1
|
Zhou T, Li J, Chen J, Lu W, Zhang L, Cheng J. Coordinated regulation of the hypothalamic-pituitary-somatotropic axis in Chinese sea bass (Lateolabrax maculatus) under temperature and salinity changes. Gen Comp Endocrinol 2025; 366:114717. [PMID: 40139327 DOI: 10.1016/j.ygcen.2025.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/23/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Hypothalamic-Pituitary-Somatotropic (HPS) axis contains essential endocrine factors and plays diverse roles in the growth of teleost living in dynamic aquatic environments. In this study, 43 HPS axis genes were characterized in Chinese sea bass (Lateolabrax maculatus), the economically important marine fish highly adaptable to a wide range of temperatures and salinities. The phylogeny, conserved domain, molecular evolution and expression of L. maculatus HPS axis genes revealed their evolutionary conservation, with examples of functional divergence in duplication-originated genes (sst1a/1b, igf1ra/1rb). Weighted gene co-expression network analysis (WGCNA) among L. maculatus tissues revealed strong co-expression of HPS genes (ssts, igf1rs, igfbps) in brains than in livers and muscles, interacting with feeding (cartpt, negr1), metabolism (grik3, drd4), and growth (apba1) functional genes. Under temperature changes, L. maculatus HPS genes were more actively regulated in brains than in livers and muscles, with the hypothalamic and pituitary HPS genes mainly regulated in brains, whereas the peripheral HPS genes were regulated in livers and muscles. WGCNA revealed that HPS axis mainly interacted with stress and feeding activity in brains of L. maculatus under temperature stress, while it interacted with metabolism and growth activity in livers and muscles. Similar co-expression of HPS genes (sstrs, igf1rbs, igfbps) were with feeding (pik3r4), metabolism (mrps, ndufa12) and growth (sulf2, peli3, apod) functions in brains, indicating that HPS axis could regulate growth through coordinated mediation of the food-intake and energy metabolism in L. maculatus under environmental stress. Our results provided comprehensive understanding about the L. maculatus HPS axis responding to environmental stimuli, which are crucial for the growth regulation and will provide important insights into fast-growing L. maculatus cultivation.
Collapse
Affiliation(s)
- Tianyu Zhou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Juyan Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Junyu Chen
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Wei Lu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Lingqun Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Jie Cheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
2
|
Kumaran SK, Solberg LE, Izquierdo-Gomez D, Cañon-Jones HA, Mage I, Noble C. Applying deep learning and the ecological home range concept to document the spatial distribution of Atlantic salmon parr (Salmo salar L.) in experimental tanks. Sci Rep 2025; 15:5976. [PMID: 39966514 PMCID: PMC11836443 DOI: 10.1038/s41598-025-90118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
Measuring and monitoring fish welfare in aquaculture research relies on the use of outcome- (biotic) and input-based (e.g., abiotic) welfare indicators (WIs). Incorporating behavioural auditing into this toolbox can sometimes be challenging because sourcing quantitative data is often labour intensive and it can be a time-consuming process. Digitalization of this process via the use of computer vision and artificial intelligence can help automate and streamline the procedure, help gather continuous quantitative data and help process optimisation and assist in decision-making. The tool introduced in this study (1) adapts the DeepLabCut framework, based on computer vision and machine learning, to obtain pose estimation of Atlantic salmon parr under replicated experimental conditions, (2) quantifies the spatial distribution of the fish through a toolbox of metrics inspired by the ecological concepts home range and core area, and (3) applies it to inspect behavioural variability in and around feeding. This proof of concept study demonstrates the potential of our methodology for automating the analysis of fish behaviour in relation to home range and core area, including fish detection, spatial distribution and the variations within and between tanks. The impact of feeding on these patterns is also briefly outlined, using 5 days of experimental data as a demonstrative case study. This approach can provide stakeholders with valuable information on how the fish use their rearing environment in small-scale experimental settings and can be used for the further development of technologies for measuring and monitoring the behaviour of fish in research settings in future studies.
