1
|
Dong Y, Hu L, Zhang J, Zhou D, Zhang B, Li X, Zhang J. Development of a quadruple Taqman probe-based real-time fluorescent quantitative PCR for the detection of bacterial pathogens in a marine fish. Microb Pathog 2025; 203:107459. [PMID: 40064404 DOI: 10.1016/j.micpath.2025.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Bacterial diseases are the most common diseases in aquaculture worldwide, resulting in severe economic losses in the aquaculture industry. However, bacterial pathogens usually lead to non-specific clinical symptoms and are difficult to diagnose in clinical samples. Therefore, specific, sensitive, and time-saving detection methods are crucial for earlier prevention and accurate treatment of bacterial pathogens. This study developed a TaqMan probe-based multiplex real-time PCR method for simultaneous detection and quantification of four bacterial pathogens, including Edwardsiella piscicida, Photobacterium damselae subsp. piscicida, Vibrio rotiferianus, and Pseudomonas fluorescens. The conserved regions of the intra-species and the specific regions of the inter-species were targeted using specific primers and Taqman probes to ensure specificity. Sensitivity analysis showed that the four bacteria were simultaneously detected in the multiplex real-time PCR assay, with detection limits of 32-76 copies/reaction, which is 100 times higher than that of the conventional PCR assay. Furthermore, the assay had good reproducibility, with intra- and inter-group coefficients of variation below 1 %. A total of 63 clinical samples were analyzed using this established assay, of which either single or mixed infection samples could be correctly detected. These findings indicate that this multiplex qPCR assay can serve as a quick, specific, sensitive diagnostic tool for E. piscicida, P. damselae subsp. piscicida, V. rotiferianus, and P. fluorescens detection, thus can be utilized to monitor these bacteria in single or co-infected clinical samples.
Collapse
Affiliation(s)
- Yuchen Dong
- School of Ocean, Yantai University, Yantai, China; Shandong Engineering Research Center of Healthy Land-Sea Relay Farming of Economic Fish, Yantai, China; Yantai Engineering Research Center of Deep-sea Aquaculture of Economic Fish, Yantai, China
| | - Liping Hu
- Yantai Marine Economic Research Institute, Yantai, China
| | - Jianbai Zhang
- Yantai Marine Economic Research Institute, Yantai, China
| | - Dandan Zhou
- School of Ocean, Yantai University, Yantai, China; Shandong Engineering Research Center of Healthy Land-Sea Relay Farming of Economic Fish, Yantai, China; Yantai Engineering Research Center of Deep-sea Aquaculture of Economic Fish, Yantai, China
| | - Binzhe Zhang
- School of Ocean, Yantai University, Yantai, China; Shandong Engineering Research Center of Healthy Land-Sea Relay Farming of Economic Fish, Yantai, China; Yantai Engineering Research Center of Deep-sea Aquaculture of Economic Fish, Yantai, China
| | - Xuepeng Li
- School of Ocean, Yantai University, Yantai, China; Shandong Engineering Research Center of Healthy Land-Sea Relay Farming of Economic Fish, Yantai, China; Yantai Engineering Research Center of Deep-sea Aquaculture of Economic Fish, Yantai, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China; Shandong Engineering Research Center of Healthy Land-Sea Relay Farming of Economic Fish, Yantai, China; Yantai Engineering Research Center of Deep-sea Aquaculture of Economic Fish, Yantai, China.
