1
|
Esquivel KE, Hesselbarth MHK, Allgeier JE. Mechanistic support for increased primary production around artificial reefs. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2617. [PMID: 35368128 DOI: 10.1002/eap.2617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Understanding factors controlling primary production is fundamental for the protection, management, and restoration of ecosystems. Tropical seagrass ecosystems are among the most productive ecosystems worldwide, yielding tremendous services for society. Yet they are also among the most impaired from anthropogenic stressors, prompting calls for ecosystem-based restoration approaches. Artificial reefs (ARs) are commonly applied in coastal marine ecosystems to rebuild failing fisheries and have recently gained attention for their potential to promote carbon sequestration. Nutrient hotspots formed via excretion from aggregating fishes have been empirically shown to enhance local primary production around ARs in seagrass systems. Yet, if and how increased local production affects primary production at ecosystem scale remains unclear, and empirical tests are challenging. We used a spatially explicit individual-based simulation model that combined a data-rich single-nutrient primary production model for seagrass and bioenergetics models for fish to test how aggregating fish on ARs affect seagrass primary production at patch and ecosystem scales. Specifically, we tested how the aggregation of fish alters (i) ecosystem seagrass primary production at varying fish densities and levels of ambient nutrient availability and (ii) the spatial distribution of seagrass primary production. Comparing model ecosystems with equivalent nutrient levels, we found that when fish aggregate around ARs, ecosystem-scale primary production is enhanced synergistically. This synergistic increase in production was caused by nonlinear dynamics associated with nutrient uptake and biomass allocation that enhances aboveground primary production more than belowground production. Seagrass production increased near the AR and decreased in areas away from the AR, despite marginal reductions in seagrass biomass at the ecosystem level. Our simulation's findings that ARs can increase ecosystem production provide novel support for ARs in seagrass ecosystems as an effective means to promote (i) fishery restoration (increased primary production can increase energy input to the food web) and (ii) carbon sequestration, via higher rates of primary production. Although our model represents a simplified, closed seagrass system without complex trophic interactions, it nonetheless provides an important first step in quantifying ecosystem-level implications of ARs as a tool for ecological restoration.
Collapse
Affiliation(s)
- Kenzo E Esquivel
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Jacob E Allgeier
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Borland HP, Gilby BL, Henderson CJ, Connolly RM, Gorissen B, Ortodossi NL, Rummell AJ, Nagelkerken I, Pittman SJ, Sheaves M, Olds AD. Seafloor Terrain Shapes the Three-dimensional Nursery Value of Mangrove and Seagrass Habitats. Ecosystems 2022. [DOI: 10.1007/s10021-022-00767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractMangroves and seagrasses are important nurseries for many marine species, and this function is linked to the complexity and context of these habitats in coastal seascapes. It is also connected to bathymetric features that influence habitat availability, and the accessibility of refuge habitats, but the significance of terrain variation for nursery function is unknown. To test whether seafloor terrain influences nursery function, we surveyed fish assemblages from mangrove and seagrass habitats in 29 estuaries in eastern Australia with unbaited underwater cameras and quantified the surrounding three-dimensional terrain with a set of complementary surface metrics (that is, depth, aspect, curvature, slope, roughness) applied to sonar-derived bathymetric maps. Terrain metrics explained variability in assemblages in both mangroves and seagrasses, with differing effects for the entire fish assemblage and nursery species composition, and between habitats. Higher depth, plan curvature (concavity or convexity) and roughness (backscatter) were negatively correlated with abundance and diversity in mangroves and positively linked to abundance and diversity in seagrass. Mangrove nursery species (6 species) were most abundant in forests adjacent to flats with concave holes, rough substrates and low-moderate depths, whereas seagrass nursery species (3 species) were most abundant in meadows adjacent to deep channels with soft mounds and ledges. These findings indicate that seafloor terrain influences nursery function and demonstrate contrasting effects of terrain variation in mangroves and seagrass. We suggest that incorporating three-dimensional terrain into coastal conservation and restoration plans could help to improve outcomes for fisheries management, but contrasting strategies might be needed for different nursery habitats.
