1
|
Gilbert MJH, Hardison EA, Farrell AP, Eliason EJ, Anttila K. Measuring maximum heart rate to study cardiac thermal performance and heat tolerance in fishes. J Exp Biol 2024; 227:jeb247928. [PMID: 39450710 DOI: 10.1242/jeb.247928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The thermal sensitivity of heart rate (fH) in fishes has fascinated comparative physiologists for well over a century. We now know that elevating fH is the primary mechanism through which fishes increase convective oxygen delivery during warming to meet the concomitant rise in tissue oxygen consumption. Thus, limits on fH can constrain whole-animal aerobic metabolism. In this Review, we discuss an increasingly popular methodology to study these limits, the measurement of pharmacologically induced maximum fH (fH,max) during acute warming of an anaesthetized fish. During acute warming, fH,max increases exponentially over moderate temperatures (Q10∼2-3), but this response is blunted with further warming (Q10∼1-2), with fH,max ultimately reaching a peak (Q10≤1) and the heartbeat becoming arrhythmic. Because the temperatures at which these transitions occur commonly align with whole-animal optimum and critical temperatures (e.g. aerobic scope and the critical thermal maximum), they can be valuable indicators of thermal performance. The method can be performed simultaneously on multiple individuals over a few hours and across a broad size range (<1 to >6000 g) with compact equipment. This simplicity and high throughput make it tractable in lab and field settings and enable large experimental designs that would otherwise be impractical. As with all reductionist approaches, the method does have limitations. Namely, it requires anaesthesia and pharmacological removal of extrinsic cardiac regulation. Nonetheless, the method has proven particularly effective in the study of patterns and limits of thermal plasticity and holds promise for helping to predict and mitigate outcomes of environmental change.
Collapse
Affiliation(s)
- Matthew J H Gilbert
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Emily A Hardison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Katja Anttila
- University of Turku, Department of Biology, 20014 Turku, Finland
| |
Collapse
|
2
|
Zhang X, Zhou Y, Chang X, Wu Q, Liu Z, Liu R. Tongyang Huoxue decoction (TYHX) ameliorating hypoxia/reoxygenation-induced disequilibrium of calcium homeostasis via regulating β-tubulin in rabbit sinoatrial node cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117006. [PMID: 37544340 DOI: 10.1016/j.jep.2023.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE β-tubulin is a skeletal protein of sinoatrial node cells (SANCs) that maintains the physiological structure of SANCs and inhibits calcium overload. Tongyang Huoxue decoction (TYHX) is widely used to treat sick sinus syndrome (SSS) owing to its effects on calcium channels regulation and SANCs protection. AIM OF THE STUDY This study focuses on the mechanism of TYHX in improving the hypoxia/reoxygenation (H/R)-induced disequilibrium of calcium homeostasis in SANCs via regulating β-tubulin. MATERIALS AND METHODS Real-Time PCR (RT-PCR) and Western Blot were adopted to detect the mRNA and protein expression levels of calcium channel regulatory molecules. Laser confocal method was employed to examine β-tubulin structure and fluorescence expression levels in SANCs, as well as calcium wave and calcium release levels. RESULTS It was found that the fluorescence expression level decreased and the β-tubulin structure of SANCs was damaged after H/R treatment. The mRNA and protein expression levels of SERCA2a/CaV1.3/NCX and β-tubulin decreased, while the mRNA and protein expression of RyR2 increased. The results of calcium wave and calcium transient experiments showed that the fluorescence expression level of Ca2+ increased and calcium overload occurred in SANCs. After treatment with TYHX, the mRNA and protein expression levels of SERCA2a/CaV1.3/NCX and β-tubulin increased, while the mRNA and protein expression levels of RyR2 decreased and the cell structure was restored. Interestingly, the regulation of TYHX on calcium homeostasis was further enhanced after Ad-β-tubulin treatment and counteracted after siRNA-β-tubulin treatment. These results suggest that TYHX could maintain calcium homeostasis via regulating β-tubulin, thus protecting against H/R-induced SANCs injury, which may be a new target for SSS treatment.
