1
|
Nozu R, Kadota M, Nakamura M, Kuraku S, Bono H. Meta-analysis of gonadal transcriptome provides novel insights into sex change mechanism across protogynous fishes. Genes Cells 2024; 29:1052-1068. [PMID: 39344081 PMCID: PMC11555629 DOI: 10.1111/gtc.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Protogyny, being capable of changing from female to male during their lifetime, is prevalent in 20 families of teleosts but is believed to have evolved within specific evolutionary lineages. Therefore, shared regulatory factors governing the sex change process are expected to be conserved across protogynous fishes. However, a comprehensive understanding of this mechanism remains elusive. To identify these factors, we conducted a meta-analysis using gonadal transcriptome data from seven species. We curated data pairs of ovarian tissue and transitional gonad, and employed ratios of expression level as a unified criterion for differential expression, enabling a meta-analysis across species. Our approach revealed that classical sex change-related genes exhibited differential expression levels between the ovary and transitional gonads, consistent with previous reports. These results validate our methodology's robustness. Additionally, we identified novel genes not previously linked to gonadal sex change in fish. Notably, changes in the expression levels of acetoacetyl-CoA synthetase and apolipoprotein Eb, which are involved in cholesterol synthesis and transport, respectively, suggest that the levels of cholesterol, a precursor of steroid hormones crucial for sex change, are decreased upon sex change onset in the gonads. This implies a potential universal influence of cholesterol dynamics on gonadal transformation in protogyny.
Collapse
Affiliation(s)
- Ryo Nozu
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Laboratory of BioDX, Genome Editing Innovation CenterHiroshima UniversityHiroshimaJapan
| | - Mitsutaka Kadota
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Laboratory for Developmental Genome SystemRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Masaru Nakamura
- Okinawa Churashima Research CenterOkinawa Churashima FoundationMotobu‐choJapan
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary BiologyNational Institute of GeneticsMishimaJapan
- Department of GeneticsGraduate University for Advanced Studies, SOKENDAIMishimaJapan
| | - Hidemasa Bono
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Laboratory of BioDX, Genome Editing Innovation CenterHiroshima UniversityHiroshimaJapan
| |
Collapse
|
2
|
Muñoz-Arroyo S, Guerrero-Tortolero DA, Hernández-Olalde L, Balart EF. Bidirectional sex-change behavior and physiological aspects in the Gorgeous goby Lythrypnus pulchellus (Gobiidae). JOURNAL OF FISH BIOLOGY 2024; 104:184-205. [PMID: 37779354 DOI: 10.1111/jfb.15573] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
The Gorgeous goby Lythrypnus pulchellus shows extreme sexual plasticity with the bidirectional sex-change ability socially controlled in adults. Therefore, this study describes how the hierarchical status affects hormone synthesis through newborn hormone waste products in water and tests the influence of body size and social dominance establishment in sex reversal duration and direction. The associated changes in behavior and hormone levels are described under laboratory conditions in male-male and female-female pairs of similar and different body sizes, recording the changes until spawning. The status establishment occurred in a relatively shorter time period in male and female pairs of different sizes (1-3 days) compared to those of similar size (3-5 days), but the earlier one did not significantly affect the overall time of sex change (verified by pair spawning). The changes in gonads, hormones, and papilla occurred in sex-changer individuals, but the first one was observed in behavior. Courtship started at 3-5 days in male pairs and from 2 h to 1 day in female pairs of both groups of different and similar sizes. Hormones did not gradually move in the new sexual phenotype direction during the sex-change time course. Nonetheless, estradiol regulated sex change and 11-ketotestosterone enabled bidirectional sex change and was modulated by agonistic interactions. Cortisol is associated with status and gonadal sex change. In general, similar mechanisms underlie sex change in both directions with a temporal change sequence in phases. These results shed new light on sex-change mechanisms. Further studies should be performed to determine whether these localized changes exist in the steroid hormone synthesis along the brain-pituitary gonad axis during social and bidirectional sex changes in L. pulchellus.