| |
Collapse
|
2
|
Jing H, Yan X, Wang Y, Yang K, Chen ZY, Wang GH, Zhang M. Characterization and functional analysis of a novel goose-type lysozyme from teleost Sebastes schlegelii with implications for antibacterial defense and immune cell modulation. Comp Biochem Physiol B Biochem Mol Biol 2025; 276:111060. [PMID: 39694086 DOI: 10.1016/j.cbpb.2024.111060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Lysozymes are crucial enzymes involved in the innate immune response against bacterial pathogens. In this study, we identified and characterized a goose-type lysozyme gene (SsLyG) from the black rockfish Sebastes schlegelii, an economically important aquaculture species. The deduced amino acid sequence of SsLyG contains 495 residues, which inculded a signal peptide, an immunoglobulin domain, and a goose egg-white lysozyme (GEWL) domain. Tissue expression analysis revealed the highest SsLyG levels in blood, and its transcription was significantly upregulated in the spleen and kidney upon bacterial and polyI:C challenges. Recombinant SsLyGE (rSsLyGE) exhibited lytic activity against Micrococcus lysodeikticus and concentration-dependent binding ability to Staphylococcus aureus and Micrococcus luteus. Furthermore, rSsLyGE promoted peripheral blood lymphocyte proliferation, enhanced macrophage respiratory burst activity, and increased reactive oxygen species production. RNA interference-mediated knockdown of SsLyG resulted in higher bacterial loads in the liver and spleen after Listonella anguillarum challenge, suggesting its role in early antibacterial defense. Collectively, these findings provide insights into the immune function of SsLyG and its potential application in developing antimicrobial strategies for aquaculture.
Collapse
Affiliation(s)
- Hao Jing
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xue Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yue Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Kai Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Zi-Yue Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
3
|
Louvado A, Silva DAM, Oliveira V, Castro C, Cleary DFR, Gomes NCM. Association between Turbot ( Scophthalmus maximus) Fish Phenotype and the Post-Larval Bacteriome. Microorganisms 2024; 12:2014. [PMID: 39458323 PMCID: PMC11510086 DOI: 10.3390/microorganisms12102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Over the past decade, an increasing number of studies have emphasized the importance of the host microbiome in influencing organismal health and development. Aligned with this understanding, our study aimed to investigate the potential association between the turbot (Scophthalmus maximus) phenotypic traits and the post-larval bacteriome. Turbot post-larvae were sampled from twenty randomly selected production cycles thirty days after hatching (DAH) across multiple post-larval production batches over a three-month period (April to June). Fish were selectively sampled based on five phenotypic traits, namely, normal, large, small, malformed, and depigmented. Our results showed that small-sized post-larvae had significantly higher bacterial phylogenetic diversity in their bacterial communities than all other phenotypes. A more in-depth compositional analysis also revealed specific associations between certain bacterial taxa and fish phenotypes. For example, the genera Aliivibrio and Sulfitobacter were enriched in small-sized post-larvae, while the family Micrococcaceae were predominantly found in larger post-larvae. Furthermore, genus Exiguobacterium was linked to depigmented larvae, and genus Pantoea was more prevalent in normal post-larvae. These observations underscore the importance of further research to understand the roles of these bacterial taxa in larval growth and phenotypic differentiation. Such insights could contribute to developing microbiome modulation strategies, which may enhance turbot post-larval health and quality and improve larviculture production.
Collapse
Affiliation(s)
- Antonio Louvado
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.L.); (D.A.M.S.); (V.O.); (D.F.R.C.)
| | - Davide A. M. Silva
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.L.); (D.A.M.S.); (V.O.); (D.F.R.C.)
| | - Vanessa Oliveira
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.L.); (D.A.M.S.); (V.O.); (D.F.R.C.)
| | | | - Daniel F. R. Cleary
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.L.); (D.A.M.S.); (V.O.); (D.F.R.C.)
| | - Newton C. M. Gomes
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.L.); (D.A.M.S.); (V.O.); (D.F.R.C.)
