1
|
Li X, Li B, Meng X, Yu F, Yu X, Zhao W, Wang Y, Gao H, Cheng M, Zhong L. Integrating Network Pharmacology and Experimental Validation to Reveal the Mechanism of Vine Grape Tea Polyphenols on Hyperuricemia-Induced Renal Injury in Mice. J Med Food 2024; 27:312-329. [PMID: 38377550 DOI: 10.1089/jmf.2023.k.0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Hyperuricemia (HUA) is a metabolic disease and contributes to renal injury (RI). Vine grape tea polyphenols (VGTP) have been widely used to treat HUA and RI. However, the potential mechanism of VGTP activity remains unclear. To explore the underlying mechanism of VGTP treatment for HUA-induced RI based on network pharmacology that is confirmed by an in vivo study. All ingredients of VGTP were retrieved using a Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Comparative Toxicogenomics Database systems. The related targets of HUA and RI were obtained from GeneCards and National Center for Biotechnology Information (NCBI) databases. Some ingredients and targets were selected for molecular docking verification. One hour after administering potassium oxonate (300 mg/kg), VGTP (50, 100, and 200 mg/kg/d) was orally administered to HUA mice for 4 weeks. Histopathology and western blotting were performed in renal tissue. Our results showed that VGTP significantly reduced blood urea nitrogen, creatinine, uric acid, and significantly improved the RI and fibrosis of HUA mice. There were 54 active ingredients and 62 targets of HUA-induced RI. Further studies showed that VGTP decreased the expression of Bax, cleaved caspase 3, transforming growth factor-β (TGF-β1), CHOP, p-STAT3, and P53, and increased Bcl-2 expression in renal tissue. The related signaling pathways have apoptosis, TGF-β1, P53 and STAT, and endoplasmic reticulum stress (ERS). In this study, VGTP exerted antihyperuricemic and anti fibrosis effects by regulating the apoptosis and ERS signaling pathways. VGTP is expected to become a drug for combating HUA and RI.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Health Management Center (East Area), Qilu Hospital of Shandong University, Jinan, China
| | - Xinyue Meng
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Yu
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Yu
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Wenqian Zhao
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yajuan Wang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Haiqing Gao
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Cheng
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lihong Zhong
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Hussain A, Rui B, Ullah H, Dai P, Ahmad K, Yuan J, Liu Y, Li M. Limosilactobacillus reuteri HCS02-001 Attenuates Hyperuricemia through Gut Microbiota-Dependent Regulation of Uric Acid Biosynthesis and Excretion. Microorganisms 2024; 12:637. [PMID: 38674582 PMCID: PMC11052267 DOI: 10.3390/microorganisms12040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Hyperuricemia is a prevalent metabolic disorder that arises from abnormal purine metabolism and reduced excretion of uric acid (UA). The gut microbiota plays a significant role in the biosynthesis and excretion of UA. Probiotics capable of purine degradation possess the potential to prevent hyperuricemia. Our study aimed to screen probiotics in areas with abundant dairy products and longevity populations in China, which could attenuate the level of UA and explore the underlying mechanism. In this study, twenty-three lactic acid bacteria isolated from healthy Chinese infant feces and traditional fermented foods such as hurood and lump milk were evaluated for the ability to tolerance acid, bile, artificial gastric juice, and artificial intestinal juice to determine the potential of the candidate strains as probiotics. Eight strains were identified as possessing superior tolerance to simulated intestinal conditions and were further analyzed by high-performance liquid chromatography (HPLC), revealing that Limosilactobacillus reuteri HCS02-001 (Lact-1) and Lacticaseibacillus paracasei HCS17-040 (Lact-2) possess the most potent ability to degrade purine nucleosides. The effect of Lact-1 and Lact-2 on hyperuricemia was evaluated by intervening with them in the potassium oxonate and adenine-induced hyperuricemia Balb/c mice model in vivo. Our results showed that the level of serum UA in hyperuricemic mice can be efficiently reduced via the oral administration of Lact-1 (p < 0.05). It significantly inhibited the levels of liver inflammatory cytokines and hepatic xanthine oxidase through a TLR4/MyD88/NF-κB pathway across the gut-liver axis. Furthermore, UA transporters ABCG2 and SLC2A9 were substantially upregulated by the intervention of this probiotic. Fecal ATP levels were significantly induced, while fecal xanthine dehydrogenase and allantoinase levels were increased following probiotics. RNA sequencing of HT-29 cells line treated with Lact-1 and its metabolites demonstrated significant regulation of pathways related to hyperuricemia. In summary, these findings demonstrate that Limosilactobacillus reuteri HCS02-001 possesses a capacity to ameliorate hyperuricemia by inhibiting UA biosynthesis via enhancing gastrointestinal barrier functions and promoting UA removal through the upregulation of urate transporters, thereby providing a basis for the probiotic formulation by targeting the gut microbiota.