Collapse
|
3
|
Faillace MP, Rocco L, Ortiz J, Bernabeu R. Understanding the role of environment in associative learning of nicotine-induced place preference conditioning in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111242. [PMID: 39756637 DOI: 10.1016/j.pnpbp.2024.111242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/26/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Environmental enrichment (EE) is a well-known strategy in animal behavior to improve the welfare and health of animals in captivity. EE provides animals with stimulating and engaging environments that promote natural behaviors, cognitive stimulation and stress reduction. EE turns out to be an important strategy to increase the validity and reproducibility of behavioral data. Zebrafish is a useful experimental model for pharmaceutical and toxicological screening to study mechanisms involved in behavioral flexibility. The present work examined for the first time whether exposure to an EE during conditioning in the conditioned place preference (EE-CPP) task modulates the rewarding properties of nicotine in zebrafish. Various combinations of preferred and avoided environments (via positive and aversive cues introduced in each compartment of the CPP tank) were tested in the EE-CPP task. Positive nicotine-CPP scores were obtained in all conditions tested, except when the aversive and preferred stimuli were placed in the same compartment. When two highly preferred stimuli (brown walls and plants) were associated with dots drawn on the floor of the nicotine-matched compartment, nicotine-CPP score was lower. These findings suggest that threatening stimuli in the environment where the drug is administered or consumed could disrupt conditioning and reduce drug rewarding effects. A series of other behavioral parameters corroborated EE-CPP scores. Our findings underscore the need for further research to better understand how these factors interact and influence an individual's vulnerability to nicotine addiction. The present study contributes to expand our understanding of the dynamics involved in the behavioral flexibility underlying nicotine addiction.
Collapse
Affiliation(s)
- M P Faillace
- Department of Physiology and Institute of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - L Rocco
- Department of Physiology and Institute of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - J Ortiz
- Department of Physiology and Institute of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - R Bernabeu
- Department of Physiology and Institute of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Zhang Z, He Y, Wang J, Zheng Y, Mo J, Zhang X, Liu W. A Global Synthesis of Environmental Enrichment Effect on Fish Stress. FISH AND FISHERIES 2025; 26:131-154. [DOI: 10.1111/faf.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/28/2024] [Indexed: 01/05/2025]
Abstract
ABSTRACTThe stress‐coping ability (SCA) is one of the core aspects of fish welfare and is of vital importance for fish production in the aquaculture industry and for fish fitness in hatchery release. Environmental enrichment (EE), a method of introducing external stimuli into the husbandry environment, has been recently proposed to improve fish SCA, but the present experimental evidence is mixed, and the reasons for these discrepancies are unclear. Here, we conducted a global meta‐analysis using a data set that consists of 1786 cases from 107 studies across 42 fish species to solve this problem. Overall, we found that enriched fish had significantly higher SCA than control fish, reflected in either basal stress levels or stress responses. Meta‐regression analyses showed that specific subgroups of enrichment type, fish developmental stage, stress category, stress duration, stress place, sample tissue and indicator system showed significant positive EE effects on SCA. Multi‐model inference indicated that the indicator system, fish developmental stage, stress characteristic and enrichment mode are important drivers for the high heterogeneity among effect sizes. These results highlight the importance of introducing EE into the rearing systems, which will not only increase the welfare of aquaculture fish but also improve the ecological adaptability of released fish. The comprehensive knowledge obtained in this analysis will provide insights into fish ontogenetic plasticity and its responses to EE and have important implications for improving the production cycle in fish aquaculture and fisheries conservation.
Collapse
Affiliation(s)
- Zonghang Zhang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention Shantou University Shantou China
- Department of Biology Shantou University Shantou China
| | - Yijie He
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention Shantou University Shantou China
| | - Jiujiang Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention Shantou University Shantou China
| | - Yating Zheng
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention Shantou University Shantou China
- Department of Biology Shantou University Shantou China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention Shantou University Shantou China
- Department of Biology Shantou University Shantou China
| | - Xiumei Zhang
- Fisheries College Zhejiang Ocean University Zhoushan China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention Shantou University Shantou China
| |
Collapse
|
5
|
Millington ME, Lawrence C, Sneddon LU, Allen C. Environmental enrichment for zebrafish. Zebrafish 2024:6-52. [DOI: 10.1079/9781800629431.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
6
|
Mocho JP. Severity assignment for EU and UK procedures on Zebrafish. Zebrafish 2024:460-473. [DOI: 10.1079/9781800629431.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
7
|
Archer CL, Tsuji NK, Waters MH, Brazzell JL, Fong DL, Leszczynski JK, Manuel CA, Habenicht LM. Evaluation of a gel-based versus micro-pellet diet for adult zebrafish ( Danio rerio). Lab Anim 2024:236772241244834. [PMID: 39102523 DOI: 10.1177/00236772241244834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Ad libitum feeding of laboratory zebrafish has potential benefits for colony management, but would require a new type of diet, such as a gel that remains in the tank. We hypothesized that adult zebrafish fed a gel diet would have similar body size and reproductive success compared with those fed a standard micro-pellet diet. The gel diet’s impact on water quality was determined to be safe for zebrafish prior to starting a 12-week feeding study. Two hundred adult AB zebrafish of mixed sex were randomly assigned to be fed exclusively either gel or micro-pellet diet. Fish body length and mass were measured every two weeks, and fish were bred within each feed group to assess fecundity. Zebrafish consumed less gel diet than expected. Body length, mass, and breeding success were lower in the gel diet fish than in the micro-pellet diet fish. Low consumption of the gel diet and/or nutritional differences between the two diets may have contributed to reduced growth and fecundity. Though the gel diet could reduce time personnel spend feeding and be safer for fish in static tanks, the tested formulation was not a satisfactory alternative to the control micro-pellet diet in a research zebrafish colony.