Collapse
Affiliation(s)
| | | | | | - Eduardo F Balart
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| |
Collapse
|
3
|
Kelly AM, Thompson RR. Testosterone facilitates nonreproductive, context-appropriate pro- and anti-social behavior in female and male Mongolian gerbils. Horm Behav 2023; 156:105436. [PMID: 37776832 DOI: 10.1016/j.yhbeh.2023.105436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/13/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
A growing body of literature suggests that testosterone (T) rapidly modulates behavior in a context-specific manner. However, the timescales in which T can rapidly mediate distinct types of behavior, such as pro- vs. anti- social responses, has not been studied. Thus, here we examined acute T influences on social behavior in male and female Mongolian gerbils in nonreproductive contexts. Females and males received an injection of either saline or T and were first tested in a social interaction test with a same-sex, familiar peer. 5 min after the peer interaction, subjects then underwent a resident-intruder test with a novel, same-sex conspecific. After another 5 min, gerbils were tested in a novel object task to test context-specificity (i.e., social vs. nonsocial) of T effects on behavior. Within 1 h, males and females injected with T exhibited more huddling with a peer but more active avoidance of and less time spent in proximity of an intruder than did animals injected with saline. T effects on behavior were specific to social contexts, such that T did not influence investigation of the novel object. Together these findings show that T rapidly promotes pro-social responses to a familiar peer and anti-social responses to an intruder in the same individuals within 5 min of experiencing these disparate social contexts. This demonstrates that T rapidly facilitates behavior in a context-appropriate manner outside the context of reproduction and reveals that rapid effects of T on behavior are not restricted to males.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA.
| | - Richmond R Thompson
- Division of Social Sciences, Oxford College of Emory University, 801 Emory Street, Oxford, GA 30054, USA
| |
Collapse
|
4
|
Soe KK, Iqbal TH, Lim A, Wang WX, Tsim KWK, Takeuchi Y, Petchsupa N, Hajisamae S. Reproductive characteristics of the hermaphroditic four-finger threadfin, Eleutheronema tetradactylum (Shaw, 1804), in tropical coastal waters. BMC ZOOL 2023; 8:22. [PMID: 37723576 PMCID: PMC10507980 DOI: 10.1186/s40850-023-00181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
This study investigated the reproductive traits of the hermaphroditic four-finger threadfin, Eleutheronema tetradactylum, along the coasts of Thailand during January to December 2021. Fish samples were collected from Pattani Bay, Thailand to assess the sex ratio, gonadosomatic index (GSI), maturity stage and fecundity. Additional fish samples were also collected from other areas to evaluate the length and weight at first sex change (Ls50 and Ws50) and length at first maturity (Lm50). The overall sex ratio for male and female was 1:0.69 with male being predominant throughout the year. Threadfin fish spawn the whole year round with peaks during moderate rainy and heavy rainy seasons. Histological examination confirmed its protandrous hermaphrodite posing multiple spawning habits. The average fecundity was 1.85 × 105 ± 1.05 × 105 eggs and positively related with standard length, body weight, gonad weight, and egg diameter (p < 0.05). The Ls50 and Ws50 were 27.58 cm and 419.39 g, and 29.71 cm and 457.28 g, for fish from Pattani Bay and Samut Prakan province, respectively. The Lm50 of male from Pattani Bay and Samut Prakan province were 25.78 cm and 25.56 cm, respectively, which were larger than those from Satun and Nakhon Sri Thammarat provinces. The Lm50 of females from Pattani Bay was smaller than that from Samut Prakan province. This study provided fundamental information on the reproductive characteristics of E. tetradactylum, which can be implemented to support management of natural fish stock and aquaculture development.
Collapse
Affiliation(s)
- Kay Khine Soe
- Faculty of Science and Technology, Prince of Songkla University, Muang, Pattani, 94000, Thailand
| | - Teuku Haris Iqbal
- Faculty of Science and Technology, Prince of Songkla University, Muang, Pattani, 94000, Thailand
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Apiradee Lim
- Faculty of Science and Technology, Prince of Songkla University, Muang, Pattani, 94000, Thailand
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Karl W K Tsim
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yutaka Takeuchi
- Noto Center for Fisheries Science and Technology, Faculty of Biological Science and Technology, Kanazawa University, Ossaka, Noto-Cho, Ishikawa, Japan
| | - Nirattisai Petchsupa
- Faculty of Science and Technology, Prince of Songkla University, Muang, Pattani, 94000, Thailand
| | - Sukree Hajisamae
- Faculty of Science and Technology, Prince of Songkla University, Muang, Pattani, 94000, Thailand.
