1
|
Sun P, Wu X, Sun Q, Zhao Q, Mu G, Kong F. Optimizing β-Lactoglobulin antigenicity through single enzyme hydrolysis: Exploring structural changes and effects on linear epitopes. Food Chem 2025; 464:141770. [PMID: 39476587 DOI: 10.1016/j.foodchem.2024.141770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
β-lactoglobulin (β-LG) is the major allergen in dairy products, but research on the optimal conditions for antigen reduction in β-LG using different enzymes remains limited. Therefore, this study aims to investigate the antigenicity, structural characteristics, and peptide distribution of advantageous protease hydrolysates capable of eliminating the allergenic epitopes of β-LG selected via bioinformatics tools. The results showed that under optimal enzymatic hydrolysis conditions, the antigen reduction rates for the four advantageous proteases acting on β-LG were 47.37 % (pepsin), 33.54 % (chymotrypsin A), 38.71 % (papain), and 45.91 % (stem bromelain), respectively. The four proteases effectively degraded β-LG, causing shorter peptide chain formation, reduced content of highly ordered α-helix, decreased fluorescence intensity, and lower surface hydrophobicity. Furthermore, they cleaved the linear epitopes of β-LG into peptides of varying sizes, leading to different antigen reduction rates among the hydrolysates. These findings provide a theoretical basis for developing targeted enzymatic hydrolysis technologies and low-allergenicity dairy-based materials.
Collapse
Affiliation(s)
- Peng Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Xiaomeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Qi Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Qing Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Fanhua Kong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China.
| |
Collapse
|
2
|
Wang J, Liu C, Gong X, Liu Y. Effects of dietary Acremonium terricola culture on production performance, serum biochemical parameters, egg quality and yolk amino acid contents of Beijing You-chicken. BMC Vet Res 2025; 21:37. [PMID: 39875893 PMCID: PMC11773765 DOI: 10.1186/s12917-025-04497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
The effects of Acremonium terricola culture (ATC) on production performance, serum biochemical parameters, egg quality and amino acid contents in the yolk of eggs of Beijing You-chicken were conducted in the current study. A total of 216 Beijing You-chickens (330 days old) were randomly divided into 2 groups. The control group (CON) was fed a corn-soybean-based diet, and the experimental group was fed a basal diet supplemented with 0.20% ATC. The pretest period was 7 d, and the experiment period was 8 weeks. The production performance, serum biochemical parameters, egg quality, and the concentrations of amino acids in the yolk of eggs were measured at the 4 weeks (FW, the first stage) and the 8 weeks (EW, the second stage) of the experiment, respectively. Compared with the CON group, there were no significant differences (P > 0.05) in the production performance of the experimental group at the end of four- and eight-week periods of study. The concentration of serum LH, FSH and E2 increased significantly for the ATC group, at both time periods when compared to CON group, while the triglyceride (TG) content was only increased significantly (P < 0.05) in the first stage. The average egg weight, albumen height, and Haugh unit representing egg quality of Beijing You-chickens in the experimental group were increased significantly (P < 0.05) compared with the CON group at both time periods, while the egg shape index and yolk weight were only increased significantly (P < 0.05) in the second stage. The protein content in the yolk was increased significantly at both time periods (P < 0.05). Levels of lecithin and Vitamin A in yolks of the ATC supplemented group increased significantly (P < 0.05) compared to the CON group, at both FW and EW, respectively. The contents of aspartic acid, threonine, methionine, leucine, and arginine were increased significantly in the first stage. In addition, the contents of threonine, glutamine, and valine were increased significantly in the second stage (P < 0.05). Our results suggest that dietary supplementation with 0.20% ATC improves serum biochemical parameters and egg quality in Beijing You-chickens. Future studies should focus on optimizing ATC dosage and exploring its underlying mechanisms for enhanced poultry production.
Collapse
Affiliation(s)
- Jianzhong Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Cun Liu
- Shandong Provincial Center for Animal Disease Control, Shandong, 250100, China
| | - Xiaowei Gong
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yanhan Liu
- Shandong Provincial Center for Animal Disease Control, Shandong, 250100, China.