Collapse
Affiliation(s)
- Christine L Archer
- Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Nikki K Tsuji
- Office of Laboratory Animal Resources, University of Colorado Denver Anschutz Medical Campus, Aurora, USA
| | - Molly H Waters
- Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | | | - Derek L Fong
- Office of Laboratory Animal Resources, University of Colorado Denver Anschutz Medical Campus, Aurora, USA
- Pathology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jori K Leszczynski
- Office of Laboratory Animal Resources, University of Colorado Denver Anschutz Medical Campus, Aurora, USA
- Pathology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher A Manuel
- Office of Laboratory Animal Resources, University of Colorado Denver Anschutz Medical Campus, Aurora, USA
- Pathology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren M Habenicht
- Office of Laboratory Animal Resources, University of Colorado Denver Anschutz Medical Campus, Aurora, USA
- Pathology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
de Sousa BL, Chaves SN, Albuquerque E, Rodrigues J, Coimbra V, Miranda S, Caldas AL, Leite M, Dos Santos MP, Côrrea Filho RAC, Santos ADFD, Maximino C, Siqueira-Silva D. Gametogenesis and seminatural reproduction of the Amazon twospot astyanax Astyanax bimaculatus (Linnaeus, 1758) cultivated in an enriched environment. Anim Reprod Sci 2024; 267:107522. [PMID: 38901082 DOI: 10.1016/j.anireprosci.2024.107522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Environmental enrichment is used to provide well-being to the animals, such as fish, in captive conditions, mimicking their natural habitat. It may influence fish behavior, physiology, and survival. In terms of reproduction, however, the relationship between environment enrichment and successful reproduction in captivity is still poorly explored in fish species. Aiming to understand any possible benefits of structural enrichment on fish reproduction, 10-days-hatched larvae of the twospot astyanax Astyanax bimaculatus were raised for 18 weeks in tanks with different elements of structural environmental enrichment (PVC pipes, stones, and artificial plants). In the 5th month of life, those animals were hormonally induced to reproduce to assess gamete formation and offspring quality. Animals raised in a sterile-reared environment (non-enriched) showed earlier spawning than the enriched one, presenting significant quantities of Postovulatory follicle complexes (POCs) and cells in atresia in female ovaries, indicating possible reproductive dysfunction or stress, as well as a greater quantity of empty testicular lumen in males, indicating great release of sperm. On the contrary, animals cultivated in enriched environments showed gonads filled with semen in males and vitellogenic oocytes in females. Furthermore, offspring from the sterile-reared group presented significant rates of larval abnormality compared to the enriched group. In conclusion, the results of this study show that environmental enrichment can interfere with the reproduction of fish in captivity, mainly by preventing early maturation of gametes, which can result in low-quality offspring and, consequently, low production of fish species.
Collapse
Affiliation(s)
- Bianca Lima de Sousa
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil
| | - Suianny Nayara Chaves
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Graduate Program in Animal Reproduction in the Amazon (ReproAmazon) of the Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, Nº 2501, Terra Firme, Belém, PA 66077-830, Brazil
| | - Eduardo Albuquerque
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil
| | - Jeane Rodrigues
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil
| | - Vanessa Coimbra
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil
| | - Saynara Miranda
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Graduate Program in Animal Reproduction in the Amazon (ReproAmazon) of the Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, Nº 2501, Terra Firme, Belém, PA 66077-830, Brazil
| | - Ana Luiza Caldas
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil
| | - Marissol Leite
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil
| | - Matheus Pereira Dos Santos
- Federal Rural University of Rio de Janeiro (UFRRJ). Animal Science Graduate Programme, Km 7, Zona Rural, BR-465, s/n, Seropédica, RJ, Brazil
| | | | - Adam Dreyton Ferreira Dos Santos
- Faculdade de Sistemas de Informação, Instituto de Geociências e Engenharias (IGE), Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Campus II, Marabá, PA, Brazil
| | - Caio Maximino
- Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil
| | - Diogenes Siqueira-Silva
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Graduate Program in Animal Reproduction in the Amazon (ReproAmazon) of the Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, Nº 2501, Terra Firme, Belém, PA 66077-830, Brazil.
