1
|
Martin MA, Berg N, Koelle K. Influenza A genomic diversity during human infections underscores the strength of genetic drift and the existence of tight transmission bottlenecks. Virus Evol 2024; 10:veae042. [PMID: 38883977 PMCID: PMC11179161 DOI: 10.1093/ve/veae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Influenza infections result in considerable public health and economic impacts each year. One of the contributing factors to the high annual incidence of human influenza is the virus's ability to evade acquired immunity through continual antigenic evolution. Understanding the evolutionary forces that act within and between hosts is therefore critical to interpreting past trends in influenza virus evolution and in predicting future ones. Several studies have analyzed longitudinal patterns of influenza A virus genetic diversity in natural human infections to assess the relative contributions of selection and genetic drift on within-host evolution. However, in these natural infections, within-host viral populations harbor very few single-nucleotide variants, limiting our resolution in understanding the forces acting on these populations in vivo. Furthermore, low levels of within-host viral genetic diversity limit the ability to infer the extent of drift across transmission events. Here, we propose to use influenza virus genomic diversity as an alternative signal to better understand within- and between-host patterns of viral evolution. Specifically, we focus on the dynamics of defective viral genomes (DVGs), which harbor large internal deletions in one or more of influenza virus's eight gene segments. Our longitudinal analyses of DVGs show that influenza A virus populations are highly dynamic within hosts, corroborating previous findings based on viral genetic diversity that point toward the importance of genetic drift in driving within-host viral evolution. Furthermore, our analysis of DVG populations across transmission pairs indicates that DVGs rarely appeared to be shared, indicating the presence of tight transmission bottlenecks. Our analyses demonstrate that viral genomic diversity can be used to complement analyses based on viral genetic diversity to reveal processes that drive viral evolution within and between hosts.
Collapse
Affiliation(s)
- Michael A Martin
- Department of Pathology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, 1462 Clifton Road NE, Atlanta, GA 30322, USA
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Nick Berg
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
- National Institute of Allergy and Infectious Diseases Laboratory of Viral Disease, National Institutes of Health, 33 North Drive, Bethesda, MD 20814, USA
| | - Katia Koelle
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), 1510 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Gautam M, Hammell KL, Burnley H, O'Brien N, Whelan D, Thakur KK. Description of spatiotemporal patterns of infectious salmon anemia virus (ISAV) detections in marine Atlantic Salmon farms in Newfoundland and Labrador. JOURNAL OF AQUATIC ANIMAL HEALTH 2023; 35:296-307. [PMID: 38124493 DOI: 10.1002/aah.10205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE The objectives of this study were to describe spatiotemporal patterns of infectious salmon anemia virus (ISAV) detections in marine salmonid production sites in the province of Newfoundland and Labrador in Canada. METHODS Infectious salmon anemia virus surveillance data between 2012 and 2020 from the province of Newfoundland and Labrador were used. Data comprised a total of 94 sampling events from 20 Atlantic Salmon Salmo salar production sites in which ISAV was detected. Using linear regression models, factors influencing time to detection (days from stocking to first ISAV detection) and time to depopulation (days from first detection to production site depopulation) were investigated. RESULT Based on 28 unique cases, site-level annual incidence risk of ISAV detection ranged from 3% to 29%. The proportion of ISAV detection by PCR in fish samples ranged from 2% to 45% annually. Overall, ISAV variants from the European clade were more common than variants from the North American clade. The type of ISAV clade, detections of ISAV in nearest production sites based on seaway distances, and year of infectious salmon anemia cases were not associated with time to first ISAV detection. Time to depopulation for sites infected with the ISAV-HPRΔ variant was not associated with ISAV North American or European clades. CONCLUSION Our results contribute to the further understanding of the changing dynamics of infectious salmon anemia detections in Newfoundland and Labrador since its first detection in 2012 and will likely assist in the design of improved disease surveillance and control programs in the province.
