1
|
Ott BD, Hulse-Kemp AM, Duke MV, Griffin MJ, Peterson BC, Scheffler BE, Torrans EL, Allen PJ. Hypothalamic transcriptome response to simulated diel earthen pond hypoxia cycles in channel catfish ( Ictalurus punctatus). Physiol Genomics 2024; 56:519-530. [PMID: 38808773 DOI: 10.1152/physiolgenomics.00007.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024] Open
Abstract
Commercial culture of channel catfish (Ictalurus punctatus) occurs in earthen ponds that are characterized by diel swings in dissolved oxygen concentration that can fall to severe levels of hypoxia, which can suppress appetite and lead to suboptimal growth. Given the significance of the hypothalamus in regulating these processes in other fishes, an investigation into the hypothalamus transcriptome was conducted to identify specific genes and expression patterns responding to hypoxia. Channel catfish in normoxic water were compared with catfish subjected to 12 h of hypoxia (20% oxygen saturation; 1.8 mg O2/L; 27°C) followed by 12 h of recovery in normoxia to mimic 24 h in a catfish aquaculture pond. Fish were sampled at 0-, 6-, 12-, 18-, and 24-h timepoints, with the 6- and 12-h samplings occurring during hypoxia. A total of 190 genes were differentially expressed during the experiment, with most occurring during hypoxia and returning to baseline values within 6 h of normoxia. Differentially expressed genes were sorted by function into Gene Ontology biological processes and revealed that most were categorized as "response to hypoxia," "sprouting angiogenesis," and "cellular response to xenobiotic stimulus." The patterns of gene expression reported here suggest that transcriptome responses to hypoxia are broad and quickly reversibly with the onset of normoxia. Although no genes commonly reported to modulate appetite were found to be differentially expressed in this experiment, several candidates were identified for future studies investigating the interplay between hypoxia and appetite in channel catfish, including adm, igfbp1a, igfbp7, and stc2b.NEW & NOTEWORTHY Channel catfish are an economically important species that experience diel episodic periods of hypoxia that can reduce appetite. This is the first study to investigate their transcriptome from the hypothalamus in a simulated 24-h span in a commercial catfish pond, with 12 h of hypoxia and 12 h of normoxia. The research revealed functional groups of genes relating to hypoxia, angiogenesis, and glycolysis as well as individual target genes possibly involved in appetite regulation.
Collapse
Affiliation(s)
- Brian D Ott
- Warmwater Aquaculture Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Amanda M Hulse-Kemp
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Mary V Duke
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Matt J Griffin
- Aquatic Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, United States
| | - Brian C Peterson
- National Cold Water Marine Aquaculture Center, Agricultural Research Service, United States Department of Agriculture, Franklin, Maine, United States
| | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Eugene L Torrans
- Warmwater Aquaculture Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Peter J Allen
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Mississippi State, Mississippi, United States
| |
Collapse
|
2
|
Luis Val A, Wood CM. Global change and physiological challenges for fish of the Amazon today and in the near future. J Exp Biol 2022; 225:275450. [PMID: 35582942 DOI: 10.1242/jeb.216440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Amazonia is home to 15% (>2700, in 18 orders) of all the freshwater fish species of the world, many endemic to the region, has 65 million years of evolutionary history and accounts for 20% of all freshwater discharge to the oceans. These characteristics make Amazonia a unique region in the world. We review the geological history of the environment, its current biogeochemistry and the evolutionary forces that led to the present endemic fish species that are distributed amongst three very different water types: black waters [acidic, ion-poor, rich in dissolved organic carbon (DOC)], white waters (circumneutral, particle-rich) and clear waters (circumneutral, ion-poor, DOC-poor). The annual flood pulse is the major ecological driver for fish, providing feeding, breeding and migration opportunities, and profoundly affecting O2, CO2 and DOC regimes. Owing to climate change and other anthropogenic pressures such as deforestation, pollution and governmental mismanagement, Amazonia is now in crisis. The environment is becoming hotter and drier, and more intense and frequent flood pulses are now occurring, with greater variation between high and low water levels. Current projections are that Amazon waters of the near future will be even hotter, more acidic, darker (i.e. more DOC, more suspended particles), higher in ions, higher in CO2 and lower in O2, with many synergistic effects. We review current physiological information on Amazon fish, focusing on temperature tolerance and ionoregulatory strategies for dealing with acidic and ion-poor environments. We also discuss the influences of DOC and particles on gill function, the effects of high dissolved CO2 and low dissolved O2, with emphasis on water- versus air-breathing mechanisms, and strategies for pH compensation. We conclude that future elevations in water temperature will be the most critical factor, eliminating many species. Climate change will likely favour predominantly water-breathing species with low routine metabolic rates, low temperature sensitivity of routine metabolic rates, high anaerobic capacity, high hypoxia tolerance and high thermal tolerance.