| |
Collapse
|
9
|
Buenhombre J, Daza-Cardona EA, Mota-Rojas D, Domínguez-Oliva A, Rivera A, Medrano-Galarza C, de Tarso P, Cajiao-Pachón MN, Vargas F, Pedraza-Toscano A, Sousa P. Trait sensitivity to stress and cognitive bias processes in fish: A brief overview. PERSONALITY NEUROSCIENCE 2024; 7:e3. [PMID: 38384666 PMCID: PMC10877277 DOI: 10.1017/pen.2023.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 02/23/2024]
Abstract
Like other animals, fish have unique personalities that can affect their cognition and responses to environmental stressors. These individual personality differences are often referred to as "behavioural syndromes" or "stress coping styles" and can include personality traits such as boldness, shyness, aggression, exploration, locomotor activity, and sociability. For example, bolder or proactive fish may be more likely to take risks and present lower hypothalamo-pituitary-adrenal/interrenal axis reactivity as compared to shy or reactive individuals. Likewise, learning and memory differ between fish personalities. Reactive or shy individuals tend to have faster learning and better association recall with aversive stimuli, while proactive or bold individuals tend to learn more quickly when presented with appetitive incentives. However, the influence of personality on cognitive processes other than cognitive achievement in fish has been scarcely explored. Cognitive bias tests have been employed to investigate the interplay between emotion and cognition in both humans and animals. Fish present cognitive bias processes (CBP) in which fish's interpretation of stimuli could be influenced by its current emotional state and open to environmental modulation. However, no study in fish has explored whether CBP, like in other species, can be interpreted as long-lasting traits and whether other individual characteristics may explain its variation. We hold the perspective that CBP could serve as a vulnerability factor for the onset, persistence, and recurrence of stress-related disorders. Therefore, studying fish's CBP as a state or trait and its interactions with individual variations may be valuable in future efforts to enhance our understanding of anxiety and stress neurobiology in animal models and humans.
Collapse
Affiliation(s)
- Jhon Buenhombre
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
- ICB Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Erika Alexandra Daza-Cardona
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City, Mexico
| | - Astrid Rivera
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | - Catalina Medrano-Galarza
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | | | - María Nelly Cajiao-Pachón
- Especialización en Bienestar Animal y Etología, Fundación Universitaria Agraria de Colombia, Bogotá, Colombia
| | - Francisco Vargas
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | - Adriana Pedraza-Toscano
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | - Pêssi Sousa
- ICB Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
10
|
Gallas-Lopes M, Benvenutti R, Donzelli NIZ, Marcon M. A systematic review of the impact of environmental enrichment in zebrafish. Lab Anim (NY) 2023; 52:332-343. [PMID: 38017181 DOI: 10.1038/s41684-023-01288-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023]
Abstract
Environmental enrichment (EE) consists of a series of interventions carried out in the home environment to promote greater exposure to sensory stimuli and mimic the natural habitat of laboratory-housed animals, providing environments closer to those found in nature. Some studies have shown the positive effects of EE in zebrafish housed in a laboratory environment. However, this evidence is still recent and accompanied by contradictory results. Furthermore, there is great variability in the protocols applied and in the conditions of the tests, tanks and materials used to generate an enriched environment. This substantial variability can bring many uncertainties to the development of future studies and hinder the reproducibility and replicability of research. Here, in this context, we carried out a systematic review of the literature, aiming to provide an overview of the EE protocols used in zebrafish research. The literature search was performed in PubMed, Scopus and Web of Science and the studies were selected on the basis of predefined inclusion/exclusion criteria. A total of 901 articles were identified in the databases, and 27 of those studies were included in this review. We conducted data extraction and risk-of-bias analysis in the included studies. Among these studies, the effect of EE was evaluated in two different ways: (1) for animal welfare and (2) as an intervention to prevent behavioral, biochemical, molecular, developmental and breeding dysfunctions. Although the EE protocols in zebrafish presented a series of experimental differences, the results showed that the benefits of the EE for zebrafish were consistent. According to the results described here, the use of EE in the zebrafish home tank improves welfare and may reduce sources of bias in scientific research. However, it is still necessary to develop standardized protocols to improve the application of EE in scientific studies using zebrafish.
Collapse
Affiliation(s)
- Matheus Gallas-Lopes
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nayne I Z Donzelli
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
- Laboratório de Zebrafish (ZebLab), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Matheus Marcon
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.
- Laboratório de Zebrafish (ZebLab), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.
