1
|
Lin CC, Hsieh CY, Chen LF, Chen YC, Ho TH, Chang SC, Chang JF. Versatile Effects of GABA Oolong Tea on Improvements in Diastolic Blood Pressure, Alpha Brain Waves, and Quality of Life. Foods 2023; 12:4101. [PMID: 38002159 PMCID: PMC10670354 DOI: 10.3390/foods12224101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Emerging evidence has demonstrated that using a new manufacturing technology to produce γ-aminobutyric acid (GABA)-fortified oolong (GO) tea could relieve human stress and exert versatile physiological benefits. The purpose of this human study was to investigate the therapeutic effects of daily GO tea consumption on improvements in blood pressure, relaxation-related brain waves, and quality of life (QOL) over a period of 28 consecutive days. Total polyphenols, major catechins, and free amino acids were analyzed via an HPLC assay. Changes in heart rate, blood pressure, α brain waves (index of relaxation), and the eight-item QOL score were investigated on days 0, 7, 14, 21, and 28. The chemical analysis results showed that GO tea contained the most abundant amino acids and GABA, contributing to the relaxation activity. Among all study participants, the daily consumption of GO tea could reduce systolic blood pressure on day 21 and diastolic blood pressure on day 28 (p < 0.05 for both). For participants with pre-hypertension, GO tea could effectively reduce heart rate and systolic and diastolic blood pressure on day 28 (p < 0.05). At the end of the study, incremental changes in alpha brain waves and QOL scores were also demonstrated (p < 0.05 for both). This study suggests that GO tea might potentially serve as a natural source for alternative therapy to improve blood pressure, stress relief, and QOL.
Collapse
Affiliation(s)
- Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan;
| | - Chih-Yu Hsieh
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan;
- Department of Food Science, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan; (C.-Y.H.); (Y.-C.C.)
- Institute of Tea & Pottery Culture, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan;
- Department of Pet Healthcare, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan
| | - Li-Fen Chen
- Institute of Tea & Pottery Culture, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan;
| | - Yen-Chun Chen
- Department of Food Science, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan; (C.-Y.H.); (Y.-C.C.)
| | - Tien-Hwa Ho
- Department of Information Management, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan;
| | - Shao-Chin Chang
- Department of Physical Science and Technology, Yichun University, Yichun 336000, China;
| | - Jia-Feng Chang
- Division of Nephrology, Department of Internal Medicine, Taoyuan Branch of Taipei Veterans General Hospital, Taoyuan City 330, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan
- School of Medicine, National Yang-Ming University, Taipei City 120, Taiwan
- Renal Care Joint Foundation, New Taipei City 220, Taiwan
| |
Collapse
|
2
|
Seong E, Heo H, Sang Jeong H, Lee H, Lee J. Enhancement of bioactive compounds and biological activities of Centella asiatica through ultrasound treatment. ULTRASONICS SONOCHEMISTRY 2023; 94:106353. [PMID: 36889177 PMCID: PMC10015234 DOI: 10.1016/j.ultsonch.2023.106353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Centella asiatica possess various health-promoting activities owing to its bioactive compounds such as triterpenes, flavonoids, and vitamins. Ultrasound treatment during the post-harvest process is a good strategy for eliciting secondary metabolite in plants. The present study investigated the effect of ultrasound treatment for different time durations on the bioactive compounds and biological activities of C. asiatica leaves. The leaves were treated with ultrasound for 5, 10, and 20 min. Ultrasound elicitation (especially for 10 min) markedly elevated the accumulation of stress markers, leading to enhanced phenolic-triggering enzyme activities. The accumulation of secondary metabolites and antioxidant activities were also significantly improved compared with that in untreated leaves. In addition, ultrasound-treated C. asiatica leaves protected myoblasts against H2O2-induced oxidative stress by regulating reactive oxygen species production, glutathione depletion, and lipid peroxidation. These findings indicate that elicitation using ultrasound can be a simple method for increasing functional compound production and enhancing biological activities in C. asiatica leaves.
