1
|
Fu M, Qu H, Wang Y, Guan J, Xia T, Zheng K, Tang L, Zhou C, Zhou H, Cong W, Zhang J, Han B. Overcoming research challenges: In vitro cultivation of Ameson portunus (Phylum Microsporidia). J Invertebr Pathol 2024; 204:108091. [PMID: 38462166 DOI: 10.1016/j.jip.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/03/2023] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Ameson portunus is an intracellular pathogen that infects marine crabs Portunus trituberculatus and Scylla paramamosain, causing significant economic losses. However, research into this important parasite has been limited due to the absence of an in vitro culture system. To address this challenge, we developed an in vitro cultivation model of A. portunus using RK13 cell line in this study. The fluorescent labeling assay indicated a high infection rate (∼60 %) on the first day post-infection and quantitative PCR (qPCR) detection demonstrated successful infection as early as six hours post-inoculation. Fluorescence in situ hybridization (FISH) and qPCR were used for the detection of A. portunus infected cells. The FISH probe we designed allowed detection of A. portunus in infected cells and qPCR assay provided accurate quantification of A. portunus in the samples. Transmission electron microscopy (TEM) images revealed that A. portunus could complete its entire life cycle and produce mature spores in RK13 cells. Additionally, we have identified novel life cycle characteristics during the development of A. portunus in RK 13 cells using TEM. These findings contribute to our understanding of new life cycle pathways of A. portunus. The establishment of an in vitro culture model for A. portunus is critical as it provides a valuable tool for understanding the molecular and immunological events that occur during infection. Furthermore, it will facilitate the development of effective treatment strategies for this intracellular pathogen.
Collapse
Affiliation(s)
- Ming Fu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Marine College, Shandong University, Weihai 264209, China
| | - Hongnan Qu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yongliang Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jingyu Guan
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tian Xia
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Kai Zheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Liyuan Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunxue Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huaiyu Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wei Cong
- Marine College, Shandong University, Weihai 264209, China.
| | - Jinyong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Bing Han
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
2
|
Sangklai N, Supungul P, Jaroenlak P, Tassanakajon A. Immune signaling of Litopenaeus vannamei c-type lysozyme and its role during microsporidian Enterocytozoon hepatopenaei (EHP) infection. PLoS Pathog 2024; 20:e1012199. [PMID: 38683868 PMCID: PMC11081493 DOI: 10.1371/journal.ppat.1012199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/09/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
The microsporidian Enterocytozoon hepatopenaei (EHP) is a fungi-related, spore-forming parasite. EHP infection causes growth retardation and size variation in shrimp, resulting in severe economic losses. Studies on shrimp immune response have shown that several antimicrobial peptides (AMPs) were upregulated upon EHP infection. Among those highly upregulated AMPs is c-type lysozyme (LvLyz-c). However, the immune signaling pathway responsible for LvLyz-c production in shrimp as well as its function against the EHP infection are still poorly understood. Here, we characterized major shrimp immune signaling pathways and found that Toll and JAK/STAT pathways were up-regulated upon EHP infection. Knocking down of a Domeless (DOME) receptor in the JAK/STAT pathways resulted in a significant reduction of the LvLyz-c and the elevation of EHP copy number. We further elucidated the function of LvLyz-c by heterologously expressing a recombinant LvLyz-c (rLvLyz-c) in an Escherichia coli. rLvLyz-c exhibited antibacterial activity against several bacteria such as Bacillus subtilis and Vibrio parahaemolyticus. Interestingly, we found an antifungal activity of rLvLyz-c against Candida albican, which led us to further investigate the effects of rLvLyz-c on EHP spores. Incubation of the EHP spores with rLvLyz-c followed by a chitin staining showed that the signals were dramatically decreased in a dose-dependent manner, suggesting that rLvLyz-c possibly digest a chitin coat on the EHP spores. Transmission electron microscopy analysis revealed that an endospore layer, which is composed mainly of chitin, was digested by rLvLyz-c. Lastly, we observed that EHP spores that were treated with rLvLyz-c showed a significant reduction of the spore germination rate. We hypothesize that thinning of the endospore of EHP would result in altered permeability, hence affecting spore germination. This work provides insights into shrimp immune signaling pathways responsible for LvLyz-c production and its anti-EHP property. This knowledge will serve as important foundations for developing EHP control strategies.
Collapse
Affiliation(s)
- Nutthapon Sangklai
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Premruethai Supungul
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Pattana Jaroenlak
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|