| |
Collapse
|
5
|
Xie QP, Zhan W, Shi JZ, Liu F, Niu BL, He X, Liu M, Wang J, Liang QQ, Xie Y, Xu P, Wang X, Lou B. Whole-genome assembly and annotation for the little yellow croaker (Larimichthys polyactis) provide insights into the evolution of hermaphroditism and gonochorism. Mol Ecol Resour 2023; 23:632-658. [PMID: 36330680 DOI: 10.1111/1755-0998.13731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The evolutionary direction of gonochorism and hermaphroditism is an intriguing mystery to be solved. The special transient hermaphroditic stage makes the little yellow croaker (Larimichthys polyactis) an appealing model for studying hermaphrodite formation. However, the origin and evolutionary relationship between of L. polyactis and Larimichthys crocea, the most famous commercial fish species in East Asia, remain unclear. Here, we report the sequence of the L. polyactis genome, which we found is ~706 Mb long (contig N50 = 1.21 Mb and scaffold N50 = 4.52 Mb) and contains 25,233 protein-coding genes. Phylogenomic analysis suggested that L. polyactis diverged from the common ancestor, L. crocea, approximately 25.4 million years ago. Our high-quality genome assembly enabled comparative genomic analysis, which revealed several within-chromosome rearrangements and translocations, without major chromosome fission or fusion events between the two species. The dmrt1 gene was identified as the male-specific gene in L. polyactis. Transcriptome analysis showed that the expression of dmrt1 and its upstream regulatory gene (rnf183) were both sexually dimorphic. Rnf183, unlike its two paralogues rnf223 and rnf225, is only present in Larimichthys and Lates but not in other teleost species, suggesting that it originated from lineage-specific duplication or was lost in other teleosts. Phylogenetic analysis shows that the hermaphrodite stage in male L. polyactis may be explained by the sequence evolution of dmrt1. Decoding the L. polyactis genome not only provides insight into the genetic underpinnings of hermaphrodite evolution, but also provides valuable information for enhancing fish aquaculture.
Collapse
Affiliation(s)
- Qing-Ping Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Zhi Shi
- Novogene Bioinformatics Institute, Beijing, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Bao-Long Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xue He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meng Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Jing Wang
- Novogene Bioinformatics Institute, Beijing, China
| | - Qi-Qi Liang
- Novogene Bioinformatics Institute, Beijing, China
| | - Yue Xie
- Novogene Bioinformatics Institute, Beijing, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.,Alabama Agricultural Experiment Station, Auburn, Alabama, USA.,The HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
6
|
Goikoetxea A, Muncaster S, Todd EV, Lokman PM, Robertson HA, De Farias E Moraes CE, Damsteegt EL, Gemmell NJ. A new experimental model for the investigation of sequential hermaphroditism. Sci Rep 2021; 11:22881. [PMID: 34819550 PMCID: PMC8613207 DOI: 10.1038/s41598-021-02063-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
The stunning sexual transformation commonly triggered by age, size or social context in some fishes is one of the best examples of phenotypic plasticity thus far described. To date our understanding of this process is dominated by studies on a handful of subtropical and tropical teleosts, often in wild settings. Here we have established the protogynous New Zealand spotty wrasse, Notolabrus celidotus, as a temperate model for the experimental investigation of sex change. Captive fish were induced to change sex using aromatase inhibition or manipulation of social groups. Complete female-to-male transition occurred over 60 days in both cases and time-series sampling was used to quantify changes in hormone production, gene expression and gonadal cellular anatomy. Early-stage decreases in plasma 17β-estradiol (E2) concentrations or gonadal aromatase (cyp19a1a) expression were not detected in spotty wrasse, despite these being commonly associated with the onset of sex change in subtropical and tropical protogynous (female-to-male) hermaphrodites. In contrast, expression of the masculinising factor amh (anti-Müllerian hormone) increased during early sex change, implying a potential role as a proximate trigger for masculinisation. Collectively, these data provide a foundation for the spotty wrasse as a temperate teleost model to study sex change and cell fate in vertebrates.
Collapse
Affiliation(s)
- A Goikoetxea
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - S Muncaster
- Environmental Management Group, Toi Ohomai Institute of Technology, Tauranga, New Zealand.
- School of Science, University of Waikato, Tauranga, New Zealand.
| | - E V Todd
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - P M Lokman
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - H A Robertson
- Environmental Management Group, Toi Ohomai Institute of Technology, Tauranga, New Zealand
| | - C E De Farias E Moraes
- Environmental Management Group, Toi Ohomai Institute of Technology, Tauranga, New Zealand
| | - E L Damsteegt
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - N J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Casas L, Saborido-Rey F. Environmental Cues and Mechanisms Underpinning Sex Change in Fish. Sex Dev 2021; 15:108-121. [PMID: 34111868 DOI: 10.1159/000515274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
Fishes are the only vertebrates that undergo sex change during their lifetime, but even within this group, a unique reproductive strategy is displayed by only 1.5% of the teleosts. This lability in alternating sexual fate is the result of the simultaneous suppression and activation of opposing male and female networks. Here, we provide a brief review summarizing recent advances in our understanding of the environmental cues that trigger sex change and their perception, integration, and translation into molecular cascades that convert the sex of an individual. We particularly focus on molecular events underpinning the complex behavioral and morphological transformation involved in sex change, dissecting the main molecular players and regulatory networks that shape the transformation of one sex into the opposite. We show that histological changes and molecular pathways governing gonadal reorganization are better described than the neuroendocrine basis of sex change and that, despite important advances, information is lacking for the majority of hermaphrodite species. We highlight significant gaps in our knowledge of how sex change takes place and suggest future research directions.
