1
|
Kapila R, Maggu K, Ahlawat N, Guru Prasad N. Effects of adaptation to crowded larval environment on the evolution of sperm competitive ability in males of Drosophila melanogaster. Fly (Austin) 2025; 19:2437204. [PMID: 39696806 DOI: 10.1080/19336934.2024.2437204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Two of the most important environmental factors that affect the sperm competitive ability in males are the availability of resources and the socio-sexual environment. Numerous studies have investigated the individual effects of these factors, but their combined effect on the evolution of sperm competitive ability remains untested. A crowded larval environment is unique because it simultaneously affects the fitness of the organism through both resource availability and the socio-sexual environment. In this study, we used a set of four laboratory populations of D. melanogaster, evolved under a crowded larval environment for more than 165 generations and their respective controls to investigate how the sperm competitive ability of the males is affected by a single generation of larval crowding versus evolution under a crowded larval environment for more than 165 generations. Our results show that larval crowding negatively affects the sperm defence ability of males evolved in a crowded larval environment, while it has no effect on the sperm defence ability of control males. Additionally, larval crowding negatively impacts the sperm offence ability in both control and evolved populations. Males from populations adapted to a crowded larval environment exhibit lower sperm offence ability at an older age compared to control populations.
Collapse
Affiliation(s)
- Rohit Kapila
- Department of Biology, Florida International University, Miami, Florida, USA
| | - Komal Maggu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse, Switzerland
| | - Neetika Ahlawat
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| |
Collapse
|
2
|
Goyal B, Tushir S, Sharma A, Singh S, Tatu U, Pandey K, Chakraborti S. Unveiling role of HSP70 genes for development and survival of Indian malaria vector Anopheles culicifacies. Int J Biol Macromol 2025; 308:142173. [PMID: 40120896 DOI: 10.1016/j.ijbiomac.2025.142173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Heat shock proteins (HSPs) play a pivotal role in maintaining cellular homeostasis and mediating stress responses across diverse organisms. Among them, the HSP70 family is crucial for protein folding and stress regulation. However, its functions remain underexplored in mosquito species, particularly in major Indian malaria vectors such as Anopheles culicifacies (Ac). This study aims to contribute to mosquito control by investigating the role of HSP70 in An. culicifacies. Given the persistent global challenge posed by malaria, understanding the regulatory mechanisms of HSP70 is essential for developing effective control strategies. In this study, we identified seven HSP70 genes in An. culicifacies and analyzed their expression profiles across different life stages. Six of these HSP70 genes (1, 2, 3, 5, 6, and 7) exhibited significant upregulation during the third instar larval stage, emphasizing their critical role in larval development. Using specific HSP70 inhibitors, quercetin and KNK437, we observed that KNK437 displayed potent larvicidal activity, comparable to the widely used insecticide temephos. Additionally, we successfully purified and characterized recombinant AcHSP70-1, which demonstrated unique interactions with adenosine triphosphate (ATP) and its co-chaperone AcHSP40, distinguishing it from other HSP70 systems. Through a combination of confocal microscopy, qRT-PCR analysis, and inhibitor assays, we further established the essential role of HSP70 in both larval development and adult female mosquitoes during blood meal acquisition. These findings provide novel insights into the functional diversification and regulatory mechanisms of HSP70 genes in An. culicifacies. This study not only enhances our understanding of their developmental roles but also highlights innovative targets for the development of mosquito control strategies.
Collapse
Affiliation(s)
- Bharti Goyal
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Sheetal Tushir
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Arvind Sharma
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| | - Kailash Pandey
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India.
| | - Soumyananda Chakraborti
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India; Department of Biological Science, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India.