Collapse
Affiliation(s)
- Akbar Hussain
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Binqi Rui
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Hayan Ullah
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Panpan Dai
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Kabir Ahmad
- Department of Physiology, Dalian Medical University, Dalian 116041, China;
| | - Jieli Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Yinhui Liu
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| |
Collapse
|
3
|
Meng W, Chen L, Ouyang K, Lin S, Zhang Y, He J, Wang W. Chimonanthus nitens Oliv. leaves flavonoids alleviate hyperuricemia by regulating uric acid metabolism and intestinal homeostasis in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
4
|
Sui Y, Xu D, Sun X. Identification of anti-hyperuricemic components from Coix seed. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Alrajeh K, Roman YM. The frequency of rs2231142 in ABCG2 among Asian subgroups: implications for personalized rosuvastatin dosing. Pharmacogenomics 2023; 24:15-26. [PMID: 36651271 PMCID: PMC9979151 DOI: 10.2217/pgs-2022-0155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/07/2022] [Indexed: 01/19/2023] Open
Abstract
Statins are widely used medications for the primary and secondary prevention of cardiovascular diseases. Statin-induced musculoskeletal symptoms are the primary adverse drug events contributing to poor adherence to lipid-lowering therapy. Rosuvastatin is characterized by interindividual differences in systemic exposure among different patient population subgroups. The missense variant Q141K within ABCG2, highly prevalent in some Asian subgroups, results in decreased transporter efflux function and increased exposure to rosuvastatin. We aim to highlight the implications of ABCG2 genotype in prescribing rosuvastatin and the ramifications of interpopulation differences in Q141K frequencies in the starting dose of rosuvastatin in major Asian subgroups, using the most recent genetic-based guidelines. The high frequency of Q141K in Filipinos could warrant a lower starting rosuvastatin dose versus non-Filipinos. The Q141K genotype frequencies in Asian subgroups suggest significant interpopulation differences, reinforcing the need to move beyond race-based to genotype-based rosuvastatin dosing.
Collapse
Affiliation(s)
- Khalifa Alrajeh
- Department of Pharmacotherapy & Outcome Science, Virginia Commonwealth University School of Pharmacy, 410 N 12 Street, Richmond, VA 23298, USA
- Department of Pharmacy Practice, King Faisal University College of Clinical Pharmacy, P.O. Box 400, Hofuf, Eastern Province, 31982, Saudi Arabia
| | - Youssef M. Roman
- Department of Pharmacotherapy & Outcome Science, Virginia Commonwealth University School of Pharmacy, 410 N 12 Street, Richmond, VA 23298, USA
| |
Collapse
|
6
|
Zhang X, Cui J, Hou J, Wang W. Research Progress of Natural Active Substances with Uric-Acid-Reducing Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15647-15664. [PMID: 36482671 DOI: 10.1021/acs.jafc.2c06554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hyperuricemia is a metabolic disease caused by the accumulation of uric acid in the body. Allopurinol, benzbromarone, and febuxostat, which are available in the market, have reduced the circulating urate levels; however, they exhibit serious side effects. Therefore, it is reasonable to develop a new active antihyperuricemia drug with few side effects. With the deepening of research, numerous kinds of literature have shown that natural active substances are effective in the treatment of hyperuricemia with a variety of sources and few side effects, which have become the focus of research in recent years. This review focuses on natural active substances with uric-acid-reducing activity and discusses their pharmacological effects. More specifically, the bioactive compounds of natural active substances are divided into five categories: natural extracts, monomer compounds extracted from plants, natural protease hydrolysates, peptides, and probiotic bacteria. In addition, the mechanisms by which these bioactive compounds exhibit hypouricemic effects can be divided into four classes: inhibition of key enzyme activities, promotion of uric acid excretion and inhibition of reabsorption in the kidney, promotion of decomposing uric acid precursors, and promotion of decomposing uric acid. Overall, this current and comprehensive review examines the role of natural active substances in the treatment of hyperuricemia.
Collapse
Affiliation(s)
- Xin Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Jie Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Junling Hou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
- Engineering Research Center of GAP for Chinese Crude Drugs, Ministry of Education, Beijing 100102, People's Republic of China
| | - Wenquan Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
- Engineering Research Center of GAP for Chinese Crude Drugs, Ministry of Education, Beijing 100102, People's Republic of China
| |
Collapse
|
7
|
Li J, Li J, Fan L. Recent Advances in Alleviating Hyperuricemia Through Dietary Sources: Bioactive Ingredients and Structure–activity Relationships. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2124414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jun Li
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Jinwei Li
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Liuping Fan
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|