1
|
Pulkkinen K, Taskinen J. Nutrient enrichment increases virulence in an opportunistic environmental pathogen, with greater effect at low bacterial doses. FEMS Microbiol Ecol 2024; 100:fiae013. [PMID: 38305097 PMCID: PMC10959552 DOI: 10.1093/femsec/fiae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/03/2024] Open
Abstract
Eutrophication of aquatic ecosystems is associated with an increased risk of pathogen infection via increased pathogen growth and host exposure via increased pathogen doses. Here, we studied the effect of nutrients on the virulence of an opportunistic bacterial pathogen of fish, Flavobacterium columnare, in challenge experiments with rainbow trout fingerlings. We hypothesized that removing all nutrients by washing the bacteria would reduce virulence as compared to unwashed bacteria, but adding nutrients to the tank water would increase the virulence of the bacterium. Nutrient addition and increase in bacterial dose increased virulence for both unwashed and washed bacteria. For unwashed bacteria, the addition of nutrients reduced the survival probability of fish challenged with low bacterial doses more than for fish challenged with higher bacterial doses, suggesting activation of bacterial virulence factors. Washing and centrifugation reduced viable bacterial counts, and the addition of washed bacteria alone did not lead to fish mortality. However, a small addition of nutrient medium, 0.05% of the total water volume, added separately to the fish container, restored the virulence of the washed bacteria. Our results show that human-induced eutrophication could trigger epidemics of aquatic pathogens at the limits of their survival and affect their ecology and evolution by altering the dynamics between strains that differ in their growth characteristics.
Collapse
Affiliation(s)
- Katja Pulkkinen
- Department of Biological and Environmental Science, P.O. Box 35 (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Jouni Taskinen
- Department of Biological and Environmental Science, P.O. Box 35 (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
2
|
Prior BS, Lange MD, Salger SA, Reading BJ, Peatman E, Beck BH. The effect of piscidin antimicrobial peptides on the formation of Gram-negative bacterial biofilms. JOURNAL OF FISH DISEASES 2022; 45:99-105. [PMID: 34590712 DOI: 10.1111/jfd.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Fish-derived antimicrobial peptides are an important part of the innate immune system due to their potent antimicrobial properties. Piscidins are a class of antimicrobial peptides first described in hybrid striped bass (Morone chrysops x Morone saxatilis) but have also been identified in many other fish species. Previous work demonstrated the broad antimicrobial activity of piscidins against Gram-negative and Gram-positive bacterial species. This study sought to determine the extent to which class I (striped bass piscidin 1, white bass piscidin 1 and striped bass/white bass piscidin 3) and class II (striped bass piscidin 4 and white bass piscidin 5) piscidins inhibit biofilm formation of different Gram-negative bacteria. In general, the class I and II piscidins demonstrate potent activity against Escherichia coli and Flavobacterium columnare biofilms. The class II piscidins showed more activity against E. coli and F. columnare isolates than did the class I piscidins. The piscidins in general were much less effective against inhibiting Aeromonas hydrophila and A. veronii biofilm growth. Only the class I piscidins showed significant growth inhibition among the Aeromonas spp. examined.
Collapse
Affiliation(s)
- Benjamin S Prior
- School of Fisheries, Aquaculture, and Aquatic Sciences, Aquatic Genetics and Genomics, Auburn University, Auburn, AL, USA
| | - Miles D Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| | | | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Aquatic Genetics and Genomics, Auburn University, Auburn, AL, USA
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| |
Collapse
|
3
|
Lange MD, Abernathy J, Farmer BD, Beck BH. Use of an immersion adjuvant with a Flavobacterium columnare recombinant protein vaccine in channel catfish. FISH & SHELLFISH IMMUNOLOGY 2021; 117:136-139. [PMID: 34339820 DOI: 10.1016/j.fsi.2021.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Miles D Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA.