| |
Collapse
|
3
|
Privalova V, Sobczyk Ł, Szlachcic E, Labecka AM, Czarnoleski M. Heat tolerance in Drosophila melanogaster is influenced by oxygen conditions and mutations in cell size control pathways. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220490. [PMID: 38186282 PMCID: PMC10772611 DOI: 10.1098/rstb.2022.0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 01/09/2024] Open
Abstract
Understanding metabolic performance limitations is key to explaining the past, present and future of life. We investigated whether heat tolerance in actively flying Drosophila melanogaster is modified by individual differences in cell size and the amount of oxygen in the environment. We used two mutants with loss-of-function mutations in cell size control associated with the target of rapamycin (TOR)/insulin pathways, showing reduced (mutant rictorΔ2) or increased (mutant Mnt1) cell size in different body tissues compared to controls. Flies were exposed to a steady increase in temperature under normoxia and hypoxia until they collapsed. The upper critical temperature decreased in response to each mutation type as well as under hypoxia. Females, which have larger cells than males, had lower heat tolerance than males. Altogether, mutations in cell cycle control pathways, differences in cell size and differences in oxygen availability affected heat tolerance, but existing theories on the roles of cell size and tissue oxygenation in metabolic performance can only partially explain our results. A better understanding of how the cellular composition of the body affects metabolism may depend on the development of research models that help separate various interfering physiological parameters from the exclusive influence of cell size. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Valeriya Privalova
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Łukasz Sobczyk
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Maria Labecka
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
4
|
Erkosar B, Dupuis C, Cavigliasso F, Savary L, Kremmer L, Gallart-Ayala H, Ivanisevic J, Kawecki TJ. Evolutionary adaptation to juvenile malnutrition impacts adult metabolism and impairs adult fitness in Drosophila. eLife 2023; 12:e92465. [PMID: 37847744 PMCID: PMC10637773 DOI: 10.7554/elife.92465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Juvenile undernutrition has lasting effects on adult metabolism of the affected individuals, but it is unclear how adult physiology is shaped over evolutionary time by natural selection driven by juvenile undernutrition. We combined RNAseq, targeted metabolomics, and genomics to study the consequences of evolution under juvenile undernutrition for metabolism of reproductively active adult females of Drosophila melanogaster. Compared to Control populations maintained on standard diet, Selected populations maintained for over 230 generations on a nutrient-poor larval diet evolved major changes in adult gene expression and metabolite abundance, in particular affecting amino acid and purine metabolism. The evolved differences in adult gene expression and metabolite abundance between Selected and Control populations were positively correlated with the corresponding differences previously reported for Selected versus Control larvae. This implies that genetic variants affect both stages similarly. Even when well fed, the metabolic profile of Selected flies resembled that of flies subject to starvation. Finally, Selected flies had lower reproductive output than Controls even when both were raised under the conditions under which the Selected populations evolved. These results imply that evolutionary adaptation to juvenile undernutrition has large pleiotropic consequences for adult metabolism, and that they are costly rather than adaptive for adult fitness. Thus, juvenile and adult metabolism do not appear to evolve independently from each other even in a holometabolous species where the two life stages are separated by a complete metamorphosis.
Collapse
Affiliation(s)
- Berra Erkosar
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Cindy Dupuis
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Fanny Cavigliasso
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Loriane Savary
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Laurent Kremmer
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| |
Collapse
|
5
|
Morimoto J, Wenzel M, Derous D, Henry Y, Colinet H. The transcriptomic signature of responses to larval crowding in Drosophila melanogaster. INSECT SCIENCE 2023; 30:539-554. [PMID: 36115064 PMCID: PMC10947363 DOI: 10.1111/1744-7917.13113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Intraspecific competition at the larval stage is an important ecological factor affecting life-history, adaptation and evolutionary trajectory in holometabolous insects. However, the molecular pathways underpinning these ecological processes are poorly characterized. We reared Drosophila melanogaster at three egg densities (5, 60, and 300 eggs/mL) and sequenced the transcriptomes of pooled third-instar larvae. We also examined emergence time, egg-to-adult viability, adult mass, and adult sex-ratio at each density. Medium crowding had minor detrimental effects on adult phenotypes compared to low density and yielded 24 differentially expressed genes (DEGs), including several chitinase enzymes. In contrast, high crowding had substantial detrimental effects on adult phenotypes and yielded 2107 DEGs. Among these, upregulated gene sets were enriched in sugar, steroid and amino acid metabolism as well as DNA replication pathways, whereas downregulated gene sets were enriched in ABC transporters, taurine, Toll/Imd signaling, and P450 xenobiotics metabolism pathways. Overall, our findings show that larval crowding has a large consistent effect on several molecular pathways (i.e., core responses) with few pathways displaying density-specific regulation (i.e., idiosyncratic responses). This provides important insights into how holometabolous insects respond to intraspecific competition during development.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
- Programa de Pós‐graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
- Institute of MathematicsKing's CollegeUniversity of AberdeenAberdeenUnited Kingdom
| | - Marius Wenzel
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
| | - Davina Derous
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
| | - Youn Henry
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)—UMR 6553University of RennesRennesFrance
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Herve Colinet
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)—UMR 6553University of RennesRennesFrance
| |
Collapse
|
6
|
Narasimhan A, Kapila R, Meena A, Prasad NG. Consequences of adaptation to larval crowding on sexual and fecundity selection in Drosophila melanogaster. J Evol Biol 2023; 36:730-737. [PMID: 36946997 DOI: 10.1111/jeb.14168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 03/23/2023]
Abstract
Sexual selection is a major force influencing the evolution of sexually reproducing species. Environmental factors such as larval density can manipulate adult condition and influence the direction and strength of sexual selection. While most studies on the influence of larval crowding on sexual selection are either correlational or single-generation manipulations, it is unclear how evolution under chronic larval crowding affects sexual selection. To answer this, we measured the strength of sexual selection on male and female Drosophila melanogaster that had evolved under chronic larval crowding for over 250 generations in the laboratory, along with their controls which had never experienced crowding, in a common garden high-density environment. We measured selection coefficients on male mating success and sex-specific reproductive success, as separate estimates allowed dissection of sex-specific effects. We show that experimental evolution under chronic larval crowding decreases the strength of sexual and fecundity selection in males but not in females, relative to populations experiencing crowding for the first time. The effect of larval crowding in reducing reproductive success is almost twice in females than in males. Our study highlights the importance of studying how evolution in a novel, stressful environment can shape adult fitness in organisms.
Collapse
Affiliation(s)
- Aaditya Narasimhan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | -
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Rohit Kapila
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Abhishek Meena
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | -
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| |
Collapse
|