Collapse
Affiliation(s)
- Xinai Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yutong Zhou
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaomin Wu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiming Liu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Riuxiu Liu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Liu J, Kasuya G, Zempo B, Nakajo K. Two HCN4 Channels Play Functional Roles in the Zebrafish Heart. Front Physiol 2022; 13:901571. [PMID: 35846012 PMCID: PMC9281569 DOI: 10.3389/fphys.2022.901571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
The HCN4 channel is essential for heart rate regulation in vertebrates by generating pacemaker potentials in the sinoatrial node. HCN4 channel abnormality may cause bradycardia and sick sinus syndrome, making it an important target for clinical research and drug discovery. The zebrafish is a popular animal model for cardiovascular research. They are potentially suitable for studying inherited heart diseases, including cardiac arrhythmia. However, it has not been determined how similar the ion channels that underlie cardiac automaticity are in zebrafish and humans. In the case of HCN4, humans have one gene, whereas zebrafish have two ortholog genes (DrHCN4 and DrHCN4L; ‘Dr’ referring to Danio rerio). However, it is not known whether the two HCN4 channels have different physiological functions and roles in heart rate regulation. In this study, we characterized the biophysical properties of the two zebrafish HCN4 channels in Xenopus oocytes and compared them to those of the human HCN4 channel. We found that they showed different gating properties: DrHCN4L currents showed faster activation kinetics and a more positively shifted G-V curve than did DrHCN4 and human HCN4 currents. We made chimeric channels of DrHCN4 and DrHCN4L and found that cytoplasmic domains were determinants for the faster activation and the positively shifted G-V relationship in DrHCN4L. The use of a dominant-negative HCN4 mutant confirmed that DrHCN4 and DrHCN4L can form a heteromultimeric channel in Xenopus oocytes. Next, we confirmed that both are sensitive to common HCN channel inhibitors/blockers including Cs+, ivabradine, and ZD7288. These HCN inhibitors successfully lowered zebrafish heart rate during early embryonic stages. Finally, we knocked down the HCN4 genes using antisense morpholino and found that knocking down either or both of the HCN4 channels caused a temporal decrease in heart rate and tended to cause pericardial edema. These findings suggest that both DrHCN4 and DrHCN4L play a significant role in zebrafish heart rate regulation.
Collapse
|
4
|
Stoyek MR, MacDonald EA, Mantifel M, Baillie JS, Selig BM, Croll RP, Smith FM, Quinn TA. Drivers of Sinoatrial Node Automaticity in Zebrafish: Comparison With Mechanisms of Mammalian Pacemaker Function. Front Physiol 2022; 13:818122. [PMID: 35295582 PMCID: PMC8919049 DOI: 10.3389/fphys.2022.818122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiac excitation originates in the sinoatrial node (SAN), due to the automaticity of this distinct region of the heart. SAN automaticity is the result of a gradual depolarisation of the membrane potential in diastole, driven by a coupled system of transarcolemmal ion currents and intracellular Ca2+ cycling. The frequency of SAN excitation determines heart rate and is under the control of extra- and intracardiac (extrinsic and intrinsic) factors, including neural inputs and responses to tissue stretch. While the structure, function, and control of the SAN have been extensively studied in mammals, and some critical aspects have been shown to be similar in zebrafish, the specific drivers of zebrafish SAN automaticity and the response of its excitation to vagal nerve stimulation and mechanical preload remain incompletely understood. As the zebrafish represents an important alternative experimental model for the study of cardiac (patho-) physiology, we sought to determine its drivers of SAN automaticity and the response to nerve stimulation and baseline stretch. Using a pharmacological approach mirroring classic mammalian experiments, along with electrical stimulation of intact cardiac vagal nerves and the application of mechanical preload to the SAN, we demonstrate that the principal components of the coupled membrane- Ca2+ pacemaker system that drives automaticity in mammals are also active in the zebrafish, and that the effects of extra- and intracardiac control of heart rate seen in mammals are also present. Overall, these results, combined with previously published work, support the utility of the zebrafish as a novel experimental model for studies of SAN (patho-) physiological function.
