1
|
Lewin TD, Liao IJY, Chen ME, Bishop JDD, Holland PWH, Luo YJ. Fusion, fission, and scrambling of the bilaterian genome in Bryozoa. Genome Res 2025; 35:78-92. [PMID: 39762050 PMCID: PMC11789643 DOI: 10.1101/gr.279636.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/31/2024] [Indexed: 01/24/2025]
Abstract
Groups of orthologous genes are commonly found together on the same chromosome over vast evolutionary distances. This extensive physical gene linkage, known as macrosynteny, is seen between bilaterian phyla as divergent as Chordata, Echinodermata, Mollusca, and Nemertea. Here, we report a unique pattern of genome evolution in Bryozoa, an understudied phylum of colonial invertebrates. Using comparative genomics, we reconstruct the chromosomal evolutionary history of five bryozoans. Multiple ancient chromosome fusions followed by gene mixing led to the near-complete loss of bilaterian linkage groups in the ancestor of extant bryozoans. A second wave of rearrangements, including chromosome fission, then occurred independently in two bryozoan classes, further scrambling bryozoan genomes. We also discover at least five derived chromosomal fusion events shared between bryozoans and brachiopods, supporting the traditional but highly debated Lophophorata hypothesis and suggesting macrosynteny to be a potentially powerful source of phylogenetic information. Finally, we show that genome rearrangements led to the dispersion of genes from bryozoan Hox clusters onto multiple chromosomes. Our findings demonstrate that the canonical bilaterian genome structure has been lost across all studied representatives of an entire phylum, and reveal that linkage group fission can occur very frequently in specific lineages.
Collapse
Affiliation(s)
- Thomas D Lewin
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | - Mu-En Chen
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - John D D Bishop
- Marine Biological Association, Plymouth PL1 2PB, United Kingdom
| | - Peter W H Holland
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Yi-Jyun Luo
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan;
| |
Collapse
|
2
|
Ortiz AJ, Sharbrough J. Genome-wide patterns of homoeologous gene flow in allotetraploid coffee. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11584. [PMID: 39184198 PMCID: PMC11342229 DOI: 10.1002/aps3.11584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 08/27/2024]
Abstract
Premise Allopolyploidy-a hybridization-induced whole-genome duplication event-has been a major driver of plant diversification. The extent to which chromosomes pair with their proper homolog vs. with their homoeolog in allopolyploids varies across taxa, and methods to detect homoeologous gene flow (HGF) are needed to understand how HGF has shaped polyploid lineages. Methods The ABBA-BABA test represents a classic method for detecting introgression between closely related species, but here we developed a modified use of the ABBA-BABA test to characterize the extent and direction of HGF in allotetraploid Coffea arabica. Results We found that HGF is abundant in the C. arabica genome, with both subgenomes serving as donors and recipients of variation. We also found that HGF is highly maternally biased in plastid-targeted-but not mitochondrial-targeted-genes, as would be expected if plastid-nuclear incompatibilities exist between the two parent species. Discussion Together, our analyses provide a simple framework for detecting HGF and new evidence consistent with selection favoring overwriting of paternally derived alleles by maternally derived alleles to ameliorate plastid-nuclear incompatibilities. Natural selection therefore appears to shape the direction and intensity of HGF in allopolyploid coffee, indicating that cytoplasmic inheritance has long-term consequences for polyploid lineages.