| | - Jason Abernathy
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Bradley D Farmer
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| |
Collapse
|
4
|
Lavrinenko IV, Shulha LV, Peredera ОО, Zhernosik IA, Peredera RV. Efficacy of acriflavin chloride and Melaleuca alternifolia extract against Saprolegnia parasitica infection in Pterophyllum scalare. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The article describes cases of saprolegniosis in Pterophyllum scalare in private aquaristics and assesses the therapeutic efficacy of acriflafin chloride against Saprolegnia parasitica infection. To establish the diagnosis, the clinical signs present in sick fish, the results of mycological and microscopic examinations are taken into account. Some chemical and mycological indices of aquarium water have been studied, and also mycological studies of fish feed have been carried out. It is established that the disease of fish develops against the background of adverse changes in physical, chemical composition and microbiocenosis of aquarium water. Low water temperature, high levels of phosphates and pH, a significant level of organic pollution, compared to the norm, provoke the accumulation of opportunistic microbiota, resulting in imbalance in the parasite-host system and the development of clinical manifestations of saprolegniosis in fish. It was found that 44.4% of the studied feed samples fed to fish were contaminated with epiphytic micromycetes. Micromycetes are represented by the genera Aspergillus, Penicilium, Fusarium, Mucor, Rhizopus. Among the studied feeds, the most affected by fungi were larvae of Chironomus plumosus and dry Daphnia pulex. According to the results of our studies during outbreaks of saprolegniosis, the pH of aquarium water was 8.1 ± 0.7, the content of phosphates – 5.6 ± 1.1 mg/L, micromycetes – 18.0 ± 1.2 CFU/100 cm3. Aspergillus flavus, A. niger and Penicillium canescens were detected in the studied water samples. With saprolegniosis, the angelfish have a reduced appetite, spots, ulcers, white thin threads, and a cotton-like plaque appear on certain areas of the skin, fins, eyes, and gills. It is established that effective means for the treatment of sick fish are external use in the form of a long bath of acriflavine chloride and extract of Melaleuca alternifolia. It is also effective to increase the water temperature to 25–27 °С, to ensure the normative fish-holding density in aquariums and to exclude from the diet fish feed contaminated with micromycetes. After using the drugs for two weeks every other day, water was replaced by 20% of the aquarium volume and aerated. As a result of the treatment, gradual healing of skin lesions and recovery of 65% of fish with signs of lesions of the outer coverings were registered. Thus, the article analyzes the causes of saprolegniosis in angelfish common in private aquariums, describes the clinical signs of the disease and assesses the therapeutic efficacy of acriflavine chloride and Melaleuca alternifolia extract against Saprolegnia parasitica infection. Prospects for further research lie in search of more effective and environmentally friendly means for the treatment of saprolegniosis in aquarium fish.
Collapse
|
5
|
Sarkar P, Issac PK, Raju SV, Elumalai P, Arshad A, Arockiaraj J. Pathogenic bacterial toxins and virulence influences in cultivable fish. AQUACULTURE RESEARCH 2021; 52:2361-2376. [DOI: 10.1111/are.15089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/07/2020] [Indexed: 10/16/2023]
Affiliation(s)
- Purabi Sarkar
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Praveen Kumar Issac
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Stefi V. Raju
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Preetham Elumalai
- Department of Fish Processing Technology Kerala University of Fisheries and Ocean Studies (KUFOS) Kochi India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Negeri Sembilan Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Selangor Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| |
Collapse
|
6
|
Ma N, Sun C. Cadmium sulfide nanoparticle biomineralization and biofilm formation mediate cadmium resistance of the deep-sea bacterium Pseudoalteromonas sp. MT33b. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:325-336. [PMID: 33511774 DOI: 10.1111/1758-2229.12933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a common toxic heavy metal in the environment, and bacteria have evolved different strategies to deal with Cd toxicity. Here, a bacterium designated Pseudoalteromonas sp. MT33b possessing strong Cd resistance was isolated from the Mariana Trench sediments. Supplement of cysteine significantly increased bacterial Cd resistance and removal rate. Biofilm formation was demonstrated to play a positive role toward bacterial Cd resistance. Transcriptome analysis showed the supplement of cysteine effectively prevented Cd2+ from entering bacterial cells, promoted saccharide metabolism and thereby facilitating energy production, which consists well with bacterial growth trend analysed under the same conditions. Notably, the expressions of many biofilm formation related genes including flagellar assembly, signal transduction, bacterial secretion and TonB-dependent transfer system were significantly upregulated when facing Cd stress, indicating their important roles in determining bacterial biofilm formation and enhancing Cd resistance. Overall, this study indicates the formation of insoluble CdS precipitates and massive biofilm is the major strategy adopted by Pseudoalteromonas sp. MT33b to eliminate Cd stress. Our results provide a good model to investigate how heavy metals impact biofilm formation in the deep-sea ecosystems, which may facilitate a deeper understanding of microbial environmental adaptability and better utilization of these microbes for bioremediation purposes in the future.