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Lv X, Xia Z, Yao X, Shan Y, Wang N, Zeng Q, Liu X, Huang X, Fu X, Jin Y, Ma M. Modification Effects of Microorganisms and Enzymes on Egg Components: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25462-25480. [PMID: 39526490 DOI: 10.1021/acs.jafc.4c08536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In eggs, there are several components: eggshell (ES), eggshell membrane (ESM), egg white (EW), and egg yolk (EY). Many modification methods exist, such as thermal treatment, high pressure, freeze-thaw cycles, ultrasonic treatment, ozonation, phosphorylation, and acylation, all aimed at improving the functional properties of EW and EY. Additionally, microorganism and enzyme modifications have proven effective in enhancing the functional properties of EW and EY. ES and ESM are unique components of eggs. The eggshell is rich in calcium carbonate, while the eggshell membrane is rich in protein. The effective utilization of ES and ESM can help promote economic income in the poultry industry and benefit the environment. Research on the modification of ES and ESM has shown that microorganisms and enzymes have the potential to improve their functional properties. After modification, egg components can be utilized in the production of egg-based and other food products for improved performance. Furthermore, enzyme modification of egg components can produce bioactive peptides, which have the potential to treat specific diseases and may even be used in the biomedical field. This review primarily focuses on the effects of microorganisms and enzymes on the modification of egg components and summarizes the roles of microbial and enzymatic modifications in this context.
Collapse
Affiliation(s)
- Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhijun Xia
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xuan Yao
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yumeng Shan
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Nannan Wang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qi Zeng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoli Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
4
|
Lyu S, Li T, Yang Q, Liu J, Zhang T, Yu T. Potential Application of Egg White Peptides for Antioxidant Properties: Perspectives from Batch Stability and Network Pharmacology. Foods 2024; 13:3148. [PMID: 39410183 PMCID: PMC11475914 DOI: 10.3390/foods13193148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This study investigated the batch stability of egg white peptides (EWPs) during the enzymatic hydrolysis process, and confirmed the potential application of four crucial four peptides inoxidative damage repair. The results revealed that different batches of EWPs had good stability relating to antioxidant activity. With a similar sequence to confirmed antioxidant peptides, four EWPs (QMDDFE, WDDDPTD, DEPDPL, and FKDEDTQ) were identified withhigh repetition rates, and their potential to repair oxidative damage was investigated. Network pharmacology results showed that these four peptides could regulate the targets related to oxidative damage. Enrichment results demonstrated that these four peptides could influence the targets and pathways related to glutathione transferase activity (enrichment score: 148.0) and glutathione metabolism (p value: 9.22 × 10-10). This study could provide evidence for the batch stability of hydrolyzed prepared EWPs, and offer theoretical support for the development of antioxidant damage ingredients derived from foods.
Collapse
Affiliation(s)
- Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China; (S.L.); (T.L.); (Q.Y.); (J.L.); (T.Z.)
| | - Ting Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China; (S.L.); (T.L.); (Q.Y.); (J.L.); (T.Z.)
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China; (S.L.); (T.L.); (Q.Y.); (J.L.); (T.Z.)
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China; (S.L.); (T.L.); (Q.Y.); (J.L.); (T.Z.)
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China; (S.L.); (T.L.); (Q.Y.); (J.L.); (T.Z.)
| | - Ting Yu
- Department of Nutrition, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
5
|
Khalid S, Zahid M, Chaudhary K, Naeem M, Mustafa M, Onyeaka H, Hafeez A, Amin S, Raana S. Unveiling the emerging trends of egg components-based biodegradable food packaging development: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13433. [PMID: 39217508 DOI: 10.1111/1541-4337.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Food packaging plays a crucial role in the food supply chain by aiding in food preservation and reducing food losses throughout the distribution process. The extensive, unregulated utilization, and waste mismanagement of food packaging materials made up of conventional petroleum-based plastics has led to a significant environmental crisis. Egg components-based food packaging has attracted considerable attention from the global packaging industry as a viable alternative to synthetic polymers due to its biodegradability, sustainability, and health-related benefits. This comprehensive review explores the composition and properties of egg components (eggshell, eggshell membrane, egg white, and egg yolk), and recent advancements in biodegradable packaging films derived from them. Additionally, it introduces the characteristics of these films and their applications in food, highlighting their biodegradability, sustainability, and suitable mechanical, barrier, thermal, optical, antioxidant, and antimicrobial properties as substitutes for traditional synthetic polymers. The utilization of various egg components in the packaging industry is a safe, non-toxic, cost-effective, and economical approach. However, it was found that incorporating active compounds from natural sources into packaging films, as well as composite films composed of egg components combined with other biopolymers, resulted in superior properties, compared to single component films. Moreover, the application of novel technologies in film development has proven to be more effective than conventional methods. These innovative egg components-based packaging films can be optimized and commercialized for use as packaging materials for food products.