Collapse
|
3
|
Wilms TJG, Norðfoss PH, Baktoft H, Støttrup JG, Kruse BM, Svendsen JC. Restoring marine ecosystems: Spatial reef configuration triggers taxon‐specific responses among early colonizers. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Henrik Baktoft
- Technical University of Denmark (DTU Aqua) Silkeborg Denmark
| | | | | | | |
Collapse
|
4
|
Paschke K, Agüero J, Gebauer P, Díaz F, Mascaró M, López-Ripoll E, Re D, Caamal-Monsreal C, Tremblay N, Pörtner HO, Rosas C. Comparison of Aerobic Scope for Metabolic Activity in Aquatic Ectotherms With Temperature Related Metabolic Stimulation: A Novel Approach for Aerobic Power Budget. Front Physiol 2018; 9:1438. [PMID: 30405425 PMCID: PMC6204536 DOI: 10.3389/fphys.2018.01438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/21/2018] [Indexed: 02/04/2023] Open
Abstract
Considering that swim-flume or chasing methods fail in the estimation of maximum metabolic rate and in the estimation of Aerobic Scope (AS) of sedentary or sluggish aquatic ectotherms, we propose a novel conceptual approach in which high metabolic rates can be obtained through stimulation of organism metabolic activity using high and low non-lethal temperatures that induce high (HMR) and low metabolic rates (LMR), This method was defined as TIMR: Temperature Induced Metabolic Rate, designed to obtain an aerobic power budget based on temperature-induced metabolic scope which may mirror thermal metabolic scope (TMS = HMR—LMR). Prior to use, the researcher should know the critical thermal maximum (CT max) and minimum (CT min) of animals, and calculate temperature TIMR max (at temperatures −5–10% below CT max) and TIMR min (at temperatures +5–10% above CT min), or choose a high and low non-lethal temperature that provoke a higher and lower metabolic rate than observed in routine conditions. Two sets of experiments were carried out. The first compared swim-flume open respirometry and the TIMR protocol using Centropomus undecimalis (snook), an endurance swimmer, acclimated at different temperatures. Results showed that independent of the method used and of the magnitude of the metabolic response, a similar relationship between maximum metabolic budget and acclimation temperature was observed, demonstrating that the TIMR method allows the identification of TMS. The second evaluated the effect of acclimation temperature in snook, semi-sedentary yellow tail (Ocyurus chrysurus), and sedentary clownfish (Amphiprion ocellaris), using TIMR and the chasing method. Both methods produced similar maximum metabolic rates in snook and yellowtail fish, but strong differences became visible in clownfish. In clownfish, the TIMR method led to a significantly higher TMS than the chasing method indicating that chasing may not fully exploit the aerobic power budget in sedentary species. Thus, the TIMR method provides an alternative way to estimate the difference between high and low metabolic activity under different acclimation conditions that, although not equivalent to AS may allow the standardized estimation of TMS that is relevant for sedentary species where measurement of AS via maximal swimming is inappropriate.
Collapse
Affiliation(s)
- Kurt Paschke
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile.,Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Punta Arenas, Chile
| | - José Agüero
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | - Fernando Díaz
- Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Maite Mascaró
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sisal, Mexico.,Laboratorio de Resiliencia Costera (LANRESC, CONACYT), Sisal, Mexico
| | - Estefany López-Ripoll
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Denisse Re
- Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Claudia Caamal-Monsreal
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sisal, Mexico.,Laboratorio de Resiliencia Costera (LANRESC, CONACYT), Sisal, Mexico
| | - Nelly Tremblay
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sisal, Mexico.,Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Shelf Seas Systems Ecology, Helgoland, Germany
| | - Hans-Otto Pörtner
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sisal, Mexico.,Laboratorio de Resiliencia Costera (LANRESC, CONACYT), Sisal, Mexico
| |
Collapse
|