Collapse
Affiliation(s)
- Laura Casas
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Fran Saborido-Rey
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| |
Collapse
|
8
|
Chen J, Peng C, Huang J, Shi H, Xiao L, Tang L, Lin H, Li S, Zhang Y. Physical interactions facilitate sex change in the protogynous orange-spotted grouper, Epinephelus coioides. JOURNAL OF FISH BIOLOGY 2021; 98:1308-1320. [PMID: 33377528 DOI: 10.1111/jfb.14663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Sex change in teleost fishes is commonly regulated by social factors. In species that exhibit protogynous sex change, such as the orange-spotted grouper Epinephelus coioides, when the dominant males are removed from the social group, the most dominant female initiates sex change. The aim of this study was to determine the regulatory mechanisms of socially controlled sex change in E. coioides. We investigated the seasonal variation in social behaviours and sex change throughout the reproductive cycle of E. coioides, and defined the behaviour pattern of this fish during the establishment of a dominance hierarchy. The social behaviours and sex change in this fish were affected by season, and only occurred during the prebreeding season and breeding season. Therefore, a series of sensory isolation experiments was conducted during the breeding season to determine the role of physical, visual and olfactory cues in mediating socially controlled sex change. The results demonstrated that physical interactions between individuals in the social groups were crucial for the initiation and completion of sex change, whereas visual and olfactory cues alone were insufficient in stimulating sex change in dominant females. In addition, we propose that the steroid hormones 11-ketotestosterone and cortisol are involved in regulating the initiation of socially controlled sex change.
Collapse
Affiliation(s)
- Jiaxing Chen
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Cheng Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Jingjun Huang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Herong Shi
- Marine Fisheries Development Center of Guangdong Province, Huizhou, China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lin Tang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shuisheng Li
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yong Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Marine Fisheries Development Center of Guangdong Province, Huizhou, China
| |
Collapse
|
9
|
Peng C, Wang Q, Shi H, Chen J, Li S, Zhao H, Lin H, Yang J, Zhang Y. Natural sex change in mature protogynous orange-spotted grouper (Epinephelus coioides): gonadal restructuring, sex hormone shifts and gene profiles. JOURNAL OF FISH BIOLOGY 2020; 97:785-793. [PMID: 32535923 DOI: 10.1111/jfb.14434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Sexual patterns of teleosts are extremely diverse and include both gonochorism and hermaphroditism. As a protogynous hermaphroditic fish, all orange-spotted groupers (Epinephelus coioides) develop directly into females, and some individuals change sex to become functional males later in life. This study investigated gonadal restructuring, shifts in sex hormone levels and gene profiles of cultured mature female groupers during the first (main) breeding season of 2019 in Huizhou, China (22° 42' 02.6″ N, 114° 32' 10.1″ E). Analysis of gonadal restructuring revealed that females with pre-vitellogenic ovaries underwent vitellogenesis, spawning and regression and then returned to the pre-vitellogenic stage in the late breeding season, at which point some changed sex to become males via the intersex gonad stage. A significant decrease in the level of serum 17β-estradiol (E2) was observed during ovary regression but not during sex change, whereas serum 11-ketotestosterone (11-KT) concentrations increased significantly during sex change with the highest concentration in newly developed males. Consistent with serum hormone changes, a significant decrease in cyp19a1a expression was observed during ovary regression but not during sex change, whereas the expression of cyp11c1 and hsd11b2 increased significantly during sex change. Interestingly, hsd11b2 but not cyp11c1 was significantly upregulated from the pre-vitellogenic ovary stage to the early intersex gonad stage. These results suggest that a decrease in serum E2 concentration and downregulation of cyp19a1a expression are not necessary to trigger the female-to-male transformation, whereas increased 11-KT concentration and upregulation of hsd11b2 expression may be key events for the initiation of sex change in the orange-spotted grouper.