Collapse
Affiliation(s)
- Samran Khalid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muqaddas Zahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Kashmala Chaudhary
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muzammil Mustafa
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Azka Hafeez
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sara Amin
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sumbal Raana
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
de Albuquerque Mendes MK, dos Santos Oliveira CB, da Silva Medeiros CM, Dantas C, Carrilho E, de Araujo Nogueira AR, Lopes Júnior CA, Vieira EC. Application of experimental design as a statistical approach to recover bioactive peptides from different food sources. Food Sci Biotechnol 2024; 33:1559-1583. [PMID: 38623435 PMCID: PMC11016049 DOI: 10.1007/s10068-024-01540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 04/17/2024] Open
Abstract
Bioactive peptides (BAPs) derived from samples of animals and plants have been widely recommended and consumed for their beneficial properties to human health and to control several diseases. This work presents the applications of experimental designs (DoE) used to perform factor screening and/or optimization focused on finding the ideal hydrolysis condition to obtain BAPs with specific biological activities. The collection and discussion of articles revealed that Box Behnken Desing and Central Composite Design were the most used. The main parameters evaluated were pH, time, temperature and enzyme/substrate ratio. Among vegetable protein sources, soy was the most used in the generation of BAPs, and among animal proteins, milk and shrimp stood out as the most explored sources. The degree of hydrolysis and antioxidant activity were the most investigated responses in obtaining BAPs. This review brings new information that helps researchers apply these DoE to obtain high-quality BAPs with the desired biological activities.
Collapse
Affiliation(s)
| | | | | | - Clecio Dantas
- Departamento de Química, Universidade Estadual do Maranhão – UEMA, P.O. Box, 65604-380, Caxias, MA Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590 Brazil
| | | | - Cícero Alves Lopes Júnior
- Departamento de Química, Universidade Federal do Piauí – UFPI, P.O. Box 64049-550, Teresina, PI Brazil
| | - Edivan Carvalho Vieira
- Departamento de Química, Universidade Federal do Piauí – UFPI, P.O. Box 64049-550, Teresina, PI Brazil
| |
Collapse
|
7
|
Tan Y, Wang Y, Wan Y, Liang Y, Liu Q, Wei M, Hou T. Preparation, Structural Identification, and Screening of Egg-Derived Peptides with Facilitating Alcohol Metabolism Activity. Foods 2024; 13:745. [PMID: 38472859 DOI: 10.3390/foods13050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to obtain egg-derived peptides with facilitating alcohol metabolism (EPs) by enzymolysis, to identify their structures, and screen small polypeptides with higher activity by molecular docking. The optimum conditions for preparing EPs with facilitating alcohol metabolism were obtained by a single factor experiment, adding 2% Protamex and performing enzymolysis for 3 h with a liquid-material ratio of 35:1. The dose-response relationship experiment showed that 800 mg/kg·bw EPs played a better role in facilitating alcohol metabolism. EPs contained 40% hydrophobic amino acids (HAA), including 9.24% Leu. Eighty-four peptides were identified by HPLC-MS/MS and four peptides with potential activation of alcohol dehydrogenase were further selected by molecular docking. The tetrapeptide Trp-Ile-Val-Asp (WIVD) with the highest binding energy reached -7.16 kcal/mol. These findings suggest that egg is a good source for the preparation of peptides with facilitating alcohol metabolism activity.