Collapse
Affiliation(s)
- Andre J. Ortiz
- Department of BiologyNew Mexico Institute of Mining and TechnologySocorroNew MexicoUSA
| | - Joel Sharbrough
- Department of BiologyNew Mexico Institute of Mining and TechnologySocorroNew MexicoUSA
| |
Collapse
|
3
|
Phillips AR. Variant calling in polyploids for population and quantitative genetics. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11607. [PMID: 39184203 PMCID: PMC11342233 DOI: 10.1002/aps3.11607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 04/10/2024] [Indexed: 08/27/2024]
Abstract
Advancements in genome assembly and sequencing technology have made whole genome sequence (WGS) data and reference genomes accessible to study polyploid species. Compared to popular reduced-representation sequencing approaches, the genome-wide coverage and greater marker density provided by WGS data can greatly improve our understanding of polyploid species and polyploid biology. However, biological features that make polyploid species interesting also pose challenges in read mapping, variant identification, and genotype estimation. Accounting for characteristics in variant calling like allelic dosage uncertainty, homology between subgenomes, and variance in chromosome inheritance mode can reduce errors. Here, I discuss the challenges of variant calling in polyploid WGS data and discuss where potential solutions can be integrated into a standard variant calling pipeline.
Collapse
Affiliation(s)
- Alyssa R. Phillips
- Department of Evolution and EcologyUniversity of California, DavisDavis95616CaliforniaUSA
| |
Collapse
|
4
|
Kuzmin E, Baker TM, Van Loo P, Glass L. Dynamics of karyotype evolution. CHAOS (WOODBURY, N.Y.) 2024; 34:051502. [PMID: 38717409 PMCID: PMC11068413 DOI: 10.1063/5.0206011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
In the evolution of species, the karyotype changes with a timescale of tens to hundreds of thousand years. In the development of cancer, the karyotype often is modified in cancerous cells over the lifetime of an individual. Characterizing these changes and understanding the mechanisms leading to them has been of interest in a broad range of disciplines including evolution, cytogenetics, and cancer genetics. A central issue relates to the relative roles of random vs deterministic mechanisms in shaping the changes. Although it is possible that all changes result from random events followed by selection, many results point to other non-random factors that play a role in karyotype evolution. In cancer, chromosomal instability leads to characteristic changes in the karyotype, in which different individuals with a specific type of cancer display similar changes in karyotype structure over time. Statistical analyses of chromosome lengths in different species indicate that the length distribution of chromosomes is not consistent with models in which the lengths of chromosomes are random or evolve solely by simple random processes. A better understanding of the mechanisms underlying karyotype evolution should enable the development of quantitative theoretical models that combine the random and deterministic processes that can be compared to experimental determinations of the karyotype in diverse settings.
Collapse
Affiliation(s)
| | - Toby M. Baker
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | | - Leon Glass
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
5
|
Blaxter ML, Leech C, Lunt DH. A catalogue of chromosome counts for Phylum Nematoda. Wellcome Open Res 2024; 9:55. [PMID: 39534537 PMCID: PMC11555361 DOI: 10.12688/wellcomeopenres.20550.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 11/16/2024] Open
Abstract
Nematodes are important biological models in genetics and genomics, with research driven by basic biological as well as applied questions. The presence of holocentric chromosomes, clades with frequent polyploidy and the phenomenon of programmed DNA elimination make nematode karyotypic diversity of particular interest. Here we present a catalogue of published karyotypes of nematode species, rationalising and normalising descriptions from the previous 135 years. Karyotypes of 257 species are presented in taxonomic context. Nuclear chromosome counts range from 2 to 60. Tylenchina is identified as particularly diverse in karyotype. We highlight that Rhabditida and especially parasitic Rhabditina are well-represented, but there is a paucity of data from Enoplea, Dorylaimia, and from free-living marine groups in Chromadorea. The data have been uploaded to the Genomes on a Tree (GoaT) datasystem ( https://goat.genomehubs.org/) for integration with ongoing, large-scale genome sequencing efforts.