Collapse
Affiliation(s)
- Cheng Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qing Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Herong Shi
- Marine Fisheries Development Center of Guangdong Province, Huizhou, China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jianchun Yang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Marine Fisheries Development Center of Guangdong Province, Huizhou, China
| |
Collapse
|
10
|
Seljestad GW, Quintela M, Faust E, Halvorsen KT, Besnier F, Jansson E, Dahle G, Knutsen H, André C, Folkvord A, Glover KA. "A cleaner break": Genetic divergence between geographic groups and sympatric phenotypes revealed in ballan wrasse ( Labrus bergylta). Ecol Evol 2020; 10:6120-6135. [PMID: 32607218 PMCID: PMC7319121 DOI: 10.1002/ece3.6404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Capture and long-distance translocation of cleaner fish to control lice infestations on marine salmonid farms has the potential to influence wild populations via overexploitation in source regions, and introgression in recipient regions. Knowledge of population genetic structure is therefore required. We studied the genetic structure of ballan wrasse, a phenotypically diverse and extensively used cleaner fish, from 18 locations in Norway and Sweden, and from Galicia, Spain, using 82 SNP markers. We detected two very distinct genetic groups in Scandinavia, northwestern and southeastern. These groups were split by a stretch of sandy beaches in southwest Norway, representing a habitat discontinuity for this rocky shore associated benthic egg-laying species. Wrasse from Galicia were highly differentiated from all Scandinavian locations, but more similar to northwestern than southeastern locations. Distinct genetic differences were observed between sympatric spotty and plain phenotypes in Galicia, but not in Scandinavia. The mechanisms underlying the geographic patterns between phenotypes are discussed, but not identified. We conclude that extensive aquaculture-mediated translocation of ballan wrasse from Sweden and southern Norway to western and middle Norway has the potential to mix genetically distinct populations. These results question the sustainability of the current cleaner fish practice.
Collapse
Affiliation(s)
- Gaute W. Seljestad
- Institute of Marine ResearchBergenNorway
- Department of Biological SciencesUniversity of BergenBergenNorway
| | | | - Ellika Faust
- Department of Marine Sciences—TjärnöUniversity of GothenburgStrömstadSweden
| | - Kim T. Halvorsen
- Institute of Marine ResearchAustevoll Research StationStorebøNorway
| | | | | | - Geir Dahle
- Institute of Marine ResearchBergenNorway
| | - Halvor Knutsen
- Institute of Marine ResearchFlødevigenNorway
- Centre for Coastal ResearchUniversity of AgderKristiansandNorway
| | - Carl André
- Department of Marine Sciences—TjärnöUniversity of GothenburgStrömstadSweden
| | - Arild Folkvord
- Institute of Marine ResearchBergenNorway
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Kevin A. Glover
- Institute of Marine ResearchBergenNorway
- Department of Biological SciencesUniversity of BergenBergenNorway
| |
Collapse
|
11
|
Gupta YR, Senthilkumaran B. Common carp pentraxin gene: Evidence for its role in ovarian differentiation and growth. Gen Comp Endocrinol 2020; 290:113398. [PMID: 31981692 DOI: 10.1016/j.ygcen.2020.113398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/25/2019] [Accepted: 01/20/2020] [Indexed: 12/30/2022]
Abstract
Pentraxins (PTX), belong to an evolutionarily conserved family, containing a PTX protein domain, having role in acute immunological responses and fertility in higher vertebrates. However, information regarding the action of ptx on reproduction is extremely limited in fish. To study this, ptx cDNA was cloned for downstream analysis. Tissue distribution and ontogeny expression analysis indicated the prevalence of ptx in ovary. Varied phase-wise expression during carp ovarian cycle and elevated ptx expression after human chorionic gonadotropin induction, in vitro and in vivo, indicated probable regulation of gonadotropin. In situ hybridization and immunohistochemistry revealed the presence of ptx transcript and protein in the follicular layer of stage-III/IV oocytes indicating a role in ovarian growth. To assess the functional significance of ptx, transient silencing was performed using follicular primary cell culture, in vitro and in common carp, in vivo, through ovary-targeted injection of PEI-siRNA. Transient silencing of ptx-siRNA reduced the expression of various genes/factors related to oogenesis such as transcription factors, several steroidogenic enzymes, and esrs genes. These alterations in expression suggested a plausible role for ptx in ovarian steroidogenesis either, directly or indirectly, which is evident from the changes in the serum estradiol-17β (E2) and 17α,20β-dihydroxyprogesterone levels. Furthermore, downregulation of aromatase activity was also noticed after transient silencing. Increased ptx expression after E2 induced sex reversal to juvenile carp showed the correlative role of ptx during ovarian differentiation and development. Taken together, these findings suggest that ptx exerts an important role during ovarian growth, maturation and/or recrudescence of common carp.