- Programa de Pós-graduação em Ciências da Saúde, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.
| |
Collapse
|
11
|
Ojelade OC, Durosaro SO, Akinde AO, Abdulraheem I, Oladepo MB, Sopein CA, Bhadmus AS, Olateju M. Environmental enrichment improves the growth rate, behavioral and physiological response of juveniles of Clarias gariepinus under laboratory conditions. Front Vet Sci 2022; 9:980364. [PMID: 36311662 PMCID: PMC9597454 DOI: 10.3389/fvets.2022.980364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
Environmental enrichment (EE) improves the growth rate and welfare of some cultured fishes. However, most cultured fish species are raised in non-enriched housing conditions. Clarias gariepinus is an important commercial fish species, but little is known about the effect of EE on their welfare. This study examined the effect of different EE on the survival rate (SR), growth [mean weight gain (MWG), specific growth rate (SGR) and feed conversion ratio (FCR)], behavioral (feed response, aggressive acts and shoaling time) and physiological responses (blood glucose) of C. gariepinus. One hundred and twenty juveniles of C. gariepinus (31.65 ± 0.69 g) were randomly allocated at 10 fish/tank and subjected to either Plant Enriched (PE), Substratum Enriched (SE), Plant and Substratum Enriched (PSE) and Non-Enriched (NE) tanks in triplicates for 56-days. Behavioral acts were observed for 10 min twice daily, and glucose level in blood samples was evaluated. Data were checked for normality using the Shapiro-Wilk test before being analyzed with the Kruskal-Wallis test. SR and MWG were significantly higher in Clarias gariepinus exposed to SE, with no significant differences among PE, PSE and NE treatments. There was no significant difference between the SGR of PSE and NE. FCR was similar between treatments. The highest condition factor (k) was recorded in SE tanks. Duration of feed response was shorter in SE, but there was no significant difference between the feed response of C. gariepinus exposed to PE and PSE. C. gariepinus exposed to PE, SE and PSE displayed a similar frequency of aggressive acts. African catfish reared in NE (barren) tanks had the least duration of shoaling period. The experiment consistently found the highest and least glucose values in PSE and SE. In conclusion, environmentally enriched housing tanks with SE resulted in the best MWG with a reduced level of aggression in C. gariepinus under laboratory conditions. Thus, EE might be applicable to boost fish productivity on a commercial scale.
Collapse
Affiliation(s)
- Oluwaseun Christianah Ojelade
- Department of Aquaculture and Fisheries Management, Federal University of Agriculture, Abeokuta, Ogun, Nigeria,*Correspondence: Oluwaseun Christianah Ojelade
| | - Samuel Olutunde Durosaro
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun, Nigeria
| | - Abiodun O. Akinde
- Department of Aquaculture and Fisheries Management, Federal University of Agriculture, Abeokuta, Ogun, Nigeria
| | - Ikililu Abdulraheem
- Department of Aquaculture and Fisheries Management, Federal University of Agriculture, Abeokuta, Ogun, Nigeria
| | - Mathew B. Oladepo
- Department of Aquaculture and Fisheries Management, Federal University of Agriculture, Abeokuta, Ogun, Nigeria
| | - Comfort A. Sopein
- Department of Aquaculture and Fisheries Management, Federal University of Agriculture, Abeokuta, Ogun, Nigeria
| | - Abiodun S. Bhadmus
- Department of Aquaculture and Fisheries Management, Federal University of Agriculture, Abeokuta, Ogun, Nigeria
| | - Mary Olateju
- Department of Aquaculture and Fisheries Management, Federal University of Agriculture, Abeokuta, Ogun, Nigeria
| |
Collapse
|
12
|
Lee CJ, Paull GC, Tyler CR. Improving zebrafish laboratory welfare and scientific research through understanding their natural history. Biol Rev Camb Philos Soc 2022; 97:1038-1056. [PMID: 34983085 PMCID: PMC9303617 DOI: 10.1111/brv.12831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Globally, millions of zebrafish (Danio rerio) are used for scientific laboratory experiments for which researchers have a duty of care, with legal obligations to consider their welfare. Considering the growing use of the zebrafish as a vertebrate model for addressing a diverse range of scientific questions, optimising their laboratory conditions is of major importance for both welfare and improving scientific research. However, most guidelines for the care and breeding of zebrafish for research are concerned primarily with maximising production and minimising costs and pay little attention to the effects on welfare of the environments in which the fish are maintained, or how those conditions affect their scientific research. Here we review the physical and social conditions in which laboratory zebrafish are kept, identifying and drawing attention to factors likely to affect their welfare and experimental science. We also identify a fundamental lack knowledge of how zebrafish interact with many biotic and abiotic features in their natural environment to support ways to optimise zebrafish health and well-being in the laboratory, and in turn the quality of scientific data produced. We advocate that the conditions under which zebrafish are maintained need to become a more integral part of research and that we understand more fully how they influence experimental outcome and in turn interpretations of the data generated.