| |
Collapse
|
4
|
Zhu B, Gao T, He Y, Qu Y, Zhang X. Population Genomics of Commercial Fish Sebastes schlegelii of the Bohai and Yellow Seas (China) Using a Large SNP Panel from GBS. Genes (Basel) 2024; 15:534. [PMID: 38790163 PMCID: PMC11121270 DOI: 10.3390/genes15050534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Sebastes schlegelii is one of the most commercially important marine fish in the northwestern Pacific. However, little information about the genome-wide genetic characteristics is available for S. schlegelii individuals from the Bohai and Yellow Seas. In this study, a total of 157,778, 174,480, and 188,756 single-nucleotide polymorphisms from Dalian (DL), Yantai (YT), and Qingdao (QD) coastal waters of China were, respectively, identified. Sixty samples (twenty samples per population) were clustered together, indicating shallow structures and close relationships with each other. The observed heterozygosity, expected heterozygosity, polymorphism information content, and nucleotide diversity ranged from 0.14316 to 0.17684, from 0.14035 to 0.17145, from 0.20672 to 0.24678, and from 7.63 × 10-6 to 8.77 × 10-6, respectively, indicating the slight difference in genetic diversity among S. schlegelii populations, and their general genetic diversity was lower compared to other marine fishes. The population divergence showed relatively low levels (from 0.01356 to 0.01678) between S. schlegelii populations. Dispersing along drifting seaweeds, as well as the ocean current that flows along the western and northern coasts of the Yellow Sea and southward along the eastern coast of China might be the major reasons for the weak genetic differentiation. These results form the basis of the population genetic characteristics of S. schlegelii based on GBS (Genotyping by Sequencing). In addition to basic population genetic information, our results provid a theoretical basis for further studies aimed at protecting and utilizing S. schlegelii resources.
Collapse
Affiliation(s)
- Beiyan Zhu
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (B.Z.); (T.G.); (X.Z.)
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (B.Z.); (T.G.); (X.Z.)
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| | - Yinquan Qu
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (B.Z.); (T.G.); (X.Z.)
| | - Xiumei Zhang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (B.Z.); (T.G.); (X.Z.)
| |
Collapse
|
5
|
Padayao MHR, Padayao FRP, Patalinghug JM, Raña GS, Yee J, Geraldino PJ, Quilantang N. Antimicrobial and quorum sensing inhibitory activity of epiphytic bacteria isolated from the red alga Halymenia durvillei. Access Microbiol 2023; 5:000563.v4. [PMID: 38188234 PMCID: PMC10765052 DOI: 10.1099/acmi.0.000563.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
Halymenia durvillei is a red alga that is commonly utilized in the Philippines as food and as a source of high-value natural products for industrial applications. However, there are no studies regarding the microbial community associated with H. durvillei and its potential applications. This study aimed to isolate and identify the epiphytic bacteria of H. durvillei and determine their antimicrobial and quorum sensing inhibitory (QSI) effects. The thalli of H. durvillei were collected at the shores of Santa Fe, Bantayan, Cebu, Philippines. Bacterial isolates were identified using 16S rRNA, and their ethyl acetate (EtOAc) extracts were subjected to antimicrobial susceptibility tests against representative species of yeast and Gram-negative and Gram-positive bacteria. Their QSI activity against Chromobacterium violaceum was also determined. Fourteen distinct bacterial colonies belonging to four genera, namely Alteromonas (3), Bacillus (5), Oceanobacillus (1) and Vibrio (5), were successfully isolated and identified. All 14 bacterial isolates exhibited antibacterial effects. EPB9, identified as Bacillus safensis , consistently showed the strongest inhibition against Escherichia coli , Staphylococcus aureus and Staphylococcus epidermidis , with minimum inhibitory concentrations (MICs) ranging from 0.0625 to 1.0 mg ml-1. In contrast, all 14 isolates showed weak antifungal effects. Both B. safensis (EPB9) and Bacillus australimaris (EPB15) exhibited QSI effects at 100 mg ml-1, showing opaque zones of 3.1±0.9 and 3.8±0.4 mm, respectively. This study is the first to isolate and identify the distinct microbial epiphytic bacterial community of H. durvillei and its potential as an abundant resource for new antibacterial and QSI bioactives.