Collapse
Affiliation(s)
- Yugantak Raj Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| |
Collapse
|
12
|
Thomas JT, Todd EV, Muncaster S, Lokman PM, Damsteegt EL, Liu H, Soyano K, Gléonnec F, Lamm MS, Godwin JR, Gemmell NJ. Conservation and diversity in expression of candidate genes regulating socially-induced female-male sex change in wrasses. PeerJ 2019; 7:e7032. [PMID: 31218121 PMCID: PMC6568253 DOI: 10.7717/peerj.7032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/27/2019] [Indexed: 01/06/2023] Open
Abstract
Fishes exhibit remarkably diverse, and plastic, patterns of sexual development, most striking of which is sequential hermaphroditism, where individuals readily reverse sex in adulthood. How this stunning example of phenotypic plasticity is controlled at a genetic level remains poorly understood. Several genes have been implicated in regulating sex change, yet the degree to which a conserved genetic machinery orchestrates this process has not yet been addressed. Using captive and in-the-field social manipulations to initiate sex change, combined with a comparative qPCR approach, we compared expression patterns of four candidate regulatory genes among three species of wrasses (Labridae)-a large and diverse teleost family where female-to-male sex change is pervasive, socially-cued, and likely ancestral. Expression in brain and gonadal tissues were compared among the iconic tropical bluehead wrasse (Thalassoma bifasciatum) and the temperate spotty (Notolabrus celidotus) and kyusen (Parajulus poecilepterus) wrasses. In all three species, gonadal sex change was preceded by downregulation of cyp19a1a (encoding gonadal aromatase that converts androgens to oestrogens) and accompanied by upregulation of amh (encoding anti-müllerian hormone that primarily regulates male germ cell development), and these genes may act concurrently to orchestrate ovary-testis transformation. In the brain, our data argue against a role for brain aromatase (cyp19a1b) in initiating behavioural sex change, as its expression trailed behavioural changes. However, we find that isotocin (it, that regulates teleost socio-sexual behaviours) expression correlated with dominant male-specific behaviours in the bluehead wrasse, suggesting it upregulation mediates the rapid behavioural sex change characteristic of blueheads and other tropical wrasses. However, it expression was not sex-biased in temperate spotty and kyusen wrasses, where sex change is more protracted and social groups may be less tightly-structured. Together, these findings suggest that while key components of the molecular machinery controlling gonadal sex change are phylogenetically conserved among wrasses, neural pathways governing behavioural sex change may be more variable.
Collapse
Affiliation(s)
- Jodi T. Thomas
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| | - Erica V. Todd
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| | - Simon Muncaster
- Faculty of Primary Industries, Environment and Science, Toi Ohomai Institute of Technology, Tauranga, Bay of Plenty, New Zealand
| | - P Mark Lokman
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
| | - Erin L. Damsteegt
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
| | - Hui Liu
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| | - Kiyoshi Soyano
- Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Taira-machi, Nagasaki, Japan
| | - Florence Gléonnec
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
- BIOSIT - Structure Fédérative de Recherche en Biologie-Santé de Rennes, Université Rennes I, Rennes, France
| | - Melissa S. Lamm
- Department of Biological Sciences and WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States of America
| | - John R. Godwin
- Department of Biological Sciences and WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Neil J. Gemmell
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
13
|
Chen J, Xiao L, Peng C, Ye Z, Wang D, Yang Y, Zhang H, Zhao M, Li S, Lin H, Zhang Y. Socially controlled male-to-female sex reversal in the protogynous orange-spotted grouper, Epinephelus coioides. JOURNAL OF FISH BIOLOGY 2019; 94:414-421. [PMID: 30684293 DOI: 10.1111/jfb.13911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Socially controlled sex change in teleosts is a dramatic example of adaptive reproductive plasticity. In many cases, the occurrence of sex change is triggered by a change in the social context, such as the disappearance of the dominant individual. The orange-spotted grouper Epinephelus coioides is a typical protogynous hermaphrodite fish that changes sex from female to male and remains male throughout its life span. In this study, male-to-female sex reversal in male Epinephelus coioides was successfully induced by social isolation. The body length and mass, gonadal change, serum sex steroid hormone levels and sex-related gene expression patterns during the process of socially controlled male-to-female sex reversal in E. coioides were systematically examined. This report investigates the physiological mechanisms of the socially controlled male-to-female sex reversal process in a protogynous hermaphrodite grouper species. The results enable us to study the physiological control of sex change, not only from female to male, but also from male to female.