Collapse
Affiliation(s)
- Yali Tan
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulin Wang
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China
| | - Yuan Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaocui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengya Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Hou
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430000, China
| |
Collapse
|
8
|
Koidl L, Gentile SA, Untersmayr E. Allergen Stability in Food Allergy: A Clinician's Perspective. Curr Allergy Asthma Rep 2023; 23:601-612. [PMID: 37665560 PMCID: PMC10506954 DOI: 10.1007/s11882-023-01107-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE OF REVIEW The globally rising food allergy prevalence is associated with the urgent need for new disease prevention methods, efficient treatment, and reliable risk assessment methods for characterization of food allergens. Due to inter-individual variations in the digestive system, food allergens are degraded to a different extent in each person. Food processing also influences allergen digestion. RECENT FINDINGS In this review, we provide an overview of the digestive system with focus on relevance for food allergy. Main food proteins causing allergic reactions are evaluated, and the combined role of food processing and digestion for allergen stability is highlighted. Finally, clinical implications of this knowledge are discussed. Recent literature shows that allergen digestibility is dependent on food processing, digestive conditions, and food matrix. Digestion affects proteins allergenicity. It is currently not possible to predict the immunogenicity of allergens solely based on protein stability.
Collapse
Affiliation(s)
- Larissa Koidl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria
| | - Salvatore Alessio Gentile
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Yang Q, Lyu S, Xu M, Li S, Du Z, Liu X, Shang X, Yu Z, Liu J, Zhang T. Potential Benefits of Egg White Proteins and Their Derived Peptides in the Regulation of the Intestinal Barrier and Gut Microbiota: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13168-13180. [PMID: 37639307 DOI: 10.1021/acs.jafc.3c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Impaired intestinal barrier function can impede the digestion and absorption of nutrients and cause a range of metabolic disorders, which are the main causes of intestinal disease. Evidence suggests that proper dietary protein intake can prevent and alleviate intestinal diseases. Egg white protein (EWP) has received considerable attention, because of its high protein digestibility and rich amino acid composition. Furthermore, bioactive peptides may have an increased repair effect due to their high degradation efficiency in the gut. In this study, we aimed to review the effects of EWP and its bioactive peptides on intestinal structural repair. The potential modulation mechanisms by which EWP and their peptides regulate the gut microbiota and intestinal barrier can be summarized as follows: (1) restoring the structure of the intestinal barrier to its intact form, (2) enhancing the intestinal immune system and alleviating the inflammatory response and oxidative damage, and (3) increasing the relative abundance of beneficial bacteria and metabolites. Further in-depth analysis of the coregulation of multiple signaling pathways by EWP is required, and the combined effects of these multiple mechanisms requires further evaluation in experimental models. Human trials can be considered to understand new directions for development.
Collapse
Affiliation(s)
- Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Menglei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Shengrao Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, 570228 Haikou, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| |
Collapse
|
10
|
Li C, Chen X, Li L, Cheng J, Chen H, Gao Q, Yang F, Cai X, Wang S. Protective effect of antioxidant peptides from bass (
Lateolabrax japonicus
) on oxidative stress injury in Caco‐2 cells. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
11
|
The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg. Molecules 2023; 28:molecules28062658. [PMID: 36985630 PMCID: PMC10053729 DOI: 10.3390/molecules28062658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
This review article discusses advanced extraction methods to enhance the functionality of egg-derived peptides while reducing their allergenicity. While eggs are considered a nutrient-dense food, some proteins can cause allergic reactions in susceptible individuals. Therefore, various methods have been developed to reduce the allergenicity of egg-derived proteins, such as enzymatic hydrolysis, heat treatment, and glycosylation. In addition to reducing allergenicity, advanced extraction methods can enhance the functionality of egg-derived peptides. Techniques such as membrane separation, chromatography, and electrodialysis can isolate and purify specific egg-derived peptides with desired functional properties, improving their bioactivity. Further, enzymatic hydrolysis can also break down polypeptide sequences and produce bioactive peptides with various health benefits. While liquid chromatography is the most commonly used method to obtain individual proteins for developing novel food products, several challenges are associated with optimizing extraction conditions to maximize functionality and allergenicity reduction. The article also highlights the challenges and future perspectives, including optimizing extraction conditions to maximize functionality and allergenicity reduction. The review concludes by highlighting the potential for future research in this area to improve the safety and efficacy of egg-derived peptides more broadly.