Collapse
Affiliation(s)
- Carole J. Lee
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| | - Gregory C. Paull
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| | - Charles R. Tyler
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| |
Collapse
|
13
|
Gatto E, Dadda M, Bruzzone M, Chiarello E, De Russi G, Maschio MD, Bisazza A, Lucon‐Xiccato T. Environmental enrichment decreases anxiety‐like behavior in zebrafish larvae. Dev Psychobiol 2022; 64:e22255. [PMID: 35312057 PMCID: PMC9313885 DOI: 10.1002/dev.22255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Elia Gatto
- Department of Chemical Pharmaceutical and Agricultural Science University of Ferrara Ferrara Italy
- Department of Life Sciences and Biotechnology University of Ferrara Ferrara Italy
| | - Marco Dadda
- Department of General Psychology University of Padova Padova Italy
| | - Matteo Bruzzone
- Padua Neuroscience Center–PNC University of Padova Padova Italy
| | | | - Gaia De Russi
- Department of Life Sciences and Biotechnology University of Ferrara Ferrara Italy
| | - Marco Dal Maschio
- Padua Neuroscience Center–PNC University of Padova Padova Italy
- Department of Biomedical Sciences University of Padua Padova Italy
| | - Angelo Bisazza
- Department of General Psychology University of Padova Padova Italy
- Padua Neuroscience Center–PNC University of Padova Padova Italy
| | - Tyrone Lucon‐Xiccato
- Department of Life Sciences and Biotechnology University of Ferrara Ferrara Italy
| |
Collapse
|
14
|
Loss CM, Melleu FF, Domingues K, Lino-de-Oliveira C, Viola GG. Combining Animal Welfare With Experimental Rigor to Improve Reproducibility in Behavioral Neuroscience. Front Behav Neurosci 2021; 15:763428. [PMID: 34916915 PMCID: PMC8671008 DOI: 10.3389/fnbeh.2021.763428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Cássio Morais Loss
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | | | - Karolina Domingues
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cilene Lino-de-Oliveira
- Departamento de Ciências Fisiológicas do Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
15
|
Lawrence K, Sherwen SL, Larsen H. Natural Habitat Design for Zoo-Housed Elasmobranch and Teleost Fish Species Improves Behavioural Repertoire and Space Use in a Visitor Facing Exhibit. Animals (Basel) 2021; 11:ani11102979. [PMID: 34679998 PMCID: PMC8532934 DOI: 10.3390/ani11102979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Studies investigating whether a captive environment is meeting the needs of the species housed are relatively common among captive mammals. However, studies exploring fish behaviour in captive display enclosures are far less common in the scientific literature. Focusing on a small group of sharks, rays and smaller fish within a single display, our objectives were to; assess whether the behaviours of a select number of individual fishes within a single display are altered after the environment is enriched to enhance environmental complexity and visitor exposure is reduced, and also to increase our understanding of captive fish behaviour to improve capacity for evidence-based management decisions. In summary, increased environmental complexity and reduced visitor interaction showed correlations with increased expression of natural behaviours in all fish studied, including increased space use and decreased abnormal repetitive behaviours in some species. These results reflect a change toward more natural wild behavioural time budgets. Studying behaviour change in fish in different environmental conditions provides a good basis for evidence-based decision making. Abstract This study investigated the behaviour of two Elasmobranch species; Southern fiddler ray (Trygonorrhina dumerilii, n = 1) and Port Jackson shark (Heterodontus portusjacksoni, n = 4) and two teleost species; moonlighter (Tilodon sexfasciatus, n = 1) and banded morwong (Cheilodactylus spectabilis, n = 1) living within a single enclosure. For this study, two treatments were compared, the original enclosure design, and then after the enclosure had been renovated to more closely represent the species natural habitats, with a raised front viewing glass to prevent visitor interaction. Behaviours such as resting, swimming and abnormal behaviours such as surface and perimeter swimming (elasmobranchs only) were recorded as well as location within the enclosure, for 10 days pre and 10 days post renovation. The Port Jackson sharks significantly reduced the performance of abnormal behaviours after renovation, and significantly increased the time spent near the exhibit front. The Southern fiddler ray increased resting post renovation, while the teleost species also spent more time near the exhibit front. Although a small sample size was used, the results suggest that a more naturalistic environment with multiple micro-habitats and effective visitor barriers allows for a greater proportion of the day spent exhibiting natural behaviours, greater space use and reduced stereotypes.
