1
|
Rahman M, Khatun A, Liu L, Barkla BJ. Brassicaceae Mustards: Phytochemical Constituents, Pharmacological Effects, and Mechanisms of Action against Human Disease. Int J Mol Sci 2024; 25:9039. [PMID: 39201724 PMCID: PMC11354652 DOI: 10.3390/ijms25169039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The Brassicaceae genus consists of many economically important mustards of value for food and medicinal purposes, namely Asian mustard (Brassica juncea), ball mustard (Neslia paniculata), black mustard (B. nigra), garlic mustard (Alliaria petiolata), hedge mustard (Sisymbrium officinale), Asian hedge mustard (S. orientale), oilseed rape (B. napus), rapeseed (B. rapa), treacle mustard (Erysimum repandum), smooth mustard (S. erysimoides), white ball mustard (Calepina irregularis), white mustard (Sinapis alba), and Canola. Some of these are commercially cultivated as oilseeds to meet the global demand for a healthy plant-derived oil, high in polyunsaturated fats, i.e., B. napus and B. juncea. Other species are foraged from the wild where they grow on roadsides and as a weed of arable land, i.e., E. repandum and S. erysimoides, and harvested for medicinal uses. These plants contain a diverse range of bioactive natural products including sulfur-containing glucosinolates and other potentially valuable compounds, namely omega-3-fatty acids, terpenoids, phenylpropanoids, flavonoids, tannins, S-methyl cysteine sulfoxide, and trace-elements. Various parts of these plants and many of the molecules that are produced throughout the plant have been used in traditional medicines and more recently in the mainstream pharmaceutical and food industries. This study relates the uses of mustards in traditional medicines with their bioactive molecules and possible mechanisms of action and provides an overview of the current knowledge of Brassicaceae oilseeds and mustards, their phytochemicals, and their biological activities.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Amina Khatun
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Bronwyn J. Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| |
Collapse
|
2
|
Iwar K, Desta KT, Ochar K, Kim SH. Unveiling Glucosinolate Diversity in Brassica Germplasm and In Silico Analysis for Determining Optimal Antioxidant Potential. Antioxidants (Basel) 2024; 13:376. [PMID: 38539909 PMCID: PMC10968274 DOI: 10.3390/antiox13030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 11/11/2024] Open
Abstract
This study explored the glucosinolate (GSL) content in Brassica plants and utilized in silico analysis approach to assess their antioxidant capabilities. GSLs, present abundantly in Brassica vegetables, offer potential health advantages, including antioxidant effects. Employing Ultra-Performance Liquid Chromatography (UPLC) coupled with tandem mass spectrometry (MS/MS), major GSLs were identified in 89 accessions from diverse species and subspecies. Statistical analysis and principal component analysis unveiled significant GSL variation and potential correlations among the Brassica germplasms. This study unveils the dominance of aliphatic GSLs over aromatic and indolyl compounds in all the accessions. Notably, Gluconapin (GNA) (33,049.23 µmol·kg-1 DW), Glucobrassicanapin (GBN) (9803.82 µmol·kg-1 DW), Progoitrin (PRO) (12,780.48 µmol·kg-1 DW) and Sinigrin (SIN) (14,872.93 µmol·kg-1 DW) were the most abundant compounds across the analyzed accessions. Moreover, in silico docking studies predicted promising antioxidant activity by evaluating the interactions of each GSL with antioxidant enzymes. Specifically, Sinigrin and Gluconapin exhibited a notably weaker influence on antioxidant enzymes. This provides key insights into the antioxidant potential of Brassica germplasm and highlights the importance of in silico analysis for evaluating bioactive properties. In general, the results of this study could be utilized in breeding programs to maximize GSL levels and antioxidant properties in Brassica crops and for developing functional foods with enhanced health benefits.
Collapse
Affiliation(s)
- Kanivalan Iwar
- National Agrobiodiversity Center, National Institute of Agricultural Science, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.I.); (K.O.)
- Department of Botany, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Kebede Taye Desta
- National Agrobiodiversity Center, National Institute of Agricultural Science, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.I.); (K.O.)
- Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Kingsley Ochar
- National Agrobiodiversity Center, National Institute of Agricultural Science, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.I.); (K.O.)
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Science, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.I.); (K.O.)
| |
Collapse
|
3
|
A comparison of conventional and novel phytonutrient extraction techniques from various sources and their potential applications. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Fate of Bioactive Compounds during Lactic Acid Fermentation of Fruits and Vegetables. Foods 2022; 11:foods11050733. [PMID: 35267366 PMCID: PMC8909232 DOI: 10.3390/foods11050733] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Consumption of lactic acid fermented fruits and vegetables has been correlated with a series of health benefits. Some of them have been attributed to the probiotic potential of lactic acid microbiota, while others to its metabolic potential and the production of bioactive compounds. The factors that affect the latter have been in the epicenter of intensive research over the last decade. The production of bioactive peptides, vitamins (especially of the B-complex), gamma-aminobutyric acid, as well as phenolic and organosulfur compounds during lactic acid fermentation of fruits and vegetables has attracted specific attention. On the other hand, the production of biogenic amines has also been intensively studied due to the adverse health effects caused by their consumption. The data that are currently available indicate that the production of these compounds is a strain-dependent characteristic that may also be affected by the raw materials used as well as the fermentation conditions. The aim of the present review paper is to collect all data referring to the production of the aforementioned compounds and to present and discuss them in a concise and comprehensive way.