Collapse
|
12
|
Xia S, Li Y, You P, Hu C. Screening of anti-liver fibrosis peptides from turtle shell protein using two-enzyme hydrolysis by molecular docking. Food Funct 2023; 14:1476-1483. [PMID: 36648420 DOI: 10.1039/d2fo03307k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Turtle shell as a food residue of Pelodiscus sinensis (a type of edible aquatic animal) is widely used in Traditional Chinese Medicine for hepatic fibrosis therapy. Previous studies have demonstrated that the peptides (<6 kDa) derived from turtle shells are considered effective components. The protein of turtle shells has important potential as a source of bioactive peptides which may play a role as ingredients in functional foods. In the present study, the protein of turtle shell was hydrolyzed using a two-enzyme combination. It was found that the hydrolysates obtained by a combination of pepsin and trypsin showed the highest anti-liver fibrosis activity relative to other combinations in a cell viability assay. The hydrolysates were separated and purified by ultra-filtration (<6 kDa), gel filtration chromatography (GFC) and high-performance liquid chromatography (HPLC). Subsequently, the sequences of purified peptides were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Molecular docking was used to analyze the interaction of these peptides with the transforming growth factor-β1 (TGF-β1) receptor. Two (GPPGVPGPGPL, TSLPVPAPV) of these novel peptides displayed lower binding energies to the TGF-β1 receptor (-8.18 kcal mol-1, -8 kcal mol-1). Finally, the above two peptides were synthesized chemically and their in vitro anti-liver fibrosis activity was verified by MTT assay. Among them, GPPGVPGPGPL showed a better in vitro anti-liver fibrosis activity (IC50: 80.13 μM). We established a method to obtain anti-liver fibrosis peptides from turtle shells by using bioactivity-guided isolation with molecular docking. Turtle shell protein is an excellent source of anti-liver fibrosis peptides which can offer therapeutic and commercial benefits as an ingredient in functional foods.
Collapse
Affiliation(s)
- Shufan Xia
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu Road West, Wuhan, 430065, People's Republic of China
| | - Yao Li
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu Road West, Wuhan, 430065, People's Republic of China
| | - Pengtao You
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu Road West, Wuhan 430065, People's Republic of China
| | - Chunling Hu
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu Road West, Wuhan, 430065, People's Republic of China
| |
Collapse
|
13
|
Fang X, Chen Z, Wu W, Chen H, Nie S, Gao H. Effects of different protease treatment on protein degradation and flavor components of
Lentinus edodes. EFOOD 2022. [DOI: 10.1002/efd2.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xiangjun Fang
- Institute of Food Science Zhejiang Academy of Agricultural Sciences Hangzhou China
- Key Laboratory of Post‐harvest Handling of Fruits Ministry of Agriculture and Rural Affairs Hangzhou China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou China
| | - Ziqi Chen
- Institute of Food Science Zhejiang Academy of Agricultural Sciences Hangzhou China
- Key Laboratory of Post‐harvest Handling of Fruits Ministry of Agriculture and Rural Affairs Hangzhou China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou China
| | - Weijie Wu
- Institute of Food Science Zhejiang Academy of Agricultural Sciences Hangzhou China
- Key Laboratory of Post‐harvest Handling of Fruits Ministry of Agriculture and Rural Affairs Hangzhou China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou China
| | - Hangjun Chen
- Institute of Food Science Zhejiang Academy of Agricultural Sciences Hangzhou China
- Key Laboratory of Post‐harvest Handling of Fruits Ministry of Agriculture and Rural Affairs Hangzhou China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Laboratory of Food Science and Technology (Nanchang) Key Laboratory of Bioactive Polysaccharides of Jiangxi Province Nanchang University Nanchang China
| | - Haiyan Gao
- Institute of Food Science Zhejiang Academy of Agricultural Sciences Hangzhou China
- Key Laboratory of Post‐harvest Handling of Fruits Ministry of Agriculture and Rural Affairs Hangzhou China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou China
| |
Collapse
|
14
|
Chen Y, Han P, Ma B, Wang X, Ma M, Qiu N, Fu X. Effect of thermal treatment on the antioxidant activity of egg white hydrolysate and the preparation of novel antioxidant peptides. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yue Chen
- National Research and Development Centre for Egg Processing College of Food Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Peng Han