Collapse
Affiliation(s)
- Mary Hannah Rose Padayao
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| | - Francis Reuben Paul Padayao
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
| | - Jenny Marie Patalinghug
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
| | - Gem Stephen Raña
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
| | - Jonie Yee
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| | - Paul John Geraldino
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| | - Norman Quilantang
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| |
Collapse
|
6
|
Zhu S, Wang X, Zhao W, Zhang Y, Song D, Cheng H, Zhang XH. Vertical dynamics of free-living and particle-associated vibrio communities in the eastern tropical Indian Ocean. Front Microbiol 2023; 14:1285670. [PMID: 37928659 PMCID: PMC10620696 DOI: 10.3389/fmicb.2023.1285670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 11/07/2023] Open
Abstract
Members of the family Vibrionaceae (vibrios) are widely distributed in estuarine, offshore, and marginal seas and perform an important ecological role in the marine organic carbon cycle. Nevertheless, there is little knowledge about whether vibrios play ecological roles in the oligotrophic pelagic area, which occupies a larger water volume. In this study, we investigated the abundance, diversity, and composition of free-living and particle-associated vibrios and their relationships with environmental factors along the water depth in the eastern tropical Indian Ocean (ETIO). The abundance of vibrios in free-living fractions was significantly higher than that of particle-associated fractions on the surface. Still, both were similar at the bottom, indicating that vibrios may shift from free-living lifestyles on the surface to mixed lifestyles at the bottom. Vibrio-specific 16S rRNA gene amplicon sequencing revealed that Paraphotobacterium marinum and Vibrio rotiferianus were dominant species in the water column, and Vibrio parahaemolyticus (a clinically important pathogen) was recorded in 102 samples of 111 seawater samples in 10 sites, which showed significant difference from the marginal seas. The community composition also shifted, corresponding to different depths in the water column. Paraphotobacterium marinum decreased with depth, and V. rotiferianus OTU1528 was mainly distributed in deeper water, which significantly correlated with the alteration of environmental factors (e.g., temperature, salinity, and dissolved oxygen). In addition to temperature and salinity, dissolved oxygen (DO) was an important factor that affected the composition and abundance of Vibrio communities in the ETIO. Our study revealed the vertical dynamics and preferential lifestyles of vibrios in the ETIO, helping to fill a knowledge gap on their ecological distribution in oligotrophic pelagic areas and fully understanding the response of vibrios in a global warming environment.
Collapse
Affiliation(s)
- Shaodong Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Wenbin Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yulin Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Derui Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Haojin Cheng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
7
|
Yang TZ, Zhu Q, Xue T, Cao M, Fu Q, Yang N, Li C, Huo HJ. Identification and functional characterization of CL-11 in black rockfish (Sebastes schlegelii). FISH & SHELLFISH IMMUNOLOGY 2022; 131:527-536. [PMID: 36265742 DOI: 10.1016/j.fsi.2022.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
CL-11 (Collectin-11, also known as Collectin kidney-1 or CL-K1) is a member of collectin family that works as a pattern recognition molecule (PRM) and participating in lectin-complement pathway in host defense against pathogens. We identified the CL-11 homologue SsCL-11 in black rockfish (Sebastes schlegelii) and investigated the functional characteristics in this study. The SsCL-11 has conserved protein modules, i.e. an N-terminal hydrophobic region, a collagen-like region, an α-helical neck region and a carbohydrate recognition domain (CRD). SsCL-11 has varying degrees of expressions in difference tissues, among which the highest expression is observed in liver. It also shows induced expressions in immune-related tissues following Aeromonas salmonicida (A. salmonicida) infection. In addition, SsCL-11 exhibits binding abilities to different kinds of carbohydrates, pathogen-associated molecular patterns (PAMPs) and bacteria. It exhibits comparatively strong binding to l-fucose, d-mannose, and d-glucose, which is consistent with the functional EPN motif in its CRD. SsCL-11 also shows agglutinating effects on various bacteria in the presence of Ca2+. Furthermore, SsCL-11 is confirmed to be a secretory lectin and can form multimers. These findings collectively demonstrate that SsCL-11 can function as a recognition molecule in pathogen resistance in black rockfish, which will promote our understanding of immunological roles of fish collectins.