Collapse
Affiliation(s)
- Mark L. Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Chloe Leech
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - David H Lunt
- Biological Sciences, School of Natural Sciences, University of Hull, Hull, England, UK
| |
Collapse
|
6
|
Le Clercq LS, Grobler JP, Kotzé A, Dalton DL. Dataset generated in a systematic review and meta-analysis of biological clocks as age estimation markers in animal ecology. Data Brief 2023; 51:109615. [PMID: 37822884 PMCID: PMC10562661 DOI: 10.1016/j.dib.2023.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
The dataset comprises a comprehensive systematic review and meta-analysis exploring the utility of biological clocks as age estimation markers in the context of animal ecology. The systematic review adhered to PRISMA guidelines and employed optimized Boolean search strings to retrieve relevant studies from Scopus and Dimensions databases. A total of 78 methylation studies and 108 telomere studies were included after rigorous screening. Effect sizes were computed, and statistical transformations were applied when necessary, ensuring compatibility for meta-analysis. Data from these studies were meticulously collected, encompassing statistical measures, study attributes, and additional biological information. The dataset comprises several folders, carefully organized to facilitate access and understanding. It contains raw and processed data used in the systematic review and meta-analysis, including Boolean search strings, database search results, citation network analysis data, PRISMA statements, extracted study data, and input data for meta-analysis. Each folder's contents are described in detail, ensuring clarity and reusability. This dataset aggregates primary research studies spanning diverse ecosystems and taxa, providing a valuable resource for researchers, biodiversity managers and policymakers. This dataset offers a wealth of information and analysis potential for researchers studying age estimation markers in animal ecology, serving as a robust foundation for future investigations and reviews in this evolving field.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, Pretoria 0001, South Africa
- Department of Genetics, University of the Free State, Bloemfontein 9300, South Africa
| | - J. Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, Pretoria 0001, South Africa
- Department of Genetics, University of the Free State, Bloemfontein 9300, South Africa
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, United Kingdom
| |
Collapse
|
7
|
Le Clercq LS, Kotzé A, Grobler JP, Dalton DL. Biological clocks as age estimation markers in animals: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2023; 98:1972-2011. [PMID: 37356823 DOI: 10.1111/brv.12992] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Various biological attributes associated with individual fitness in animals change predictably over the lifespan of an organism. Therefore, the study of animal ecology and the work of conservationists frequently relies upon the ability to assign animals to functionally relevant age classes to model population fitness. Several approaches have been applied to determining individual age and, while these methods have proved useful, they are not without limitations and often lack standardisation or are only applicable to specific species. For these reasons, scientists have explored the potential use of biological clocks towards creating a universal age-determination method. Two biological clocks, tooth layer annulation and otolith layering have found universal appeal. Both methods are highly invasive and most appropriate for post-mortem age-at-death estimation. More recently, attributes of cellular ageing previously explored in humans have been adapted to studying ageing in animals for the use of less-invasive molecular methods for determining age. Here, we review two such methods, assessment of methylation and telomere length, describing (i) what they are, (ii) how they change with age, and providing (iii) a summary and meta-analysis of studies that have explored their utility in animal age determination. We found that both attributes have been studied across multiple vertebrate classes, however, telomere studies were used before methylation studies and telomere length has been modelled in nearly twice as many studies. Telomere length studies included in the review often related changes to stress responses and illustrated that telomere length is sensitive to environmental and social stressors and, in the absence of repair mechanisms such as telomerase or alternative lengthening modes, lacks the ability to recover. Methylation studies, however, while also detecting sensitivity to stressors and toxins, illustrated the ability to recover from such stresses after a period of accelerated ageing, likely due to constitutive expression or reactivation of repair enzymes such as DNA methyl transferases. We also found that both studied attributes have parentally heritable features, but the mode of inheritance differs among taxa and may relate to heterogamy. Our meta-analysis included more than 40 species in common for methylation and telomere