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming Yunnan 650500 China
| | - Bin Ma
- National Research and Development Centre for Egg Processing College of Food Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Xuefen Wang
- National Research and Development Centre for Egg Processing College of Food Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Meihu Ma
- National Research and Development Centre for Egg Processing College of Food Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Ning Qiu
- National Research and Development Centre for Egg Processing College of Food Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Xing Fu
- National Research and Development Centre for Egg Processing College of Food Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 China
| |
Collapse
|
15
|
Zhou N, Zhao Y, Yao Y, Wu N, Xu M, Du H, Wu J, Tu Y. Antioxidant Stress and Anti-Inflammatory Activities of Egg White Proteins and Their Derived Peptides: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5-20. [PMID: 34962122 DOI: 10.1021/acs.jafc.1c04742] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxidative stress and chronic inflammation are the common pathological bases of chronic diseases such as atherosclerosis, cancer, and cardiovascular diseases, but most of the treatment drugs for chronic diseases have side effects. There is an increasing interest to identify food-derived bioactive compounds that can mitigate the pathological pathways associated with oxidative stress and chronic inflammation. Egg white contain a variety of biologically active proteins, many of which have antioxidant and anti-inflammatory activities and usually show better activity after enzymatic hydrolysis. This review covers the antioxidative stress and anti-inflammatory activities of egg white proteins and their derived peptides and clarifies their mechanism of action in vivo and in vitro. In addition, the link between oxidative stress and inflammation as well as their markers are reviewed. It suggests the potential application of egg white proteins and their derived peptides and puts forward further research prospects.
Collapse
Affiliation(s)
- Na Zhou
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
16
|
Gazme B, Rezaei K, Udenigwe CC. Epitope mapping and the effects of various factors on the immunoreactivity of main allergens in egg white. Food Funct 2022; 13:38-51. [PMID: 34908097 DOI: 10.1039/d1fo01867a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Egg white has high protein content and numerous biological/functional properties. However, reported allergenicity for some of the proteins in egg white is an issue that needs to be paid exclusive attention. A consideration of the structure of IgE epitopes and their sequences, as well as a comprehensive understanding of the effects of various processes on epitopes and the impact of the gastrointestinal tract on them, can help target such issues. The current study focuses on the identified IgE epitopes in egg white proteins and evaluation of the effects of the gastrointestinal digestion, carbohydrate moiety, food matrix, microbial fermentation, recombinant allergen, heat treatment, Maillard reaction and combination of various processes and gastrointestinal digestion on egg white allergenicity. Although the gastrointestinal tract reduces the immunoreactivity of native egg white proteins, some of the IgE epitope-containing fragments remain intact during the digestion process. It has been found that the gastrointestinal tract can have both positive and negative impacts on the IgE binding activities of egg white proteins. Elimination of the carbohydrate moiety leads to a reduction in the immunoreactivity of ovalbumin. But, such effects from the carbohydrate parts in the IgE binding activity need to be explored further. In addition, the interaction between the egg white proteins and the food matrix leads to various effects from the gastrointestinal tract on the digestion of egg white proteins and their subsequent immunoreactivity. Further on this matter, studies have shown that both microbial fermentation and Maillard reaction can reduce the IgE binding activities of egg white proteins. Also, as an alternate approach, the thermal process can be used to treat the egg white proteins, which may result in the reduction or increase in their IgE binding activities depending on the conditions used in the process. Overall, based on the reported data, the allergenicity levels of egg white proteins can be mitigated or escalated depending on the conditions applied in the processing of the food products containing egg white. So far, no practical solutions have been reported to eliminate such allergenicity.