Collapse
Affiliation(s)
- Matthew R. Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Eilidh A. MacDonald
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Melissa Mantifel
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Jonathan S. Baillie
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Bailey M. Selig
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Roger P. Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Frank M. Smith
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
- *Correspondence: T. Alexander Quinn,
| |
Collapse
|
5
|
The effective use of blebbistatin to study the action potential of cardiac pacemaker cells of zebrafish (Danio rerio) during incremental warming. Curr Res Physiol 2022; 5:48-54. [PMID: 35128467 PMCID: PMC8803472 DOI: 10.1016/j.crphys.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Blebbistatin potently inhibits actin-myosin interaction, preventing contractile activity of excitable cells including cardiac myocytes, despite electrical excitation of an action potential (AP). We collected intracellular microelectrode recordings of pacemaker cells located in the sinoatrial region (SAR) of the zebrafish heart at room temperature and during acute warming to investigate whether or not blebbistatin inhibition of contraction significantly alters pacemaker cell electrophysiology. Changes were evaluated based on 16 variables that characterized the AP waveform. None of these AP variables nor the spontaneous heart rate were significantly modified with the application of 10 μM blebbistatin when recordings were made at room temperature. Compared with the control group, the blebbistatin-treated group showed minor changes in the rate of spontaneous diastolic depolarization (P = 0.027) and the 50% and 80% repolarization (P = 0.008 and 0.010, respectively) in the 26°C–29°C temperature bin, but not at higher temperatures. These findings suggest that blebbistatin is an effective excitation-contraction uncoupler that does not appreciably affect APs generated in pacemaking cells of the SAR and can, therefore, be used in zebrafish cardiac studies. Blebbistatin uncouples excitation-contraction in zebrafish cardiomyocytes. Blebbistatin does not modify the pacemaker action potential variables. Temperature does not modify the effect of blebbistatin. First validation of the use of blebbistatin in adult fish. Methodology of intracellular microelectrode recording of zebrafish pacemaker cells.
Collapse
|
6
|
Gamperl AK, Zrini ZA, Sandrelli RM. Atlantic Salmon ( Salmo salar) Cage-Site Distribution, Behavior, and Physiology During a Newfoundland Heat Wave. Front Physiol 2021; 12:719594. [PMID: 34504440 PMCID: PMC8421689 DOI: 10.3389/fphys.2021.719594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Climate change is leading to increased water temperatures and reduced oxygen levels at sea-cage sites, and this is a challenge that the Atlantic salmon aquaculture industry must adapt to it if it needs to grow sustainably. However, to do this, the industry must better understand how sea-cage conditions influence the physiology and behavior of the fish. Method: We fitted ~2.5 kg Atlantic salmon on the south coast of Newfoundland with Star-Oddi milli-HRT ACT and Milli-TD data loggers (data storage tags, DSTs) in the summer of 2019 that allowed us to simultaneously record the fish's 3D acceleration (i.e., activity/behavior), electrocardiograms (and thus, heart rate and heart rate variability), depth, and temperature from early July to mid-October. Results: Over the course of the summer/fall, surface water temperatures went from ~10–12 to 18–19.5°C, and then fell to 8°C. The data provide valuable information on how cage-site conditions affected the salmon and their determining factors. For example, although the fish typically selected a temperature of 14–18°C when available (i.e., this is their preferred temperature in culture), and thus were found deeper in the cage as surface water temperatures peaked, they continued to use the full range of depths available during the warmest part of the summer. The depth occupied by the fish and heart rate were greater during the day, but the latter effect was not temperature-related. Finally, while the fish generally swam at 0.4–1.0 body lengths per second (25–60 cm s−1), their activity and the proportion of time spent using non-steady swimming (i.e., burst-and-coast swimming) increased when feeding was stopped at high temperatures. Conclusion: Data storage tags that record multiple parameters are an effective tool to understand how cage-site conditions and management influence salmon (fish) behavior, physiology, and welfare in culture, and can even be used to provide fine-scale mapping of environmental conditions. The data collected here, and that in recent publications, strongly suggest that pathogen (biotic) challenges in combination with high temperatures, not high temperatures + moderate hypoxia (~70% air saturation) by themselves, are the biggest climate-related challenge facing the salmon aquaculture industry outside of Tasmania.