Collapse
Affiliation(s)
- Ning Ma
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
7
|
Farmer BD, Fuller SA, Beck BH, Abernathy JW, Lange MD, Webster CD. Differential susceptibility of white bass (Morone chrysops), striped bass (Morone saxatilis) and hybrid striped bass (M. chrysops × M. saxatilis) to Flavobacterium columnare and effects of mucus on bacterial growth and biofilm development. JOURNAL OF FISH DISEASES 2021; 44:161-169. [PMID: 33006773 DOI: 10.1111/jfd.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Columnaris disease generates substantial losses of many freshwater fish species; one is the hybrid striped bass. The ubiquitous aquatic bacterium Flavobacterium columnare can be highly effective in biofilm formation on fish skin and gills. Previous research showed a difference between columnaris disease susceptibility of hybrid striped bass (Morone saxatilis × M. chrysops) and white bass (M. chrysops). To understand these differential susceptibilities and possible mucosal relationship, we assessed total bacterial growth and biofilm formation with mucus derived from each moronid parental species: white bass and striped bass (M. saxatilis). Differential susceptibility was confirmed of the other parent species, the striped bass (M. saxatilis). In addition to intraspecies investigations, individual hybrid striped bass mucosal affects were also studied for deferential responses to bacterial growth and biofilm formation. Species- and concentration-dependent differences were detected in the total growth of the bacteria to host mucus. Our data suggest that bass mucus can significantly affect biofilm formation with the F. columnare isolate tested. There appears to be a correlation between the bacteria's response of growth and biofilms and bass species susceptibility. This study provides insight into our understanding of the host-pathogen interaction between F. columnare and moronids.
Collapse
Affiliation(s)
- Bradley D Farmer
- Harry K. Dupree Stuttgart National Aquaculture Research Center, United States Department of Agriculture, Agricultural Research Service, Stuttgart, AR, USA
| | - Sidney Adam Fuller
- Harry K. Dupree Stuttgart National Aquaculture Research Center, United States Department of Agriculture, Agricultural Research Service, Stuttgart, AR, USA
| | - Benjamin H Beck
- Aquatic Animal Health Research Unit, United States Department of Agriculture, Agricultural Research Service, Auburn, AL, USA
| | - Jason W Abernathy
- Harry K. Dupree Stuttgart National Aquaculture Research Center, United States Department of Agriculture, Agricultural Research Service, Stuttgart, AR, USA
| | - Miles D Lange
- Aquatic Animal Health Research Unit, United States Department of Agriculture, Agricultural Research Service, Auburn, AL, USA
| | - Carl D Webster
- Harry K. Dupree Stuttgart National Aquaculture Research Center, United States Department of Agriculture, Agricultural Research Service, Stuttgart, AR, USA
| |
Collapse
|
8
|
Lange MD, Abernathy J, Shoemaker CA, Zhang D, Kirby A, Peatman E, Beck BH. Proteome analysis of virulent Aeromonas hydrophila reveals the upregulation of iron acquisition systems in the presence of a xenosiderophore. FEMS Microbiol Lett 2020; 367:5921178. [PMID: 33045069 DOI: 10.1093/femsle/fnaa169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
The Gram-negative bacterium, Aeromonas hydrophila, has been responsible for extensive losses in the catfish industry for over a decade. Due to this impact, there are ongoing efforts to understand the basic mechanisms that contribute to virulent A. hydrophila (vAh) outbreaks. Recent challenge models demonstrated that vAh cultured in the presence of the iron chelating agent deferoxamine mesylate (DFO) were more virulent to channel catfish (Ictalurus punctatus). Interestingly, differential gene expression of select iron acquisition genes was unremarkable between DFO and non-DFO cultures, posing the question: why the increased virulence? The current work sought to evaluate growth characteristics and protein