Collapse
Affiliation(s)
- Behzad Gazme
- Department of Food Science, Engineering, and Technology, University of Tehran, 31587-77871 Karaj, Iran.
| | - Karamatollah Rezaei
- Department of Food Science, Engineering, and Technology, University of Tehran, 31587-77871 Karaj, Iran.
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, 415 Smyth Road, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada. .,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
17
|
Bueno-Gavilá E, Abellán A, Girón-Rodríguez F, Cayuela JM, Tejada L. Bioactivity of Hydrolysates Obtained from Chicken Egg Ovalbumin Using Artichoke ( Cynara scolymus L.) Proteases. Foods 2021; 10:foods10020246. [PMID: 33530390 PMCID: PMC7912038 DOI: 10.3390/foods10020246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
The aim of this work was to obtain chicken egg ovalbumin hydrolysates using aspartic proteinases present in extracts from the artichoke flower (Cynara scolymus L.) and evaluate their antioxidant, antimicrobial, and angiotensin I-converting enzyme (ACE) inhibitory activity in vitro. Hydrolysis time and molecular weight (<3 kDa) had a significant influence on the hypertensive and antioxidant activity of the hydrolysates. The <3 kDa fraction of the 16 h hydrolysate had an ACE inhibitory activity with an IC50 of 64.06 µg peptides/mL. The fraction <3 kDa of ovalbumin hydrolysate at 2 h of hydrolysis showed a DPPH radical scavenging activity of 30.27 µM of Trolox equivalents/mg peptides. The fraction <3 kDa of the hydrolysate of 16 h had an ABTS+ caption activity of 4.30 mM of Trolox equivalents/mg peptides. The fraction <3 kDa of the hydrolysate of 2 h had an iron (II) chelating activity of 32.18 µg peptides/mL. From the peptide sequences identified in the hydrolysates, we detected four peptides (from the BIOPEP database) that were already in their bioactive form (IAAEVYEHTEGSTTSY, HLFGPPGKKDPV, PIAAEVYEHTEGSTTSY, and YAEERYPIL), and are reported to display antioxidant and ACE inhibitory activity.
Collapse
|
18
|
Wang J, Ye X, Su Z, Zou P, Pang J, Chen JC. ACE-inhibitory peptides from Laminaria japonica and their potential anti-hypertensive mechanism. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1900923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jie Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianjiang Ye
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhichen Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Zou
- School of Food Science and Technology, Changzhou University, Changzhou, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Cheng Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Jiang B, Wang M, Wang X, Wu S, Li D, Liu C, Feng Z, Li J. Effective separation of prolyl endopeptidase from Aspergillus Niger by aqueous two phase system and its characterization and application. Int J Biol Macromol 2020; 169:384-395. [PMID: 33347934 DOI: 10.1016/j.ijbiomac.2020.12.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023]
Abstract
Aspergillus niger prolyl endopeptidase (An-PEP) has become a research focus because of its advantages in specifically cleaving the C-terminal peptide bond of proline residues, especially it was an industrial food-grade acidic PEP. Aqueous two-phase system (ATPS) was first applied for separating An-PEP from fermentation broth. Via response surface method (RSM) experiment, an effectively separation of An-PEP was achieved by ATPS containing27% (w/w) ethanol and 14.5% (w/w) (NH4)2SO4 at pH 6.0 with the recovery of 90.29 ± 0.23% and purification coefficient of 15.35 ± 0.30. The purified An-PEP was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), fourier transform infrared (FTIR) and fluorescence spectrometry. The optimum temperature and pH of An-PEP were 40 °C and 4.5-5.0, respectively. An-PEP was activated and stabilized by Ca2+ but inhibited by Fe3+. The enzymatic application of purified An-PEP was evaluated by hydrolyzing egg white protein (EWP) to prepare bioactive peptides. The obtained hydrolysates had good scavenging ability of OH and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, angiotensin converting enzyme (ACE) inhibitory activity and anti-gout activity. This research realized a low-cost, high-efficiency and simple separation technology of An-PEP and provided a broader idea for the preparation of bioactive peptides and the application of An-PEP.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Meichan Wang
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xiaojing Wang
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Shuang Wu
- Heilongjiang Eco-meteorology Center, Harbin, Heilongjiang 150030, People's Republic of China
| | - Dongmei Li
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Chunhong Liu
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Zhibiao Feng
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China.