Collapse
Affiliation(s)
- Eunjeong Seong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Heon Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
3
|
Bo JH, Wang JX, Wang XL, Jiao Y, Jiang M, Chen JL, Hao WY, Chen Q, Li YH, Ma ZL, Zhu GQ. Dexmedetomidine Attenuates Lipopolysaccharide-Induced Sympathetic Activation and Sepsis via Suppressing Superoxide Signaling in Paraventricular Nucleus. Antioxidants (Basel) 2022; 11:antiox11122395. [PMID: 36552603 PMCID: PMC9774688 DOI: 10.3390/antiox11122395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Sympathetic overactivity contributes to the pathogenesis of sepsis. The selective α2-adrenergic receptor agonist dexmedetomidine (DEX) is widely used for perioperative sedation and analgesia. We aimed to determine the central roles and mechanisms of DEX in attenuating sympathetic activity and inflammation in sepsis. Sepsis was induced by a single intraperitoneal injection of lipopolysaccharide (LPS) in rats. Effects of DEX were investigated 24 h after injection of LPS. Bilateral microinjection of DEX in the paraventricular nucleus (PVN) attenuated LPS-induced sympathetic overactivity, which was attenuated by the superoxide dismutase inhibitor DETC, cAMP analog db-cAMP or GABAA receptor antagonist gabazine. Superoxide scavenger tempol, NADPH oxidase inhibitor apocynin, adenylate cyclase inhibitor SQ22536 or PKA inhibitor Rp-cAMP caused similar effects to DEX in attenuating LPS-induced sympathetic activation. DEX inhibited LPS-induced superoxide and cAMP production, as well as NADPH oxidase, adenylate cyclase and PKA activation. The roles of DEX in reducing superoxide production and NADPH oxidase activation were attenuated by db-cAMP or gabazine. Intravenous infusion of DEX inhibited LPS-induced sympathetic overactivity, NOX activation, superoxide production, TNF-α and IL-1β upregulation in the PVN and plasma, as well as lung and renal injury, which were attenuated by the PVN microinjection of yohimbine and DETC. We conclude that activation of α2-adrenergic receptors with DEX in the PVN attenuated LPS-induced sympathetic overactivity by reducing NADPH oxidase-dependent superoxide production via both inhibiting adenylate cyclase-cAMP-PKA signaling and activating GABAA receptors. The inhibition of NADPH oxidase-dependent superoxide production in the PVN partially contributes to the roles of intravenous infusion of DEX in attenuating LPS-induced sympathetic activation, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jin-Hua Bo
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
- Department of Anesthesiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Xiao-Li Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yang Jiao
- Department of Anesthesiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Ming Jiang
- Department of Anesthesiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jun-Liu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Wen-Yuan Hao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Zheng-Liang Ma
- Department of Anesthesiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Correspondence: (Z.-L.M.); (G.-Q.Z.)
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (Z.-L.M.); (G.-Q.Z.)
| |
Collapse
|
4
|
Pan S, Wei H, Yuan S, Kong Y, Yang H, Zhang Y, Cui X, Chen W, Liu J, Zhang Y. Probiotic Pediococcus pentosaceus ameliorates MPTP-induced oxidative stress via regulating the gut microbiota–gut–brain axis. Front Cell Infect Microbiol 2022; 12:1022879. [PMID: 36439235 PMCID: PMC9682001 DOI: 10.3389/fcimb.2022.1022879] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Recent evidence demonstrated that functional bacteria were involved in the regulation of Parkinson’s disease (PD). However, the mechanism of probiotics in improving PD was unclear. Here the antioxidant effect and the mechanism of probiotics Pediococcus pentosaceus (PP) on PD were studied by regulating the gut–brain axis. In this study, male C57BL/6J mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intraperitoneally to establish a PD model and were then treated with PP for 4 weeks. Subsequently, a series of neurobehavioral tests to evaluate the motor function of the mice was performed. Additionally, degeneration of dopaminergic neurons, accumulation of α-synuclein, the production of an oxidative stress response, and the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway-related proteins were evaluated. Moreover, the gut microbial composition and the level of metabolite γ-aminobutyric acid (GABA) were assessed. The results showed that PP treatment could improve MPTP-induced motor deficits, the degeneration of dopaminergic neurons, and the accumulation of α-synuclein. Moreover, PP treatment significantly increased the levels of SOD1, Gpx1, and Nrf2, while it decreased the levels of Keap1 in the brain of MPTP-induced mice. Notably, PP treatment improved the gut microbial dysbiosis and increased the level of GABA in MPTP-induced mice. These findings indicated that PP might represent a promising candidate, due to the metabolite of GABA, that could be used for the treatment of PD.
