1
|
Kinopus chlorellivorus
gen. nov., sp. nov. (Vampyrellida, Rhizaria), a New Algivorous Protist Predator Isolated from Large-Scale Outdoor Cultures of
Chlorella sorokiniana. Appl Environ Microbiol 2022; 88:e0121522. [PMID: 36300943 PMCID: PMC9680614 DOI: 10.1128/aem.01215-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vampyrellids (Vampyrellida, Rhizaria) are a major group of predatory amoebae that have attracted significant attention because of their diversity of feeding strategies. The crucial roles they play in important processes such as suppressing soil disease and controlling aquatic algae, and as microbial contaminants in outdoor large-scale algal cultures, have also received increasing attention.
Collapse
|
2
|
Chen Y, Liu W, Leng X, Stoll S. Toxicity of selenium nanoparticles on Poterioochromonas malhamensis algae in Waris-H culture medium and Lake Geneva water: Effect of nanoparticle coating, dissolution, and aggregation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152010. [PMID: 34856254 DOI: 10.1016/j.scitotenv.2021.152010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Understanding the algal toxicity of selenium nanoparticles (SeNPs) in aquatic systems by considering SeNPs physicochemical properties and environmental media characteristics is a concern of high importance for the evaluation and prediction of risk assessment. In this study, chitosan (CS) and sodium carboxymethyl cellulose (CMC) coated SeNPs are considered using Lake Geneva water and a Waris-H cell culture medium to investigate the effect of SeNPs on the toxicity of algae Poterioochromonas malhamensis, a widespread mixotrophic flagellate. The influence of surface coating, z-average diameters, ζ-potentials, aggregation behavior, ions release, and medium properties on the toxicity of SeNPs to algae P. malhamensi was investigated. It is found that SeNPs are 5-10 times more toxic in Lake Geneva water compared to the culture medium, suggesting that the traditional algal tests in Waris-H culture medium currently underestimate the toxicity of NPs in a natural water environment. Despite significant dissolution, it is also found that SeNPs themselves are the toxicity driver, and dissolved ions have only a marginal influence on toxicity. SeNPs diameter is found a minor factor in toxicity. Based on a principal component analysis (PCA) it is found that in Lake Geneva water, the nature of the surface coating (CMC versus CS) is the most influential factor controlling the toxicity of SeNPs. In the culture medium, surface coating, ζ-potential, and aggregation are found to contribute at the same level. These results highlight the importance of considering in details both NPs intrinsic and media properties in the evaluation of NPs biological effects.
Collapse
Affiliation(s)
- Yuying Chen
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Carl-Vogt 66, CH-1211 Geneva, Switzerland.
| | - Xiaojing Leng
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Serge Stoll
- Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Carl-Vogt 66, CH-1211 Geneva, Switzerland.
| |
Collapse
|
3
|
Xu W, Li X, Li Y, Sun Y, Zhang L, Huang Y, Yang Z. Rising temperature more strongly promotes low-abundance Paramecium to remove Microcystis and degrade microcystins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118143. [PMID: 34517177 DOI: 10.1016/j.envpol.2021.118143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Driven by global warming and eutrophication, Microcystis blooms have posed a severe threat to freshwater ecosystems, especially their derived pollutants cause serious harm to aquatic organisms, thus it is urgent to develop an effective strategy to eliminate nuisance Microcystis. Some protozoa can efficiently graze on toxic Microcystis aeruginosa and degrade cyanotoxins, and play a vital role in regulating harmful cyanobacteria. In the process of protozoa feeding on harmful algae, both temperature and protozoa population density are critical factors that affect the consequences of harmful M. aeruginosa population dynamics. In this study, we first found that Paramecium multimicronucleatum has strong ability to feed on M. aeruginosa, and then studied the interactive effects between temperature and initial density of P. multimicronucleatum on controlling M. aeruginosa. Results showed that increasing temperature accelerated the elimination of M. aeruginosa by P. multimicronucleatum, e.g. the time for M. aeruginosa elimination at 32 °C was shortened to 3.5-4 days. The higher temperatures (26, 29, and 32 °C) were more conducive to improve the efficiency of controlling M. aeruginosa by P. multimicronucleatum with low initial density (10 inds mL-1). Furthermore, P. multimicronucleatum can rapidly degrade microcystins, and the degradation ratio approximately 100% at 32 °C after 6 days. This is the first study to discover that P. multimicronucleatum can high efficiently graze on M. aeruginosa and has a much higher grazing rate (3.5-5.5 × 104Microcystis Paramecium-1 d-1) than other protozoa. These findings contribute to the establishment of a new feasible method for the biological control of M. aeruginosa, and provide a theoretical guidance for the practical application of P. multimicronucleatum in the removal of M. aeruginosa.
Collapse
Affiliation(s)
- Wenjie Xu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xianxian Li
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yapeng Li
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Huang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
4
|
Molina-Grima E, García-Camacho F, Acién-Fernández FG, Sánchez-Mirón A, Plouviez M, Shene C, Chisti Y. Pathogens and predators impacting commercial production of microalgae and cyanobacteria. Biotechnol Adv 2021; 55:107884. [PMID: 34896169 DOI: 10.1016/j.biotechadv.2021.107884] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 02/09/2023]
Abstract
Production of phytoplankton (microalgae and cyanobacteria) in commercial raceway ponds and other systems is adversely impacted by phytoplankton pathogens, including bacteria, fungi and viruses. In addition, cultures are susceptible to productivity loss, or crash, through grazing by contaminating zooplankton such as protozoa, rotifers and copepods. Productivity loss and product contamination are also caused by otherwise innocuous invading phytoplankton that consume resources in competition with the species being cultured. This review is focused on phytoplankton competitors, pathogens and grazers of significance in commercial culture of microalgae and cyanobacteria. Detection and identification of these biological contaminants are discussed. Operational protocols for minimizing contamination, and methods of managing it, are discussed.
Collapse
Affiliation(s)
- Emilio Molina-Grima
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain
| | | | | | | | - Maxence Plouviez
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Carolina Shene
- Center for Biotechnology and Bioengineering (CeBiB), Center of Food Biotechnology and Bioseparations, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| |
Collapse
|
5
|
Assessment of NH4HCO3 for the control of the predator flagellate Poterioochromonas malhamensis in pilot-scale culture of Chlorella sorokiniana. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Wang X, Li H, Zhan X, Ma M, Yuan D, Hu Q, Gong Y. Development and application of quantitative real-time PCR based on the mitochondrial cytochrome oxidase subunit I gene for early detection of the grazer Poterioochromonas malhamensis contaminating Chlorella culture. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|