Collapse
Affiliation(s)
- Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Cheng Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhifeng Ye
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Dengdong Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yuqing Yang
- Marine Fisheries Development Center of Guangdong Province, Huizhou, People's Republic of China
| | - Haifa Zhang
- Marine Fisheries Development Center of Guangdong Province, Huizhou, People's Republic of China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- College of Ocean, Hainan University, Haikou, People's Republic of China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Marine Fisheries Development Center of Guangdong Province, Huizhou, People's Republic of China
| |
Collapse
|
14
|
Abstract
Sexual fate can no longer be considered an irreversible deterministic process that once established during early embryonic development, plays out unchanged across an organism's life. Rather, it appears to be a dynamic process, with sexual phenotype determined through an ongoing battle for supremacy between antagonistic male and female developmental pathways. That sexual fate is not final and is actively regulated via the suppression or activation of opposing genetic networks creates the potential for flexibility in sexual phenotype in adulthood. Such flexibility is seen in many fish, where sex change is a usual and adaptive part of the life cycle. Many fish are sequential hermaphrodites, beginning life as one sex and changing sometime later to the other. Sequential hermaphrodites include species capable of female-to-male (protogynous), male-to-female (protandrous), or bidirectional (serial) sex change. These natural forms of sex change involve coordinated transformations across multiple biological systems, including behavioral, anatomical, neuroendocrine and molecular axes. Here we review the biological processes underlying this amazing transformation, focusing particularly on the molecular aspects, where new genomic technologies are beginning to help us understand how sex change is initiated and regulated at the molecular level.
Collapse
Affiliation(s)
- Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | - Erica V Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | | | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Todd EV, Liu H, Muncaster S, Gemmell NJ. Bending Genders: The Biology of Natural Sex Change in Fish. Sex Dev 2016; 10:223-241. [PMID: 27820936 DOI: 10.1159/000449297] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 11/19/2022] Open
Abstract
Sexual fate is no longer seen as an irreversible deterministic switch set during early embryonic development but as an ongoing battle for primacy between male and female developmental trajectories. That sexual fate is not final and must be actively maintained via continuous suppression of the opposing sexual network creates the potential for flexibility into adulthood. In many fishes, sexuality is not only extremely plastic, but sex change is a usual and adaptive part of the life cycle. Sequential hermaphrodites begin life as one sex, changing sometime later to the other, and include species capable of protandrous (male-to-female), protogynous (female-to-male), or serial (bidirectional) sex change. Natural sex change involves coordinated transformations across multiple biological systems, including behavioural, anatomical, neuroendocrine, and molecular axes. We here review the biological processes underlying this amazing transformation, focussing particularly on its molecular basis, which remains poorly understood, but where new genomic technologies are significantly advancing our understanding of how sex change is initiated and progressed at the molecular level. Knowledge of how a usually committed developmental process remains plastic in sequentially hermaphroditic fishes is relevant to understanding the evolution and functioning of sexual developmental systems in vertebrates generally, as well as pathologies of sexual development in humans.
Collapse
Affiliation(s)
- Erica V Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
16
|
Clark W, Leclercq E, Migaud H, Nairn J, Davie A. Isolation, identification and characterisation of ballan wrasse Labrus bergylta plasma pigment. JOURNAL OF FISH BIOLOGY 2016; 89:2070-2084. [PMID: 27501866 DOI: 10.1111/jfb.13106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
This study confirmed that observations of blue-green colouration in plasma fractions of the ballan wrasse Labrus bergylta were caused by the linear tetra-pyrrole biliverdin and that the molecule was of the physiologically relevant IXα isomer. Accumulation appears driven by chromogenic association with an unknown protein moiety which precludes enzymatic reduction and would suggest active management. It was demonstrated that the pigment did not fluctuate relative to ontogeny, or indeed binary gender in the species of interest, but mobilisation and depletion in the subset of individuals undergoing sex change at the time of study supports a potential association with gender inversion processes. It is of note that although biliverdin does have some effect on external colouration, the evidence is indicative that crypsis is a supplementary function thus other factors must be considered.
Collapse
Affiliation(s)
- W Clark
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, U.K
| | - E Leclercq
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, U.K
| | - H Migaud
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, U.K
| | - J Nairn
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TS, Scotland, U.K
| | - A Davie
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, U.K..