Collapse
Affiliation(s)
- Tian Zhen Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Qing Zhu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| | - Hui Jun Huo
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
8
|
Marques PH, Prado LCDS, Felice AG, Rodrigues TCV, Pereira UDP, Jaiswal AK, Azevedo V, Oliveira CJF, Soares S. Insights into the Vibrio Genus: A One Health Perspective from Host Adaptability and Antibiotic Resistance to In Silico Identification of Drug Targets. Antibiotics (Basel) 2022; 11:1399. [PMID: 36290057 PMCID: PMC9598498 DOI: 10.3390/antibiotics11101399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/23/2022] Open
Abstract
The genus Vibrio comprises an important group of ubiquitous bacteria of marine systems with a high infectious capacity for humans and fish, which can lead to death or cause economic losses in aquaculture. However, little is known about the evolutionary process that led to the adaptation and colonization of humans and also about the consequences of the uncontrollable use of antibiotics in aquaculture. Here, comparative genomics analysis and functional gene annotation showed that the species more related to humans presented a significantly higher amount of proteins associated with colonization processes, such as transcriptional factors, signal transduction mechanisms, and iron uptake. In comparison, those aquaculture-associated species possess a much higher amount of resistance-associated genes, as with those of the tetracycline class. Finally, through subtractive genomics, we propose seven new drug targets such as: UMP Kinase, required to catalyze the phosphorylation of UMP into UDP, essential for the survival of bacteria of this genus; and, new natural molecules, which have demonstrated high affinity for the active sites of these targets. These data also suggest that the species most adaptable to fish and humans have a distinct natural evolution and probably undergo changes due to anthropogenic action in aquaculture or indiscriminate/irregular use of antibiotics.
Collapse
Affiliation(s)
- Pedro Henrique Marques
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Lígia Carolina da Silva Prado
- Interunit Bioinformatics Post-Graduate Program, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Andrei Giacchetto Felice
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | | | - Ulisses de Padua Pereira
- Department of Preventive Veterinary Medicine, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Arun Kumar Jaiswal
- Interunit Bioinformatics Post-Graduate Program, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Carlo José Freire Oliveira
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Siomar Soares
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| |
Collapse
|
9
|
Woods C, Woolley L, Partridge G, Chen M, Haney EF, Hancock REW, Buller N, Currie A. Assessing the Activity of Antimicrobial Peptides Against Common Marine Bacteria Located in Rotifer (Brachionus plicatilis) Cultures. Probiotics Antimicrob Proteins 2022; 14:620-629. [PMID: 35612776 PMCID: PMC9246773 DOI: 10.1007/s12602-022-09928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 11/05/2022]
Abstract
Rotifers are used as the first feed for marine fish larvae and are grown in large cultures that have high loads of organic matter and heterotrophic bacteria; these bacteria are passed on to the developing fish larvae and can potentially lead to bacterial infections. A modified minimum inhibitory concentration (MIC) protocol for antimicrobial peptides was used to determine the potency of ten antimicrobial peptides (AMPs) in artificial seawater relevant to a rotifer culture (salinity of 25‰) against common marine pathogens. All of the AMPs had antimicrobial activity against the bacterial isolates when the salt concentration was approximately zero. However, in high salt concentrations, the majority of the AMPs had an MIC value greater than 65 µg mL−1 in artificial seawater (25‰). The only exceptions were 2009 (32.5 µg mL−1) and 3002 (32.5 µg mL−1) against Vibrio rotiferianus and Tenacibaculum discolor, respectively. The selected synthetic AMPs were not effective at reducing the bacterial load in brackish salt concentrations of a typical commercial rotifer culture (25‰).
