburg, Austria
| |
Collapse
|
11
|
Behrens KA, Girasek QL, Sickler A, Hyde J, Buonaccorsi VP. Regions of genetic divergence in depth-separated Sebastes rockfish species pairs: Depth as a potential driver of speciation. Mol Ecol 2021; 30:4259-4275. [PMID: 34181798 DOI: 10.1111/mec.16046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Depth separation is a proposed driver of speciation in marine fishes, with marine rockfish (genus Sebastes) providing a potentially informative study system. Sebastes rockfishes are commercially and ecologically important. This genus encompasses more than one hundred species and the ecological and morphological variance between these species provides opportunity for identifying speciation-driving adaptations, particularly along a depth gradient. A reduced-representation sequencing method (ddRADseq) was used to compare 95 individuals encompassing six Sebastes species. In this study, we sought to identify regions of divergence between species that were indicative of divergent adaptation and reproductive barriers leading to speciation. A pairwise comparison of S. chrysomelas (black-and-yellow rockfish) and S. carnatus (gopher rockfish) FST values revealed three major regions of elevated genomic divergence, two of which were also present in the S. miniatus (vermilion rockfish) and S. crocotulus (sunset rockfish) comparison. These corresponded with regions of both elevated DXY values and reduced nucleotide diversity in two cases, suggesting a speciation-with-gene-flow evolutionary model followed by post-speciation selective sweeps within each species. Limited whole-genome resequencing was also performed to identify mutations with predicted effects between S. chrysomelas and S. carnatus. Within these islands, we identified important SNPs in genes involved in immune function and vision. This supports their potential role in speciation, as these are adaptive vectors noted in other organisms. Additionally, changes to genes involved in pigment expression and mate recognition shed light on how S. chrysomelas and S. carnatus may have become reproductively isolated.
Collapse
Affiliation(s)
- Kristen A Behrens
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
| | - Quinn L Girasek
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
| | - Alex Sickler
- Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John Hyde
- Fisheries Resources Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, California, USA
| | | |
Collapse
|
12
|
Inskeep KA, Doellman MM, Powell THQ, Berlocher SH, Seifert NR, Hood GR, Ragland GJ, Meyers PJ, Feder JL. Divergent diapause life history timing drives both allochronic speciation and reticulate hybridization in an adaptive radiation of Rhagoletis flies. Mol Ecol 2021; 31:4031-4049. [PMID: 33786930 DOI: 10.1111/mec.15908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022]
Abstract
Divergent adaptation to new ecological opportunities can be an important factor initiating speciation. However, as niches are filled during adaptive radiations, trait divergence driving reproductive isolation between sister taxa may also result in trait convergence with more distantly related taxa, increasing the potential for reticulated gene flow across the radiation. Here, we demonstrate such a scenario in a recent adaptive radiation of Rhagoletis fruit flies, specialized on different host plants. Throughout this radiation, shifts to novel hosts are associated with changes in diapause life history timing, which act as "magic traits" generating allochronic reproductive isolation and facilitating speciation-with-gene-flow. Evidence from laboratory rearing experiments measuring adult emergence timing and genome-wide DNA-sequencing surveys supported allochronic speciation between summer-fruiting Vaccinium spp.-infesting Rhagoletis mendax and its hypothesized and undescribed sister taxon infesting autumn-fruiting sparkleberries. The sparkleberry fly and R. mendax were shown to be genetically discrete sister taxa, exhibiting no detectable gene flow and allochronically isolated by a 2-month average difference in emergence time corresponding to host availability. At sympatric sites across the southern USA, the later fruiting phenology of sparkleberries overlaps with that of flowering dogwood, the host of another more distantly related and undescribed Rhagoletis taxon. Laboratory emergence data confirmed broadly overlapping life history timing and genomic evidence supported on-going gene flow between sparkleberry and flowering dogwood flies. Thus, divergent phenological adaptation can drive the initiation of reproductive isolation, while also enhancing genetic exchange across broader adaptive radiations, potentially serving as a source of novel genotypic variation and accentuating further diversification.
Collapse
Affiliation(s)
- Katherine A Inskeep
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University (State University of New York), Binghamton, NY, USA
| | - Stewart H Berlocher
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicholas R Seifert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Glen R Hood
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Peter J Meyers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
13
|
Kakioka R, Mori S, Kokita T, Hosoki TK, Nagano AJ, Ishikawa A, Kume M, Toyoda A, Kitano J. Multiple waves of freshwater colonization of the three-spined stickleback in the Japanese Archipelago. BMC Evol Biol 2020; 20:143. [PMID: 33143638 PMCID: PMC7641863 DOI: 10.1186/s12862-020-01713-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/27/2020] [Indexed: 12/03/2022] Open
Abstract
Background The three-spined stickleback (Gasterosteus aculeatus) is a remarkable system to study the genetic mechanisms underlying parallel evolution during the transition from marine to freshwater habitats. Although the majority of previous studies on the parallel evolution of sticklebacks have mainly focused on postglacial freshwater populations in the Pacific Northwest of North America and northern Europe, we recently use Japanese stickleback populations for investigating shared and unique features of adaptation and speciation between geographically distant populations. However, we currently lack a comprehensive phylogeny of the Japanese three-spined sticklebacks, despite the fact that a good phylogeny is essential for any evolutionary and ecological studies. Here, we conducted a phylogenomic analysis of the three-spined stickleback in the Japanese Archipelago. Results We found that freshwater colonization occurred in multiple waves, each of which may reflect different interglacial isolations. Some of the oldest freshwater populations from the central regions of the mainland of Japan (hariyo populations) were estimated to colonize freshwater approximately 170,000 years ago. The next wave of colonization likely occurred approximately 100,000 years ago. The inferred origins of several human-introduced populations showed that introduction occurred mainly from nearby habitats. We also found a new habitat of the three-spined stickleback sympatric with the Japan Sea stickleback (Gasterosteus nipponicus). Conclusions These Japanese stickleback systems differ from those in the Pacific Northwest of North America and northern Europe in terms of divergence time and history. Stickleback populations in the Japanese Archipelago offer valuable opportunities to study diverse evolutionary processes in historical and contemporary timescales.
Collapse
Affiliation(s)
- Ryo Kakioka
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Nakagami-gun, Okinawa, 903-0213, Japan
| | - Seiichi Mori
- Biological Laboratory, Gifu Kyoritsu University, Ogaki, Gifu, 503-8550, Japan
| | - Tomoyuki Kokita
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Takuya K Hosoki
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan
| | - Manabu Kume
- Field Science Education and Research Center, Kyoto University, Kyoto, 606-8502, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|