Collapse
Affiliation(s)
- Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil, 69080-971
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4.,Department of Biology, McMaster University, Hamilton, ON, CanadaL8S 4K1
| |
Collapse
|
3
|
Jung EH, Brix KV, Richards JG, Val AL, Brauner CJ. Reduced hypoxia tolerance and survival at elevated temperatures may limit the ability of Amazonian fishes to survive in a warming world. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141349. [PMID: 32818889 DOI: 10.1016/j.scitotenv.2020.141349] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The Amazon basin contains more than 20% of the world's freshwater fishes, many of ecological and economical importance. An increase in temperature of 2.2 to 7 °C is predicted to occur within the next century in the worst-case scenario of climate change predictions, which will likely be associated with an increase in the prevalence and duration of reduced water oxygen levels (hypoxia). Furthermore, there is an increasing frequency of heat waves in the Amazon basin, which exacerbates issues related to temperature and hypoxia. Increases in temperature and hypoxia both constrain an organism's ability to supply oxygen to metabolizing tissues, thus the ability to cope with thermal and hypoxic stress may be correlated. Here, we reveal a positive correlation between acute thermal tolerance and acute hypoxia tolerance amongst 37 Amazonian fish species at the current river temperatures of 28-31 °C. The effects of long-term (10 days or 4 weeks) increases in temperature were investigated in a subset of 13 species and demonstrated that 2 species failed to acclimate and survive at 33 °C, 9 species failed at 35 °C, and only 2 species survived up to 35 °C. Of those that survived long-term exposure to 33 or 35 °C, the majority of the species demonstrated only an improvement in acute thermal tolerance. In contrast, hypoxia tolerance was reduced following acute- and long-term exposure to 33, 35 or 37 °C in all species investigated. The results of this study suggest that many of the fish species that inhabit the Amazon may be at risk during both short- and long-term temperature increases and these risks are exacerbated by the associated environmental hypoxia.
Collapse
Affiliation(s)
- Ellen H Jung
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | - Jeffrey G Richards
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Sun H, Liu S, Mao J, Yu Z, Lin Z, Mao J. New insights into the impacts of huangjiu compontents on intoxication. Food Chem 2020; 317:126420. [PMID: 32101783 DOI: 10.1016/j.foodchem.2020.126420] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/01/2020] [Accepted: 02/14/2020] [Indexed: 11/30/2022]
Abstract
Although huangjiu is a popular alcoholic beverage in China, the occurrence of quick-intoxication suppresses huangjiu consumption and impedes development of the huangjiu industry. In this study, the Cryprinus carpio intoxication model was used to compare the differences in intoxication effect of alcoholic beverages and to assess the impacts of huangjiu components on intoxication for the first time. Exposure to huangjiu led to the most rapid physical imbalance of C. carpio, followed by red wine and Western liquor. Higher alcohols, biogenic amines and aldehydes could cause physical imbalance of fish by themselves, and synergistic effects were observed when combined with ethanol. 2-Phenylethanoland and isopentanol had the greatest positive effect on huangjiu intoxication, followed by histamine and phenethylamine. No synergistic effect was observed between individual aldehydes and ethanol. Identification of these impactful huangjiu components provides a new perspective on the establishment of more rigorous control on the quality and flavor of huangjiu.
Collapse
Affiliation(s)
- Hailong Sun
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center of Chinese Rice Wine, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, China; Jiangsu Industrial Technology Research Institute (Rugao Food Biotechnology Research Institute Co. Ltd), Rugao, Jiangsu, China
| | - Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, China; National Engineering Research Center of Chinese Rice Wine, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, China; Jiangsu Industrial Technology Research Institute (Rugao Food Biotechnology Research Institute Co. Ltd), Rugao, Jiangsu, China.
| | - Jieqi Mao
- College of Agriculture and Environmental Sciences, University of California, Davis, USA
| | - Ziwei Yu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhijie Lin
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, China; National Engineering Research Center of Chinese Rice Wine, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, China.
| |
Collapse
|