Collapse
Affiliation(s)
- Chelsea Woods
- College of Science, Murdoch University, Engineering & Education, HealthPerth, WA, Australia. .,Department of Primary Industries and Regional Development, Fremantle, Perth, WA, 6160, Australia.
| | - Lindsey Woolley
- College of Science, Murdoch University, Engineering & Education, HealthPerth, WA, Australia.,Department of Primary Industries and Regional Development, Fremantle, Perth, WA, 6160, Australia
| | - Gavin Partridge
- College of Science, Murdoch University, Engineering & Education, HealthPerth, WA, Australia.,Department of Primary Industries and Regional Development, Fremantle, Perth, WA, 6160, Australia
| | - Mengqi Chen
- Department of Primary Industries and Regional Development, Fremantle, Perth, WA, 6160, Australia
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Nicky Buller
- College of Science, Murdoch University, Engineering & Education, HealthPerth, WA, Australia.,Department of Primary Industries and Regional Development, Fremantle, Perth, WA, 6160, Australia
| | - Andrew Currie
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.,Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
10
|
Brehm TT, Berneking L, Sena Martins M, Dupke S, Jacob D, Drechsel O, Bohnert J, Becker K, Kramer A, Christner M, Aepfelbacher M, Schmiedel S, Rohde H. Heatwave-associated Vibrio infections in Germany, 2018 and 2019. ACTA ACUST UNITED AC 2021; 26. [PMID: 34651572 PMCID: PMC8518310 DOI: 10.2807/1560-7917.es.2021.26.41.2002041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Vibrio spp. are aquatic bacteria that prefer warm seawater with moderate salinity. In humans, they can cause gastroenteritis, wound infections, and ear infections. During the summers of 2018 and 2019, unprecedented high sea surface temperatures were recorded in the German Baltic Sea. Aim We aimed to describe the clinical course and microbiological characteristics of Vibrio infections in Germany in 2018 and 2019. Methods We performed an observational retrospective multi-centre cohort study of patients diagnosed with domestically-acquired Vibrio infections in Germany in 2018 and 2019. Demographic, clinical, and microbiological data were assessed, and isolates were subjected to whole genome sequencing and antimicrobial susceptibility testing. Results Of the 63 patients with Vibrio infections, most contracted the virus between June and September, primarily in the Baltic Sea: 44 (70%) were male and the median age was 65 years (range: 2–93 years). Thirty-eight patients presented with wound infections, 16 with ear infections, six with gastroenteritis, two with pneumonia (after seawater aspiration) and one with primary septicaemia. The majority of infections were attributed to V. cholerae (non–O1/non-O139) (n = 30; 48%) or V. vulnificus (n = 22; 38%). Phylogenetic analyses of 12 available isolates showed clusters of three identical strains of V. vulnificus, which caused wound infections, suggesting that some clonal lines can spread across the Baltic Sea. Conclusions During the summers of 2018 and 2019, severe heatwaves facilitated increased numbers of Vibrio infections in Germany. Since climate change is likely to favour the proliferation of these bacteria, a further increase in Vibrio-associated diseases is expected.
Collapse
Affiliation(s)
- Thomas Theo Brehm
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,These authors contributed equally to this article and share first authorship
| | - Laura Berneking
- These authors contributed equally to this article and share first authorship.,Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meike Sena Martins
- Institut für Meereskunde, Centrum für Erdsystemwissenschaften und Nachhaltigkeit, University Hamburg, Hamburg, Germany
| | - Susann Dupke
- Robert Koch Institute, ZBS 2: Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms, Berlin, Germany
| | - Daniela Jacob
- Robert Koch Institute, ZBS 2: Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms, Berlin, Germany
| | | | - Jürgen Bohnert
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Martin Christner
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Aepfelbacher
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Schmiedel
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Holger Rohde
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | -
- The members of the Study Group are listed at the end of the article
| |
Collapse
|
11
|
Shetye SS, Bandekar M, Nandakumar K, Kurian S, Gauns M, Jawak S, Pratihary A, Elangovan SS, Naik BR, Lakshmi S, Aswathi VK. Sea foam-associated pathogenic bacteria along the west coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:27. [PMID: 33389180 DOI: 10.1007/s10661-020-08783-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Anthropogenic activities release effluents containing nutrients and pathogenic bacteria that change the characteristics of coastal ecosystems. An important type of marine pollution which has occurred in 3 different states in India during 2019 is sea foam. Sea foam was found on Hole beach, Goa (Lat: 15.404° N, Long: 73.787° E), where nutrients (NO3- = 137 μM and organic nitrogen = 121 μM) from a garbage dumpyard are released directly via streams/gutters to coastal waters. This resulted in a bloom of the diatom Thalassiosira pseudonana, associated with high concentration of total organic carbon and fucoxanthin. Decay of this bloom along with strong agitation due to rocks and wave action resulted in sea foam. We isolated foam-associated bacteria and identified pathogenic bacteria including Enterobacter cancerogenus through 16S rRNA gene sequencing. Such foam-associated pathogenic bacteria, could be antibiotic resistant, and may have adverse effects on human health. This can also hamper the tourism industry of a small state like Goa that relies heavily on tourism.