Collapse
|
5
|
Thilakarathna WPDW, Yu CHJ, Rupasinghe HPV. Variations in nutritional and microbial composition of napa cabbage kimchi during refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- W. P. D. Wass Thilakarathna
- Department of Plant, Food, and Environmental Sciences Faculty of Agriculture Dalhousie University Truro Nova Scotia Canada
| | - Cindy H. J. Yu
- Department of Plant, Food, and Environmental Sciences Faculty of Agriculture Dalhousie University Truro Nova Scotia Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences Faculty of Agriculture Dalhousie University Truro Nova Scotia Canada
| |
Collapse
|
6
|
Stefanucci A, Zengin G, Llorent-Martinez EJ, Dimmito MP, Della Valle A, Pieretti S, Ak G, Sinan KI, Mollica A. Chemical characterization, antioxidant properties and enzyme inhibition of Rutabaga root’s pulp and peel (Brassica napus L.). ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Maina S, Misinzo G, Bakari G, Kim HY. Human, Animal and Plant Health Benefits of Glucosinolates and Strategies for Enhanced Bioactivity: A Systematic Review. Molecules 2020; 25:E3682. [PMID: 32806771 PMCID: PMC7464879 DOI: 10.3390/molecules25163682] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glucosinolates (GSs) are common anionic plant secondary metabolites in the order Brassicales. Together with glucosinolate hydrolysis products (GSHPs), they have recently gained much attention due to their biological activities and mechanisms of action. We review herein the health benefits of GSs/GSHPs, approaches to improve the plant contents, their bioavailability and bioactivity. In this review, only literature published between 2010 and March 2020 was retrieved from various scientific databases. Findings indicate that these compounds (natural, pure, synthetic, and derivatives) play an important role in human/animal health (disease therapy and prevention), plant health (defense chemicals, biofumigants/biocides), and food industries (preservatives). Overall, much interest is focused on in vitro studies as anti-cancer and antimicrobial agents. GS/GSHP levels improvement in plants utilizes mostly biotic/abiotic stresses and short periods of phytohormone application. Their availability and bioactivity are directly proportional to their contents at the source, which is affected by methods of food preparation, processing, and extraction. This review concludes that, to a greater extent, there is a need to explore and improve GS-rich sources, which should be emphasized to obtain natural bioactive compounds/active ingredients that can be included among synthetic and commercial products for use in maintaining and promoting health. Furthermore, the development of advanced research on compounds pharmacokinetics, their molecular mode of action, genetics based on biosynthesis, their uses in promoting the health of living organisms is highlighted.
Collapse
Affiliation(s)
- Sylvia Maina
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gerald Misinzo
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gaymary Bakari
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
| |
Collapse
|
8
|
Determination of the Metabolite Content of Brassica juncea Cultivars Using Comprehensive Two-Dimensional Liquid Chromatography Coupled with a Photodiode Array and Mass Spectrometry Detection. Molecules 2020; 25:molecules25051235. [PMID: 32182961 PMCID: PMC7179433 DOI: 10.3390/molecules25051235] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/31/2022] Open
Abstract
Plant-based foods are characterized by significant amounts of bioactive molecules with desirable health benefits beyond basic nutrition. The Brassicaceae (Cruciferae) family consists of 350 genera; among them, Brassica is the most important one, which includes some crops and species of great worldwide economic importance. In this work, the metabolite content of three different cultivars of Brassica juncea, namely ISCI Top, “Broad-leaf,” and ISCI 99, was determined using comprehensive two-dimensional liquid chromatography coupled with a photodiode array and mass spectrometry detection. The analyses were carried out under reversed-phase conditions in both dimensions, using a combination of a 250-mm microbore cyano column and a 50-mm RP-Amide column in the first and second dimension (2D), respectively. A multi (three-step) segmented-in-fraction gradient for the 2D separation was advantageously investigated here for the first time, leading to the identification of 37 metabolites. In terms of resolving power, orthogonality values ranged from 62% to 69%, whereas the corrected peak capacity values were the highest for B. juncea ISCI Top (639), followed by B. juncea “Broad-leaf” (502). Regarding quantification, B. juncea cv. “Broad-leaf” presented the highest flavonoid content (1962.61 mg/kg) followed by B. juncea cv. ISCI Top (1002.03 mg/kg) and B. juncea cv. ISCI 99 (211.37 mg/kg).
Collapse
|