Collapse
Affiliation(s)
- Milan Gautam
- Centre for Veterinary Epidemiological Research and Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - K Larry Hammell
- Centre for Veterinary Epidemiological Research and Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Holly Burnley
- Centre for Veterinary Epidemiological Research and Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Nicole O'Brien
- Department of Fisheries, Forestry and Agriculture, Aquatic Animal Health Division, St. John's, Newfoundland and Labrador, Canada
| | - Daryl Whelan
- Department of Fisheries, Forestry and Agriculture, Aquatic Animal Health Division, St. John's, Newfoundland and Labrador, Canada
| | - Krishna Kumar Thakur
- Centre for Veterinary Epidemiological Research and Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
3
|
Cárdenas M, Michelson S, Pérez DR, Montoya M, Toledo J, Vásquez-Martínez Y, Cortez-San Martin M. Infectious Salmon Anemia Virus Infectivity Is Determined by Multiple Segments with an Important Contribution from Segment 5. Viruses 2022; 14:v14030631. [PMID: 35337038 PMCID: PMC8954079 DOI: 10.3390/v14030631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious salmon anemia virus (ISAV) is the etiological agent of infectious salmon anemia. It belongs to the genus isavirus, one of the genera of the Orthomyxoviridae family, as does Influenzavirus A. The ISAV genome comprises eight negative-sense single-stranded RNA segments that code for at least 10 proteins. Although some ISAV strains can reach 100% mortality rates, the factors that determine isavirus infectivity remain unknown. However, some studies suggest that segments 5 and 6 are responsible for the different degrees of virulence and infectivity among ISAV subtypes, unlike the influenza A virus, where most segments are involved in the virus infectivity. In this work, synthetic reassortant viruses for the eight segments of ISAV were generated by reverse genetics, combining a highly virulent virus, ISAV 752_09 (HPR7b), and an avirulent strain, SK779/06 (HPR0). We characterized the rescued viruses and their capacity to replicate and infect different cell lines, produce plaques in ASK cells, and their ability to induce and modulate the cellular immune response in vitro. Our results show that the majority of ISAV segments are involved in at least one of the analyzed characteristics, segment 5 being one of the most important, allowing HPR0 viruses, among other things, to produce plaques and replicate in CHSE-214 cells. We determined that segments 5 and 6 participate in different stages of the viral cycle, and their compatibility is critical for viral infection. Additionally, we demonstrated that segment 2 can modulate the cellular immune response. Our results indicate a high degree of genetic compatibility between the genomic segments of HPR7b and HPR0, representing a latent risk of reassortant that would give rise to a new virus with an unknown phenotype.
Collapse
Affiliation(s)
- Matías Cárdenas
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (M.C.); (S.M.); (Y.V.-M.)
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GE 30602, USA;
| | - Sofía Michelson
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (M.C.); (S.M.); (Y.V.-M.)
| | - Daniel R. Pérez
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GE 30602, USA;
| | - Margarita Montoya
- Cell Biochemistry Laboratory, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago 9170022, Chile;
| | - Jorge Toledo
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
| | - Yesseny Vásquez-Martínez
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (M.C.); (S.M.); (Y.V.-M.)
- Programa Centro de Investigaciones Biomédicas Aplicadas, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago, Santiago 9170022, Chile
| | - Marcelo Cortez-San Martin
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (M.C.); (S.M.); (Y.V.-M.)
- Correspondence:
| |
Collapse
|
4
|
Ditlecadet D, Gautreau C, Boston L, Liston R, Johnsen E, Gagné N. First report of successful isolation of a HPR0-like variant of the infectious salmon anaemia virus (ISAV) using cell culture. JOURNAL OF FISH DISEASES 2022; 45:479-483. [PMID: 34843624 PMCID: PMC9299946 DOI: 10.1111/jfd.13556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
ISAV is the causative agent of the infectious salmon anaemia (ISA), a disease listed by the OIE that has caused important economic losses to the Atlantic salmon (Salmo salar) industry. ISAV variants are identified as pathogenic or non-pathogenic based on the presence or absence of a deletion in the highly polymorphic region (HPR) of segment 6 (S6). HPRΔ variants (pathogenic) are the only forms of the virus known to grow in cell culture. This is the first report of a HPR0 variant isolated in cell culture. The isolate is, however, atypical as it shows a marker of virulent variants on another segment (S5), which has never been reported for any other HPR0 variants. The significance of this finding remains unclear until more in-depth work is carried out but does challenge current knowledge.
Collapse
Affiliation(s)
- D. Ditlecadet
- Fisheries & Oceans CanadaGulf Fisheries CenterMonctonCanada
| | - C. Gautreau
- Fisheries & Oceans CanadaGulf Fisheries CenterMonctonCanada
| | - L. Boston
- Fisheries & Oceans CanadaGulf Fisheries CenterMonctonCanada
| | | | | | - N. Gagné
- Fisheries & Oceans CanadaGulf Fisheries CenterMonctonCanada
| |
Collapse
|