Collapse
Affiliation(s)
- Suhas S Shetye
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India.
| | - Mandar Bandekar
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| | | | - Siby Kurian
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| | - Mangesh Gauns
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| | - Shridhar Jawak
- Svalbard Integrated Arctic Earth Observing System (SIOS), SIOS Knowledge Centre, Svalbard Science Centre, P.O. Box 156, N-9171, Longyearbyen, Svalbard, Norway
| | - Anil Pratihary
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| | - S Sai Elangovan
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| | - Bhagyashri R Naik
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| | - Sethu Lakshmi
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| | - V K Aswathi
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| |
Collapse
|
12
|
Hansen MJ, Kudirkiene E, Dalsgaard I. Analysis of 44 Vibrio anguillarum genomes reveals high genetic diversity. PeerJ 2020; 8:e10451. [PMID: 33344086 PMCID: PMC7719292 DOI: 10.7717/peerj.10451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Vibriosis, a hemorrhagic septicemic disease caused by the bacterium Vibrio anguillarum, is an important bacterial infection in Danish sea-reared rainbow trout. Despite of vaccination, outbreaks still occur, likely because the vaccine is based on V. anguillarum strains from abroad/other hosts than rainbow trout. Information about the genetic diversity of V. anguillarum specifically in Danish rainbow trout, is required to investigate this claim. Consequently, the aim of the present investigation was to sequence and to characterize a collection of 44 V. anguillarum strains obtained primarily from vibriosis outbreaks in Danish rainbow trout. The strains were sequenced, de novo assembled, and the genomes examined for the presence of plasmids, virulence, and acquired antibiotic resistance genes. To investigate the phylogeny, single nucleotide polymorphisms were identified, and the pan-genome was calculated. All strains carried tet(34) encoding tetracycline resistance, and 36 strains also contained qnrVC6 for increased fluoroquinolone/quinolone resistance. But interestingly, all strains were phenotypic sensitive to both oxytetracycline and oxolinic acid. Almost all serotype O1 strains contained a pJM1-like plasmid and nine serotype O2A strains carried the plasmid p15. The distribution of virulence genes was rather similar across the strains, although evident variance among serotypes was observed. Most significant, almost all serotype O2 and O3 strains, as well as the serotype O1 strain without a pJM1-like plasmid, carried genes encoding piscibactin biosynthesis. Hence supporting the hypothesis, that piscibactin plays a crucial role in virulence for pathogenic strains lacking the anguibactin system. The phylogenetic analysis and pan-genome calculations revealed great diversity within V. anguillarum. Serotype O1 strains were in general very similar, whereas considerable variation was found among serotype O2A strains. The great diversity within the V. anguillarum serotype O2A genomes is most likely the reason why vaccines provide good protection from some strains, but not from others. Hopefully, the new genomic data and knowledge provided in this study might help develop an optimized vaccine against V. anguillarum in the future to reduce the use of antibiotics, minimize economic losses and improve the welfare of the fish.