length, although both analyses included at least 60 age-estimation models. We found that methylation outperforms telomere length in terms of predictive power evidenced from effect sizes (more than double that observed for telomeres) and smaller prediction intervals. Both methods produced age correlation models using similar sample sizes and were able to classify individuals into young, middle, or old age classes with high accuracy. Our review and meta-analysis illustrate that both methods are well suited to studying age in animals and do not suffer significantly from variation due to differences in the lifespan of the species, genome size, karyotype, or tissue type but rather that quantitative method, patterns of inheritance, and environmental factors should be the main considerations. Thus, provided that complex factors affecting the measured trait can be accounted for, both methylation and telomere length are promising targets to develop as biomarkers for age determination in animals.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
8
|
Lucek K, Giménez MD, Joron M, Rafajlović M, Searle JB, Walden N, Westram AM, Faria R. The Impact of Chromosomal Rearrangements in Speciation: From Micro- to Macroevolution. Cold Spring Harb Perspect Biol 2023; 15:a041447. [PMID: 37604585 PMCID: PMC10626258 DOI: 10.1101/cshperspect.a041447] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Chromosomal rearrangements (CRs) have been known since almost the beginning of genetics. While an important role for CRs in speciation has been suggested, evidence primarily stems from theoretical and empirical studies focusing on the microevolutionary level (i.e., on taxon pairs where speciation is often incomplete). Although the role of CRs in eukaryotic speciation at a macroevolutionary level has been supported by associations between species diversity and rates of evolution of CRs across phylogenies, these findings are limited to a restricted range of CRs and taxa. Now that more broadly applicable and precise CR detection approaches have become available, we address the challenges in filling some of the conceptual and empirical gaps between micro- and macroevolutionary studies on the role of CRs in speciation. We synthesize what is known about the macroevolutionary impact of CRs and suggest new research avenues to overcome the pitfalls of previous studies to gain a more comprehensive understanding of the evolutionary significance of CRs in speciation across the tree of life.
Collapse
Affiliation(s)
- Kay Lucek
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Mabel D Giménez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Genética Humana de Misiones (IGeHM), Parque de la Salud de la Provincia de Misiones "Dr. Ramón Madariaga," N3300KAZ Posadas, Misiones, Argentina
- Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, N3300LQH Posadas, Misiones, Argentina
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Centre for Marine Evolutionary Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA
| | - Nora Walden
- Centre for Organismal Studies, University of Heidelberg, 69117 Heidelberg, Germany
| | - Anja Marie Westram
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado;
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| |
Collapse
|
9
|
Cunha TJ, de Medeiros BAS, Lord A, Sørensen MV, Giribet G. Rampant loss of universal metazoan genes revealed by a chromosome-level genome assembly of the parasitic Nematomorpha. Curr Biol 2023; 33:3514-3521.e4. [PMID: 37467752 DOI: 10.1016/j.cub.2023.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/21/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Parasites may manipulate host behavior to increase the odds of transmission or to reach the proper environment to complete their life cycle.1,2 Members of the phylum Nematomorpha (known as horsehair worms, hairworms, or Gordian worms) are large endoparasites that affect the behavior of their arthropod hosts. In terrestrial hosts, they cause erratic movements toward bodies of water,3,4,5,6 where the adult worm emerges from the host to find mates for reproduction. We present a chromosome-level genome assembly for the freshwater Acutogordius australiensis and a draft assembly for one of the few known marine species, Nectonema munidae. The assemblies span 201 Mbp and 213 Mbp in length (N50: 38 Mbp and 716 Kbp), respectively, and reveal four chromosomes in Acutogordius, which are largely rearranged compared to the inferred ancestral condition in animals. Both nematomorph genomes have a relatively low number of genes (11,114 and 8,717, respectively) and lack a high proportion (∼30%) of universal single-copy metazoan orthologs (BUSCO genes7). We demonstrate that missing genes are not an artifact of the assembly process, with the majority of missing orthologs being shared by the two independent assemblies. Missing BUSCOs are enriched for Gene Ontology (GO) terms associated with the organization of cilia and cell projections in other animals. We show that most cilium-related genes conserved across eukaryotes have been lost in Nematomorpha, providing a molecular basis for the suspected absence of ciliary structures in these animals.