| |
Collapse
|
17
|
Liu H, Todd EV, Lokman PM, Lamm MS, Godwin JR, Gemmell NJ. Sexual plasticity: A fishy tale. Mol Reprod Dev 2016; 84:171-194. [PMID: 27543780 DOI: 10.1002/mrd.22691] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/16/2016] [Indexed: 01/08/2023]
Abstract
Teleost fish exhibit remarkably diverse and plastic patterns of sexual development. One of the most fascinating modes of plasticity is functional sex change, which is widespread in marine fish including species of commercial importance; however, the regulatory mechanisms remain elusive. In this review, we explore such sexual plasticity in fish, using the bluehead wrasse (Thalassoma bifasciatum) as the primary model. Synthesizing current knowledge, we propose that cortisol and key neurochemicals modulate gonadotropin releasing hormone and luteinizing hormone signaling to promote socially controlled sex change in protogynous fish. Future large-scale genomic analyses and systematic comparisons among species, combined with manipulation studies, will likely uncover the common and unique pathways governing this astonishing transformation. Revealing the molecular and neuroendocrine mechanisms underlying sex change in fish will greatly enhance our understanding of vertebrate sex determination and differentiation as well as phenotypic plasticity in response to environmental influences. Mol. Reprod. Dev. 84: 171-194, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Erica V Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - P Mark Lokman
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Melissa S Lamm
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Wu GC, Tey WG, Li HW, Chang CF. Sexual Fate Reprogramming in the Steroid-Induced Bi-Directional Sex Change in the Protogynous Orange-Spotted Grouper, Epinephelus coioides. PLoS One 2015; 10:e0145438. [PMID: 26714271 PMCID: PMC4694621 DOI: 10.1371/journal.pone.0145438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/03/2015] [Indexed: 11/18/2022] Open
Abstract
Androgen administration has been widely used for masculinization in fish. The mechanism of the sex change in sexual fate regulation is not clear. Oral administration or pellet implantation was applied. We orally applied an aromatase inhibitor (AI, to decrease estrogen levels) and 17α-methyltestosterone (MT, to increase androgen levels) to induce masculinization to clarify the mechanism of the sex change in the protogynous orange-spotted grouper. After 3 mo of AI/MT administration, male characteristics were observed in the female-to-male sex change fish. These male characteristics included increased plasma 11-ketotestosterone (11-KT), decreased estradiol (E2) levels, increased male-related gene (dmrt1, sox9, and cyp11b2) expression, and decreased female-related gene (figla, foxl2, and cyp19a1a) expression. However, the reduced male characteristics and male-to-female sex change occurred after AI/MT-termination in the AI- and MT-induced maleness. Furthermore, the MT-induced oocyte-depleted follicle cells (from MT-implantation) had increased proliferating activity, and the sexual fate in a portion of female gonadal soma cells was altered to male function during the female-to-male sex change. In contrast, the gonadal soma cells were not proliferative during the early process of the male-to-female sex change. Additionally, the male gonadal soma cells did not alter to female function during the male-to-female sex change in the AI/MT-terminated fish. After MT termination in the male-to-female sex-changed fish, the differentiated male germ cells showed increased proliferating activities together with dormancy and did not show characteristics of both sexes in the early germ cells. In conclusion, these findings indicate for the first time in a single species that the mechanism involved in the replacement of soma cells is different between the female-to-male and male-to-female sex change processes in grouper. These results also demonstrate that sexual fate determination (secondary sex determination) is regulated by endogenous sex steroid levels.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- * E-mail: (G-CW); (C-FC)
| | - Wei-Guan Tey
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hau-Wen Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- * E-mail: (G-CW); (C-FC)
| |
Collapse
|
19
|
Lamm MS, Liu H, Gemmell NJ, Godwin JR. The Need for Speed: Neuroendocrine Regulation of Socially-controlled Sex Change. Integr Comp Biol 2015; 55:307-22. [DOI: 10.1093/icb/icv041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
20
|
Leclercq E, Grant B, Davie A, Migaud H. Gender distribution, sexual size dimorphism and morphometric sexing in ballan wrasse Labrus bergylta. JOURNAL OF FISH BIOLOGY 2014; 84:1842-1862. [PMID: 24890405 DOI: 10.1111/jfb.12402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
In wild ballan wrasse Labrus bergylta, mass-length relationships were not different between genders, and positive allometry was found in the mixed-gender population. Male-biased sexual size dimorphism was significant and the most effective morphometric method for sexing L. bergylta outside of the species spawning window used body mass (M(B) in g), total body length (L(T) in mm) and Fulton's condition factor (K) as discriminant variables to predict gender with 91% accuracy. The discriminant score (S(D)) of a specimen can be calculated as S(D) = 0.01 M(B)- 0.016 L(T)- 3.835 K + 6.252 to predict its gender as female or male if S(D) is < 1.459 or S(D) is > 1.504, respectively. There was a potential trend towards earlier sexual inversion compared to previous studies at comparable latitudes. Sex change is a phenotypically plastic trait under social control in haremic fishes and should be monitored in increasingly exploited L. bergylta.
Collapse
Affiliation(s)
- E Leclercq
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, U.K
| | | | | | | |
Collapse
|