Collapse
Affiliation(s)
- Kristie Lawrence
- Wild Sea, Melbourne Zoo, Melbourne, VIC 3052, Australia
- Correspondence:
| | - Sally L. Sherwen
- Wildlife Conservation and Science, Zoos Victoria, Melbourne, VIC 3052, Australia; (S.L.S.); (H.L.)
| | - Hannah Larsen
- Wildlife Conservation and Science, Zoos Victoria, Melbourne, VIC 3052, Australia; (S.L.S.); (H.L.)
| |
Collapse
|
16
|
Jones NAR, Webster MM, Salvanes AGV. Physical enrichment research for captive fish: Time to focus on the DETAILS. JOURNAL OF FISH BIOLOGY 2021; 99:704-725. [PMID: 33942889 DOI: 10.1111/jfb.14773] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Growing research effort has shown that physical enrichment (PE) can improve fish welfare and research validity. However, the inclusion of PE does not always result in positive effects and conflicting findings have highlighted the many nuances involved. Effects are known to depend on species and life stage tested, but effects may also vary with differences in the specific items used as enrichment between and within studies. Reporting fine-scale characteristics of items used as enrichment in studies may help to reveal these factors. We conducted a survey of PE-focused studies published in the last 5 years to examine the current state of methodological reporting. The survey results suggest that some aspects of enrichment are not adequately detailed. For example, the amount and dimensions of objects used as enrichment were frequently omitted. Similarly, the ecological relevance, or other justification, for enrichment items was frequently not made explicit. Focusing on ecologically relevant aspects of PE and increasing the level of detail reported in studies may benefit future work and we propose a framework with the acronym DETAILS (Dimensions, Ecological rationale, Timing of enrichment, Amount, Inputs, Lighting and Social environment). We outline the potential importance of each of the elements of this framework with the hope it may aid in the level of reporting and standardization across studies, ultimately aiding the search for more beneficial types of PE and the development of our understanding and ability to improve the welfare of captive fish and promote more biologically relevant behaviour.
Collapse
Affiliation(s)
- Nick A R Jones
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Mike M Webster
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
17
|
Estes JM, Altemara ML, Crim MJ, Fletcher CA, Whitaker JW. Behavioral and Reproductive Effects of Environmental Enrichment and Pseudoloma neurophilia infection on Adult Zebrafish ( Danio rerio). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2021; 60:249-258. [PMID: 33952385 DOI: 10.30802/aalas-jaalas-20-000113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent studies have shown beneficial effects of environmental enrichment (EE) for zebrafish, while infection of zebrafish with the common pathogen Pseudoloma neurophilia has negative effects. This study investigates the effects of P. neurophilia infection and EE in housing and breeding tanks on measures of behavior, growth, and reproduction. Zebrafish were socially housed and were either infected, P. neurophilia-infected (PNI) (n = 12 tanks), or SPF for P. neurophilia (SPF) (n = 24 tanks). Fish were housed with or without EE, which consisted of placing plastic plants in the tanks; sprigs from plants were placed in half of the breeding tanks for half of breedings, alternating breeding tanks without EE weekly. Behavioral testing included the Novel Tank Diving Test (NTT) and Light/Dark Preference Test (LDT) conducted prior to breeding. At the end of the study, biometric data were collected. Histopathology and molecular analysis for common diseases in fish confirmed that SPF fish remained SPF and that fish from all PNI tanks were infected. PNI fish produced significantly fewer eggs and had lower body weights and lengths than did SPF fish. Fish with EE had longer body lengths, than did fish without EE, and male fish had longer body lengths than female fish. The biometric results and reproductive measures show that SPF fish exhibited better growth and suggest that EE in housing tanks could improve fish growth. The behavioral test results were inconclusive regard- ing whether infection status or EE altered anxiety-like behavior. Our results support other recent studies showing negative effects of P. neurophilia infection on zebrafish.