Collapse
Affiliation(s)
- Mie Johanne Hansen
- National Institute of Aquatic Resources Technical University of Denmark, Kongens Lyngby, Denmark
| | - Egle Kudirkiene
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Inger Dalsgaard
- National Institute of Aquatic Resources Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Liang J, Hu X, Lü A, Sun J. First report on the characterization of pathogenic Rahnella aquatilis KCL-5 from crucian carp: Revealed by genomic and proteomic analyses. JOURNAL OF FISH DISEASES 2020; 43:889-914. [PMID: 32608057 DOI: 10.1111/jfd.13200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Rahnella aquatilis is an important pathogen of several aquatic organisms and is found widely distributed in the freshwater, soil, fish and human clinical samples. Our previously published study reported a novel pathogenic R. aquatilis strain KCL-5 to crucian carp (Carassius auratus). To further investigate the characteristics and pathogenesis caused by R. aquatilis, we here report on the pathological changes, bacterial genomic and proteomic analyses of strain KCL-5. Significantly pathological changes in liver, intestine, spleen and gills were observed in infected fish. The genome consists of one circular chromosome 5,062,299 bp with 52.02% GC content and two plasmids (506,827 bp, 52.16%; 173,433 bp, 50.00%) and predicted 5,653 genes, 77 tRNAs and 22 rRNAs. Some virulence factors were characterized, including outer membrane protein, haemolysin, RTX toxin, chemotaxis and T3SS secretion system. Antimicrobial resistance genes such as EmrAB-TolC, MexABC-OpmB and RosAB efflux pump were found in strain KCL-5. KEGG analysis showed that mainly functional modules were ABC transporters, biosynthesis of amino acids, two-component system, quorum sensing, flagellum assembly and chemotaxis, in which most of them were identified by using 2-DE/MS analyses. To our knowledge, this was first report on the molecular characteristics of R. aquatilis by multi-omics approaches, which will provide insights into the pathogenic mechanism of R. aquatilis infection in fish.
Collapse
Affiliation(s)
- Jing Liang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Aijun Lü
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
14
|
Comprehensive depiction of novel heavy metal tolerant and EPS producing bioluminescent Vibrio alginolyticus PBR1 and V. rotiferianus PBL1 confined from marine organisms. Microbiol Res 2020; 238:126526. [PMID: 32603934 DOI: 10.1016/j.micres.2020.126526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 01/09/2023]
Abstract
The current study depicts the isolation of luminescent bacteria from fish and squid samples that were collected from Veraval fish harbour. From Indian mackerel, total 14 and from squid, total 23 bioluminescent bacteria were isolated using luminescence agar medium. Two bioluminescent bacteria with highest relative luminescence intensity PBR1 and PBL1 were selected. These two isolates were subjected to detailed biochemical characterization and were tested positive for 5 out of 13 biochemical tests. Furthermore, both PBR1 and PBL1 were able to ferment cellobiose, dextrose, fructose, galactose, maltose, mannose, sucrose and trehalose with acid production. Based on 16S rRNA partial gene sequence analysis, PBR1 was identified as Vibrio alginolyticus and PBL1 as V. rotiferianus. Antibiotic susceptibility test using paper-disc method showed that PBR1 and PBL1 were sensitive to chloramphenicol, ciprofloxacin, co-trimoxazole, gatifloxacin, levofloxacin, linezolid ad roxithromycin out of 18 antibiotics tested. Moreover, both strains were evaluated for their exopolysachharide (EPS) producing ability where PBR1 and PBL1 were able to yield 1.34 g% (w/v) and 2.45 g% (w/v) EPS respectively from 5 g% (v/v) sucrose concentration. Heavy metal toxicity assessment was carried out using agar well diffusion method with eight heavy metals and both the strains were sensitive to As(III), Cd(II), Ce(II), Cr(III), Cu(II), Hg(II) and while they showed resistance to Pb(II) and Sr(II). Based on these results, a study was conducted to demonstrate bio-removal of Pb and Sr by EPS of PBR1 and PBL1. Fourier transform infrared (FTIR) spectra revealed the functional groups of EPS involved in interaction with the heavy metals. Owing to the sensitivity for the remaining heavy metals, these bioluminescent bacteria can be used further for the development of luminescence-based biosensor.
Collapse
|