Collapse
Affiliation(s)
- Tauana J Cunha
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA.
| | - Bruno A S de Medeiros
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA
| | - Arianna Lord
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Martin V Sørensen
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
10
|
Bomblies K. Learning to tango with four (or more): the molecular basis of adaptation to polyploid meiosis. PLANT REPRODUCTION 2023; 36:107-124. [PMID: 36149479 PMCID: PMC9957869 DOI: 10.1007/s00497-022-00448-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 05/29/2023]
Abstract
Polyploidy, which arises from genome duplication, has occurred throughout the history of eukaryotes, though it is especially common in plants. The resulting increased size, heterozygosity, and complexity of the genome can be an evolutionary opportunity, facilitating diversification, adaptation and the evolution of functional novelty. On the other hand, when they first arise, polyploids face a number of challenges, one of the biggest being the meiotic pairing, recombination and segregation of the suddenly more than two copies of each chromosome, which can limit their fertility. Both for developing polyploidy as a crop improvement tool (which holds great promise due to the high and lasting multi-stress resilience of polyploids), as well as for our basic understanding of meiosis and plant evolution, we need to know both the specific nature of the challenges polyploids face, as well as how they can be overcome in evolution. In recent years there has been a dramatic uptick in our understanding of the molecular basis of polyploid adaptations to meiotic challenges, and that is the focus of this review.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Plant Evolutionary Genetics, Institute of Plant Molecular Biology, Department of Biology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
11
|
Höök L, Näsvall K, Vila R, Wiklund C, Backström N. High-density linkage maps and chromosome level genome assemblies unveil direction and frequency of extensive structural rearrangements in wood white butterflies (Leptidea spp.). Chromosome Res 2023; 31:2. [PMID: 36662301 PMCID: PMC9859909 DOI: 10.1007/s10577-023-09713-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023]
Abstract
Karyotypes are generally conserved between closely related species and large chromosome rearrangements typically have negative fitness consequences in heterozygotes, potentially driving speciation. In the order Lepidoptera, most investigated species have the ancestral karyotype and gene synteny is often conserved across deep divergence, although examples of extensive genome reshuffling have recently been demonstrated. The genus Leptidea has an unusual level of chromosome variation and rearranged sex chromosomes, but the extent of restructuring across the rest of the genome is so far unknown. To explore the genomes of the wood white (Leptidea) species complex, we generated eight genome assemblies using a combination of 10X linked reads and HiC data, and improved them using linkage maps for two populations of the common wood white (L. sinapis) with distinct karyotypes. Synteny analysis revealed an extensive amount of rearrangements, both compared to the ancestral karyotype and between the Leptidea species, where only one of the three Z chromosomes was conserved across all comparisons. Most restructuring was explained by fissions and fusions, while translocations appear relatively rare. We further detected several examples of segregating rearrangement polymorphisms supporting a highly dynamic genome evolution in this clade. Fusion breakpoints were enriched for LINEs and LTR elements, which suggests that ectopic recombination might be an important driver in the formation of new chromosomes. Our results show that chromosome count alone may conceal the extent of genome restructuring and we propose that the amount of genome evolution in Lepidoptera might still be underestimated due to lack of taxonomic sampling.
Collapse
Affiliation(s)
- L Höök
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| | - K Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| | - R Vila
- Butterfly Diversity and Evolution Lab, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - C Wiklund
- Department of Zoology, Division of Ecology, Stockholm University, Stockholm, Sweden
| | - N Backström
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| |
Collapse
|
12
|
Lucek K, Augustijnen H, Escudero M. A holocentric twist to chromosomal speciation? Trends Ecol Evol 2022; 37:655-662. [PMID: 35484024 DOI: 10.1016/j.tree.2022.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
Chromosomal rearrangements trigger speciation by acting as barriers to gene flow. However, the underlying theory was developed with monocentric chromosomes in mind. Holocentric chromosomes, lacking a centromeric region, have repeatedly evolved and account for a significant fraction of extant biodiversity. Because chromosomal rearrangements may be more likely retained in holocentric species, holocentricity could provide a twist to chromosomal speciation. Here, we discuss how the abundance of chromosome-scale genomes, combined with novel analytical tools, offer the opportunity to assess the impacts of chromosomal rearrangements on rates of speciation by outlining a phylogenetic framework that aligns with the two major lines of chromosomal speciation theory. We further highlight how holocentric species could help to test for causal roles of chromosomal rearrangements in speciation.