Collapse
Affiliation(s)
- Jenny M Estes
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina;,
| | - Michelle L Altemara
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina
| | | | - Craig A Fletcher
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Julia W Whitaker
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Stevens CH, Reed BT, Hawkins P. Enrichment for Laboratory Zebrafish-A Review of the Evidence and the Challenges. Animals (Basel) 2021; 11:ani11030698. [PMID: 33807683 PMCID: PMC8001412 DOI: 10.3390/ani11030698] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The zebrafish is one of the most commonly used animals in scientific research, but there remains a lack of consensus over good practice for zebrafish housing and care. One such area which lacks agreement is whether laboratory zebrafish should be provided with environmental enrichment—additions or modifications to the basic laboratory environment which aim to improve welfare, such as plastic plants in tanks. The need for the provision of appropriate environmental enrichment has been recognised in other laboratory animal species, but some scientists and animal care staff are hesitant to provide enrichment for zebrafish, arguing that there is little or no evidence that enrichment can benefit zebrafish welfare. This review aims to summarise the current literature on the effects of enrichment on zebrafish physiology, behaviour and welfare, and identifies some forms of enrichment which are likely to benefit zebrafish. It also considers the possible challenges that might be associated with introducing more enrichment, and how these might be addressed. Abstract Good practice for the housing and care of laboratory zebrafish Danio rerio is an increasingly discussed topic, with focus on appropriate water quality parameters, stocking densities, feeding regimes, anaesthesia and analgesia practices, methods of humane killing, and more. One area of current attention is around the provision of environmental enrichment. Enrichment is accepted as an essential requirement for meeting the behavioural needs and improving the welfare of many laboratory animal species, but in general, provision for zebrafish is minimal. Some of those involved in the care and use of zebrafish suggest there is a ‘lack of evidence’ that enrichment has welfare benefits for this species, or cite a belief that zebrafish do not ‘need’ enrichment. Concerns are also sometimes raised around the practical challenges of providing enrichments, or that they may impact on the science being undertaken. However, there is a growing body of evidence suggesting that various forms of enrichment are preferred by zebrafish over a barren tank, and that enriched conditions can improve welfare by reducing stress and anxiety. This review explores the effects that enrichment can have on zebrafish behaviour, physiology and welfare, and considers the challenges to facilities of providing more enrichment for the zebrafish they house.
Collapse
|
19
|
Ramos J, Balasch JC, Tort L. About Welfare and Stress in the Early Stages of Fish. Front Vet Sci 2021; 8:634434. [PMID: 33693043 PMCID: PMC7937697 DOI: 10.3389/fvets.2021.634434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Juan Ramos
- Department Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Joan Carles Balasch
- Department Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Lluis Tort
- Department Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
20
|
Lieggi C, Kalueff AV, Lawrence C, Collymore C. The Influence of Behavioral, Social, and Environmental Factors on Reproducibility and Replicability in Aquatic Animal Models. ILAR J 2020; 60:270-288. [PMID: 32400880 PMCID: PMC7743897 DOI: 10.1093/ilar/ilz019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/08/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
The publication of reproducible, replicable, and translatable data in studies utilizing animal models is a scientific, practical, and ethical necessity. This requires careful planning and execution of experiments and accurate reporting of results. Recognition that numerous developmental, environmental, and test-related factors can affect experimental outcomes is essential for a quality study design. Factors commonly considered when designing studies utilizing aquatic animal species include strain, sex, or age of the animal; water quality; temperature; and acoustic and light conditions. However, in the aquatic environment, it is equally important to consider normal species behavior, group dynamics, stocking density, and environmental complexity, including tank design and structural enrichment. Here, we will outline normal species and social behavior of 2 commonly used aquatic species: zebrafish (Danio rerio) and Xenopus (X. laevis and X. tropicalis). We also provide examples as to how these behaviors and the complexity of the tank environment can influence research results and provide general recommendations to assist with improvement of reproducibility and replicability, particularly as it pertains to behavior and environmental complexity, when utilizing these popular aquatic models.
Collapse
Affiliation(s)
- Christine Lieggi
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and Hospital for Special Surgery, New York, New York
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China, and Ural Federal University, Ekaterinburg, Russia
| | | | | |
Collapse
|
21
|
Jones NAR, Spence R, Jones FAM, Spence-Jones HC. Shade as enrichment: testing preferences for shelter in two model fish species. JOURNAL OF FISH BIOLOGY 2019; 95:1161-1165. [PMID: 31454410 DOI: 10.1111/jfb.14129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
We compared preferences shown by zebrafish Danio rerio and three-spined stickleback Gasterosteus aculeatus for shelter provided by above-tank shade and artificial plants. Zebrafish showed no preference for either shelter, whereas sticklebacks showed a preference for both shelter types over open areas and for shade over plants. Our results suggest shade may be used as enrichment for captive fish and re-emphasise the importance of species-specific welfare considerations.
Collapse
Affiliation(s)
- Nick A R Jones
- School of Biology, University of St Andrews, St Andrews, UK
| | - Rowena Spence
- School of Psychology and Neuroscience, University of St. Andrews, St. Andrews, UK
| | | | | |
Collapse
|
22
|
DePasquale C, Fettrow S, Sturgill J, Braithwaite VA. The impact of flow and physical enrichment on preferences in zebrafish. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|