Collapse
Affiliation(s)
- Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Zoe A Zrini
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | | |
Collapse
|
7
|
Joyce W, Perry SF. Hif-1α is not required for the development of cardiac adrenergic control in zebrafish (Danio rerio). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:623-631. [PMID: 34288573 DOI: 10.1002/jez.2507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022]
Abstract
Adrenergic regulation, acting via the sympathetic nervous system, provides a major mechanism to control cardiac function. It has recently been shown that hypoxia inducible factor-1α (Hif-1α) is necessary for normal development of sympathetic innervation and control of cardiac function in the mouse. To investigate whether this may represent a fundamental trait shared across vertebrates, we assessed adrenergic regulation of the heart in wild-type and Hif-1α knockout (hif-1α -/- ) zebrafish (Danio rerio). Wild-type and hif-1α -/- zebrafish larvae (aged 4 and 7 days postfertilisation) exhibited similar routine heart rates within a given age group, and β-adrenergic receptor blockade with propranolol universally reduced heart rate to comparable levels, indicating similar adrenergic tone in both genotypes. In adult fish, in vivo heart rate measured during anaesthesia was identical between genotypes. Treatment of spontaneously beating hearts in vitro with adrenaline revealed a similar positive chronotropic effect and similar maximum heart rates in both genotypes. Tyrosine hydroxylase immunohistochemistry with confocal microscopy demonstrated that the bulbus arteriosus (outflow tract of the teleost heart) of adult fish was particularly well innervated by sympathetic nerves, and nerve density (as a percentage of bulbus arteriosus area) was similar between wild-types and hif-1α -/- mutants. In summary, we did not find any evidence that adrenergic cardiac control was perturbed in larval or adult zebrafish lacking Hif-1α. We conclude that Hif-1α is not essential for the normal development of cardiovascular control or adult sympathetic cardiac innervation in zebrafish, although it is possible that it plays a redundant or auxiliary role.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biology-Zoophysiology, Aarhus University, Aarhus C, Denmark
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Mousavi SE, Patil JG. Light-cardiogram, a simple technique for heart rate determination in adult zebrafish, Danio rerio. Comp Biochem Physiol A Mol Integr Physiol 2020; 246:110705. [DOI: 10.1016/j.cbpa.2020.110705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022]
|
9
|
Sutcliffe RL, Li S, Gilbert MJH, Schulte PM, Miller KM, Farrell AP. A rapid intrinsic heart rate resetting response with thermal acclimation in rainbow trout, Oncorhynchus mykiss. J Exp Biol 2020; 223:jeb215210. [PMID: 32345705 PMCID: PMC7328139 DOI: 10.1242/jeb.215210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/17/2020] [Indexed: 01/01/2023]
Abstract
We examined cardiac pacemaker rate resetting in rainbow trout following a reciprocal temperature transfer. In the original experiment, performed in winter, 4°C-acclimated fish transferred to 12°C reset intrinsic heart rate after just 1 h (from 56.8±1.2 to 50.8±1.5 beats min-1); 12°C-acclimated fish transferred to 4°C reset intrinsic heart rate after 8 h (from 33.4±0.7 to 37.7±1.2 beats min-1). However, in a replicate experiment, performed in the summer using a different brood year, intrinsic heart rate was not reset, even after 10 weeks at a new temperature. Using this serendipitous opportunity, we compared mRNA expression changes of a suite of proteins in sinoatrial node (SAN), atrial and ventricular tissues after both 1 h and longer than 3 weeks for both experimental acclimation groups to identify those changes only associated with pacemaker rate resetting. Of the changes in mRNA expression occurring after more than 3 weeks of warm acclimation and associated with pacemaker rate resetting, we observed downregulation of NKA α1c in the atrium and ventricle, and upregulation of HCN1 in the ventricle. However, in the SAN there were no mRNA expression changes unique to the fish with pacemaker rate resetting after either 1 h or 3 weeks of warm acclimation. Thus, despite identifying changes in mRNA expression of contractile cardiac tissues, there was an absence of changes in mRNA expression directly involved with the initial, rapid pacemaker rate resetting with warm acclimation. Importantly, pacemaker rate resetting with thermal acclimation does not always occur in rainbow trout.
Collapse
Affiliation(s)
- Rachel L Sutcliffe
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans, Nanaimo, BC, Canada, V9T 6N7
| | - Matthew J H Gilbert
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Kristi M Miller
- Pacific Biological Station, Fisheries and Oceans, Nanaimo, BC, Canada, V9T 6N7
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|