expression of vAh after the addition of DFO. A comparative proteome analysis revealed differentially expressed proteins among tryptic soy broth (TSB) and TSB + DFO treatments. Upregulated proteins identified among the TSB + DFO treatment were enriched for gene ontology groups including iron ion transport, siderophore transport and siderophore uptake transport, all iron acquisition pathways. Protein-protein interactions were also evaluated among the differentially expressed proteins and predicted that many of the upregulated iron acquisition proteins likely form functional physiological networks. The proteome analysis of the vAh reveals valuable information about the basic biological processes likely leading to increased virulence during iron restriction in this organism.
Collapse
Affiliation(s)
- Miles D Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832 USA
| | - Jason Abernathy
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, P.O. Box 1050, 2955 Hwy. 130 East, Stuttgart, AR, 72160 USA
| | - Craig A Shoemaker
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832 USA
| | - Dunhua Zhang
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832 USA
| | - Augustus Kirby
- School of Fisheries, Aquaculture, and Aquatic Sciences, Aquatic Genetics and Genomics, Auburn University, 203 Swingle Hall, Auburn, AL, 36849 USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Aquatic Genetics and Genomics, Auburn University, 203 Swingle Hall, Auburn, AL, 36849 USA
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832 USA
| |
Collapse
|
9
|
Lavrinenko IV, Shulga LV, Peredera OO, Zhernosik IA. Analysis of the treatment regimen efficacy for columnaris disease in Pterophyllum scalare. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The article presents the results of studies on the treatment scheme efficacy for columnaris in Pterophyllum scalare, common under private aquarium husbandry conditions. To establish the diagnosis, the clinical features of the diseased fish, pathological and anatomical changes and the results of microscopic and microbiological studies were taken into account. Separate chemical and microbiological parameters of aquarium water were also studied. It was established that fish disease developed against the background of adverse changes in the chemical composition and microbiocenosis of aquarium water. High alkalinity and excess of phosphates compared to the norm provoked accumulation of opportunistic microbiota, resulting in a balance disorder in the parasite-host system and development of clinical manifestation of the fish disease. During the disease outbreak, bacteriological indices of water indicated a high level of organic contamination and a low intensity of water self-purification processes. Clinically, the disease was manifested in P. scalare by decrease in appetite and motor activity, onset of ulcerative lesions of various shapes and sizes on the surface of the body and on the gill covers. Selected pure cultures of Flavobacterium columnare showed sensitivity to enrofloxacin (growth retardation zone 31.3 ± 1.0 mm); moderate resistance was found to tylosin. The microorganisms were resistant to amoxicillin, doxycycline, benzylpenicillin and tetracycline. Microscopic studies of intestinal specimens of dead P. scalare revealed numerous motile flagellates. It has been shown that an effective treatment regimen that provides recovery for 70% of diseased P. scalare is the use of enroxil 10% solution for five days, metronidazole three times a day, and “API MelaFix” for seven days. It is proved that the following measures are effective to restore the disrupted hydro-balance: periodic water replacement in the amount of 20% of the total volume, providing the aquarium with active aeration systems, planting slow-growing plants and reducing the amount of fish food provided. The measures developed were efficient, they led to elimination of the outbreak of columnaris in the P. scalare and to restoration of biological equilibrium in a closed aquatic ecosystem.
Collapse
|