1
|
Opell BD, Kelly SD, Morris SA, Correa-Garhwal SM. Changes in the material properties of spider glue droplet proteins accompanied shifts in prey capture biomechanics as cobweb spiders diverged from their orb weaving ancestors. Acta Biomater 2024; 183:191-200. [PMID: 38838907 DOI: 10.1016/j.actbio.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Although descended from orb weavers, spiders in the family Theridiidae spin cobwebs whose sticky prey capture gumfoot lines extend from a silk tangle to a surface below. When a crawling insect contacts glue droplets at the bottom of a gumfoot line, the line's weak pyriform anchor releases, causing the taut line to contract, pulling the insect from the surface and making its struggles to escape ineffective. To determine if this change in prey capture biomechanics was accompanied by a change in the material properties of theridiid glue, we characterized the elastic modulus and toughness of the glue droplet proteins of four theridiid species at 20-90 % relative humidity and compared their properties with those of 13 orb weaving species in the families Tetragnathidae and Araneidae. Compared to orb weavers, theridiid glue proteins had low extensions per protein volume and low elastic modulus and toughness values. These differences are likely explained by the loss of tension on a gumfoot line when its anchor fails, which may prioritize glue droplet adhesion rather than extension. Similarities in theridiid glue droplet properties did not reflect these species' evolutionary relationships. Instead, they appear associated with differences in web architecture. Two species that had stiffer gumfoot support lines and longer and more closely spaced gumfoot lines also had stiffer glue proteins. These lines may store more energy, and, when their anchors release, require stiffer glue to resist the more forceful upward thrust of a prey. STATEMENT OF SIGNIFICANCE: When a crawling insect contacts glue droplets on a theridiid cobweb's gumfoot line, this taut line's anchor fails and the insect is hoisted upward, rendering its struggles to escape ineffective. This strategy contrasts with that of orb weaving ancestors, which rely on more closely spaced prey capture threads to intercept and retain flying insects. A comparison of the elastic modulus and toughness of gumfoot and orb web glue proteins shows that this change in prey capture biomechanics is associated with reductions in the stiffness and toughness of cobweb glue. Unlike orb web capture threads, whose droplets extend in a coordinated fashion to sum adhesive forces, gumfoot lines become untethered, which prioritizes glue droplet adhesive contact over glue droplet extension.
Collapse
Affiliation(s)
- Brent D Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Sean D Kelly
- Department of Evolutionary Biology, San Diego State University, CA, USA
| | - Sarah A Morris
- Department of Biological Sciences, The George Washington University, Washington, D.C., USA
| | - Sandra M Correa-Garhwal
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
2
|
Peng X, Liu Z, Gao J, Zhang Y, Wang H, Li C, Lv X, Gao Y, Deng H, Zhao B, Gao T, Li H. Influence of Spider Silk Protein Structure on Mechanical and Biological Properties for Energetic Material Detection. Molecules 2024; 29:1025. [PMID: 38474537 PMCID: PMC10934110 DOI: 10.3390/molecules29051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Spider silk protein, renowned for its excellent mechanical properties, biodegradability, chemical stability, and low immune and inflammatory response activation, consists of a core domain with a repeat sequence and non-repeating sequences at the N-terminal and C-terminal. In this review, we focus on the relationship between the silk structure and its mechanical properties, exploring the potential applications of spider silk materials in the detection of energetic materials.
Collapse
Affiliation(s)
- Xinying Peng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Zhiyong Liu
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Junhong Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Yuhao Zhang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Hong Wang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Cunzhi Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Xiaoqiang Lv
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Yongchao Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Hui Deng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Bin Zhao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Ting Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Huan Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| |
Collapse
|
3
|
Opell BD, Elmore HM, Hendricks ML. Adhesive contact and protein elastic modulus tune orb weaving spider glue droplet biomechanics to habitat humidity. Acta Biomater 2022; 151:468-479. [PMID: 35970480 DOI: 10.1016/j.actbio.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Tiny glue droplets along the viscous capture threads of spider orb webs prevent insects from escaping. Each droplet is formed of a protein core surrounded by a hygroscopic aqueous layer, which cause the droplet's adhesion to change with humidity. As an insect struggles to escape the web, a thread's viscoelastic core proteins extend, transferring adhesive forces to the thread's support fibers. Maximum adhesive force is achieved when absorbed atmospheric moisture allows a flattened droplet to establish sufficient adhesive contact while maintaining the core protein cohesion necessary for force transfer. We examined the relationship between these droplet properties and adhesive force and the work of extending droplets at five relative humidities in twelve species that occupy habitats which have different humidities. A regression analysis that included both flattened droplet area and core protein elastic modulus described droplet adhesion, but the model was degraded when core protein area was substituted for droplet. Species from low humidity habitats expressed greater adhesion at lower humidities, whereas species from high humidity habitats expressed greater adhesion at high humidities. Our results suggest a general model of droplet adhesion with two adhesion peaks, one for low humidity species, which occurs when increasing droplet area and decreasing protein cohesion intersect, and another for high humidity species, which occurs when area and cohesion have diverged maximally. These dual peaks in adhesive force explain why some species from intermediate and high humidity habitats express high adhesion at several humidities. STATEMENT OF SIGNIFICANCE: We characterized the effect of humidity on the adhesion of twelve orb weaving spider species' glue droplets and showed how humidity-mediated changes in the contact area of a droplet's outer, hygroscopic aqueous layer and the stiffness of its protein core affect droplet performance. This revealed how droplet adhesion has been tuned to the humidity of a species' habitat and allowed us to revise a model that describes the environmental determinants of droplet biomechanics.
Collapse
Affiliation(s)
- Brent D Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Hannah Mae Elmore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mary L Hendricks
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|