Collapse
Affiliation(s)
- Sipei Pan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongming Wei
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shushu Yuan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Kong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huiqun Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuhe Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaorui Cui
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weian Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jiaming Liu, ; Yang Zhang,
| | - Yang Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jiaming Liu, ; Yang Zhang,
| |
Collapse
|
5
|
Lorkiewicz P, Waszkiewicz N. Is SARS-CoV-2 a Risk Factor of Bipolar Disorder?-A Narrative Review. J Clin Med 2022; 11:6060. [PMID: 36294388 PMCID: PMC9604904 DOI: 10.3390/jcm11206060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
For 2.5 years we have been facing the coronavirus disease (COVID-19) and its health, social and economic effects. One of its known consequences is the development of neuropsychiatric diseases such as anxiety and depression. However, reports of manic episodes related to COVID-19 have emerged. Mania is an integral part of the debilitating illness-bipolar disorder (BD). Due to its devastating effects, it is therefore important to establish whether SARS-CoV-2 infection is a causative agent of this severe mental disorder. In this narrative review, we discuss the similarities between the disorders caused by SARS-CoV-2 and those found in patients with BD, and we also try to answer the question of whether SARS-CoV-2 infection may be a risk factor for the development of this affective disorder. Our observation shows that disorders in COVID-19 showing the greatest similarity to those in BD are cytokine disorders, tryptophan metabolism, sleep disorders and structural changes in the central nervous system (CNS). These changes, especially intensified in severe infections, may be a trigger for the development of BD in particularly vulnerable people, e.g., with family history, or cause an acute episode in patients with a pre-existing BD.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Wołodyjowskiego 2, 15-272 Białystok, Poland
| | | |
Collapse
|
6
|
Allegra A, Sant'Antonio E, Musolino C, Ettari R. New insights into neuropeptides regulation of immune system and hemopoiesis: effects on hematologic malignancies. Curr Med Chem 2021; 29:2412-2437. [PMID: 34521320 DOI: 10.2174/0929867328666210914120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Several neurotransmitters and neuropeptides were reported to join to or to cooperate with different cells of the immune system, bone marrow, and peripheral cells and numerous data support that neuroactive molecules might control immune system activity and hemopoiesis operating on lymphoid organs, and the primary hematopoietic unit, the hematopoietic niche. Furthermore, many compounds seem to be able to take part to the leukemogenesis and lymphomagenesis process, and in the onset of multiple myeloma. In this review, we will assess the possibility that neurotransmitters and neuropeptides may have a role in the onset of haematological neoplasms, may affect the response to treatment or may represent a useful starting point for a new therapeutic approach. More in vivo investigations are needed to evaluate neuropeptide's role in haematological malignancies and the possible utilization as an antitumor therapeutic target. Comprehending the effect of the pharmacological administration of neuropeptide modulators on hematologic malignancies opens up new possibilities in curing clonal hematologic diseases to achieve more satisfactory outcomes.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | | | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina. Italy
| |
Collapse
|
7
|
Imataka G, Yui K, Shiko Y, Kawasaki Y, Sasaki H, Shiroki R, Yoshihara S. Urinary and Plasma Antioxidants in Behavioral Symptoms of Individuals With Autism Spectrum Disorder. Front Psychiatry 2021; 12:684445. [PMID: 34539458 PMCID: PMC8446379 DOI: 10.3389/fpsyt.2021.684445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
The balance between antioxidant capacity and oxidative stress-induced free radicals may be crucial in the pathophysiological development factor of autism spectrum disorder (ASD). We measured the following urinary and plasma biomarker levels of oxidative stress and antioxidants. As urinary biomarkers, (1) hexanoyl-lysine (HEL), which is a new biomarker of oxidative stress, (2) the total antioxidant capacity (TAC), and (3) 8-hydroxy-2'-deoxyguanosine (8-OHdG), as a product of oxidative modifications to DNA; and the plasma levels of (4) the antioxidant protein superoxide dismutase (SOD), which is the crucial defense again oxygen reactive species, and (5) transferrin and (6) ceruloplasmin, which are biomarkers of iron and copper neurotransmission and oxidant-antioxidant systems. We examined the relationship between these urinary and plasma biomarkers and behavioral symptoms in 19 individuals with ASD (mean age, 10.8 ± 5.2 years) and 10 age-matched healthy controls (mean age, 14.2 ± 7.0 years). Behavioral symptoms were estimated using the Aberrant Behavior Checklist (ABC). Urinary TAC levels were significantly lower, whereas urinary HEL levels were significantly increased in the ASD group as compared with the control group. The five ABC subscale and total scores were significantly raised in the autism group than in the control group. The results of a linear regression analysis revealed that plasma SOD levels may be a more accurate predictor of differences in ABC scores between individuals with ASD and control individuals. The present study firstly revealed the important findings that the cooperation between the urinary antioxidant TAC and plasma SOD levels may contribute to the ABC subscale scores of stereotypy. Urinary TAC activity and antioxidant protein SOD may be associated with incomplete mineral body store and antioxidant-related transcription factor and browning reactions. Consequently, a critical imbalance between TAC urinary levels and plasma SOD levels may be an important contributor to autistic behavioral symptoms.
Collapse
Affiliation(s)
- George Imataka
- Department of Pediatrics, Dokkyo Medical University, Mibu, Japan
| | - Kunio Yui
- Department of Urology, Fujita Health University, Toyoake, Japan
| | - Yuki Shiko
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Hitomi Sasaki
- Department of Urology, Fujita Health University, Toyoake, Japan
| | - Ryoichi Shiroki
- Department of Urology, Fujita Health University, Toyoake, Japan
| | | |
Collapse
|