Collapse
Affiliation(s)
- Kay Lucek
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Hannah Augustijnen
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Marcial Escudero
- Department of Plant Biology and Ecology, University of Seville, Reina Mercedes, ES-41012 Seville, Spain
| |
Collapse
|
13
|
Kataoka K, Togawa Y, Sanno R, Asahi T, Yura K. Dissecting cricket genomes for the advancement of entomology and entomophagy. Biophys Rev 2022; 14:75-97. [PMID: 35340598 PMCID: PMC8921346 DOI: 10.1007/s12551-021-00924-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Significant advances in biophysical methods such as next-generation sequencing technologies have now opened the way to conduct evolutionary and applied research based on the genomic information of greatly diverse insects. Crickets belonging to Orthoptera (Insecta: Polyneoptera), one of the most flourishing groups of insects, have contributed to the development of multiple scientific fields including developmental biology and neuroscience and have been attractive targets in evolutionary ecology for their diverse ecological niches. In addition, crickets have recently gained recognition as food and feed. However, the genomic information underlying their biological basis and application research toward breeding is currently underrepresented. In this review, we summarize the progress of genomics of crickets. First, we outline the phylogenetic position of crickets in insects and then introduce recent studies on cricket genomics and transcriptomics in a variety of fields. Furthermore, we present findings from our analysis of polyneopteran genomes, with a particular focus on their large genome sizes, chromosome number, and repetitive sequences. Finally, how the cricket genome can be beneficial to the food industry is discussed. This review is expected to enhance greater recognition of how important the cricket genomes are to the multiple biological fields and how basic research based on cricket genome information can contribute to tackling global food security.
Collapse
Affiliation(s)
- Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
| | - Yuki Togawa
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryuto Sanno
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| | - Kei Yura
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
14
|
Hodson CN, Ross L. Evolutionary Perspectives on Germline-Restricted Chromosomes in Flies (Diptera). Genome Biol Evol 2021; 13:evab072. [PMID: 33890671 PMCID: PMC8245193 DOI: 10.1093/gbe/evab072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
In some eukaryotes, germline soma differentiation involves elimination of parts of the genome from somatic cells. The portions of the genome restricted to the germline often contain genes that play a role in development and function of the germline. Lineages with germline-restricted DNA are taxonomically diverse, and the size of the germline-restricted genome varies substantially. Unfortunately, few of these lineages have been studied in detail. As a result, we understand little about the general evolutionary forces that drive the origin and maintenance of germline-restricted DNA. One of the taxonomic groups where germline-restricted DNA has been poorly studied are the flies (Diptera). In three Dipteran families, Chironomidae, Cecidomyiidae, and Sciaridae, entire chromosomes are eliminated from somatic cells early in embryonic development. Germline-restricted chromosomes are thought to have evolved independently in the Dipteran families and their size, number, and transmission patterns vary between families. Although there is a wealth of cytological studies on these chromosomes in flies, almost no genomic studies have been undertaken. As a result, very little is known about how and why they evolved and what genes they encode. This review summarizes the literature on germline-restricted chromosomes in Diptera, discusses hypotheses for their origin and function, and compares germline-restricted DNA in Diptera to other eukaryotes. Finally, we discuss why Dipteran lineages represent a promising system for the study of germline-restricted chromosomes and propose future avenues of research on this topic.
Collapse
Affiliation(s)
- Christina N Hodson
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| | - Laura Ross
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| |
Collapse
|