| | - Jie Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China.
| |
Collapse
|
20
|
Dong X, Zhang YQ. An insight on egg white: From most common functional food to biomaterial application. J Biomed Mater Res B Appl Biomater 2020; 109:1045-1058. [PMID: 33252178 DOI: 10.1002/jbm.b.34768] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Natural egg white tis widely used as an ingredient in nutritional foods and for food processing. Due to its characteristic foaming, emulsification, adhesion, and gelation, and its heat setting, biocompatibility, and low cost, research into the application and development of egg white in biomaterials, especially medical biomaterials, have been receiving attention. The composition and characteristics of egg white protein, and the physical mixing and chemically cross-linking of egg white with other materials used to make degradable packaging films, bioceramics, bioplastics, biomimetic films, hydrogels, 3D scaffolds, bone regeneration, biopatterning, biosensors, and so forth, are reviewed in detail in this report. The novel egg white-based biomaterials in various forms and applications could be constructed mostly through physical treatments such as ultrasonic wave, ultraviolet, laser and other radiation or high-temperature calcination. Furthermore, the application and prospects for the use of egg white in biomaterials is also discussed.
Collapse
Affiliation(s)
- Xuan Dong
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Moreno-Fernández S, Garcés-Rimón M, Miguel M. Egg-derived peptides and hydrolysates: A new bioactive treasure for cardiometabolic diseases. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Pan M, Liu K, Yang J, Liu S, Wang S, Wang S. Advances on Food-Derived Peptidic Antioxidants-A Review. Antioxidants (Basel) 2020; 9:E799. [PMID: 32867173 PMCID: PMC7554705 DOI: 10.3390/antiox9090799] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
The oxidation process is considered to be the main reason behind human aging, human degenerative diseases and food quality degradation. Food-derived peptidic antioxidants (PAs) have wide sources and great activity, and have broad application prospects in removing excess reactive oxygen species in the body, anti-aging and preventing and treating diseases related to oxidative stress. On the other hand, PAs are expected to inhibit the lipid peroxidation of foods and increase the stability of the food system in the food industry. However, the production pathways and action mechanism of food-derived PAs are diverse, which makes it is difficult to evaluate the performance of PAs which is why the commercial application of PAs is still in its infancy. This article focuses on reviewing the preparation, purification, and characterization methods of food-derived PAs, and expounds the latest progress in performance evaluation and potential applications, in order to provide an effective reference for subsequent related research of PAs.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
23
|
Benedé S, Molina E. Chicken Egg Proteins and Derived Peptides with Antioxidant Properties. Foods 2020; 9:foods9060735. [PMID: 32503187 PMCID: PMC7353489 DOI: 10.3390/foods9060735] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to their high nutritional value, some chicken egg proteins and derivatives such as protein hydrolysates, peptides and amino acids show antioxidant properties which make them prominent candidates for the development of functional foods, drawing attention to both the food and biopharmaceutical industries. This review summarizes current knowledge on antioxidant activity of chicken egg proteins and their derived peptides. Some egg proteins such as ovalbumin, ovotransferrin and lysozyme from egg white or phosvitin from yolk have shown antioxidant properties, although derived peptides have higher bioactive potential. The main process for obtaining egg bioactive peptides is enzymatic hydrolysis of its proteins using enzymes and/or processing technologies such as heating, sonication or high-intensity-pulsed electric field. Different in vitro assays such as determination of reducing power, DPPH and ABTS radical-scavenging activity tests or oxygen radical absorbance capacity assay have been used to evaluate the diverse antioxidant mechanisms of proteins and peptides. Similarly, different cell lines and animal models including zebrafish, mice and rats have also been used. In summary, this review collects all the knowledge described so far regarding egg proteins and derived peptides with antioxidant functions.
Collapse
|