1
|
Jakovac-Strajn B, Babič J, Pezo L, Banjac V, Čolović R, Kos J, Miljanić J, Janić Hajnal E. Mitigation of Mycotoxin Content by a Single-Screw Extruder in Triticale ( x Triticosecale Wittmack). Foods 2025; 14:263. [PMID: 39856929 PMCID: PMC11765161 DOI: 10.3390/foods14020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
The aim of this study was to investigate the effects of extrusion processing parameters-moisture content (M = 20 and 24%), feeding rate (FR = 20 and 25 kg/h), and screw speed (SS = 300, 390 and 480 RPM), on the content of deoxynivalenol (DON), 15-Acetyl Deoxynivalenol (15-AcDON), 3-Acetyl Deoxynivalenol (3-AcDON), HT-2 Toxin (HT-2), tentoxin (TEN) and alternariol monomethyl ether (AME), using a pilot single-screw extruder in whole-grain triticale flour. The temperature at the end plate of the extruder ranged between 97.6 and 141 °C, the absolute pressure was from 0.10 to 0.42 MPa, the mean retention time of material in the barrel was between 16 and 35 s, and the specific energy consumption was from 91.5 to 186.6 Wh/kg. According to the standard score, the optimum parameters for the reduction of the content of analysed mycotoxins were M = 24 g/100 g, FR = 25 kg/h, SS = 480 RPM, with a reduction of 3.80, 60.7, 61.5, 86.5, 47.7, and 55.9% for DON, 3-AcDON, 15-AcDON, HT-2, TEN, and AME, respectively. Under these conditions, the bulk density, pellet hardness, water absorption index, and water solubility index of the pellet were 0.352 g/mL, 13.7 kg, 8.96 g/g, and 14.9 g/100 g, respectively.
Collapse
Affiliation(s)
- Breda Jakovac-Strajn
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia;
| | - Janja Babič
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia;
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia;
| | - Vojislav Banjac
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (V.B.); (R.Č.); (J.K.); (J.M.); (E.J.H.)
| | - Radmilo Čolović
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (V.B.); (R.Č.); (J.K.); (J.M.); (E.J.H.)
| | - Jovana Kos
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (V.B.); (R.Č.); (J.K.); (J.M.); (E.J.H.)
| | - Jelena Miljanić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (V.B.); (R.Č.); (J.K.); (J.M.); (E.J.H.)
| | - Elizabet Janić Hajnal
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (V.B.); (R.Č.); (J.K.); (J.M.); (E.J.H.)
| |
Collapse
|
2
|
Travičić V, Cvanić T, Vidović S, Pezo L, Hidalgo A, Šovljanski O, Ćetković G. Sustainable Recovery of Polyphenols and Carotenoids from Horned Melon Peel via Cloud Point Extraction. Foods 2024; 13:2863. [PMID: 39335792 PMCID: PMC11431220 DOI: 10.3390/foods13182863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Using natural plant extracts as food additives is a promising approach for improving food products' quality, nutritional value, and safety, offering advantages for both consumers and the environment. Therefore, the main goal of this study was to develop a sustainable method for extracting polyphenols and carotenoids from horned melon peel using the cloud point extraction (CPE) technique, intending to utilize it as a natural food additive. CPE is novel promising extraction method for separation and pre-concentration of different compounds while being simple, inexpensive, and low-toxic. Three parameters within the CPE approach, i.e., pH, equilibrium temperature, and equilibrium time, were investigated as independent variables through the implementation of Box-Behnken design and statistical analyses. The optimized conditions for the maximum recovery of both polyphenols and carotenoids, reaching 236.14 mg GAE/100 g and 13.80 mg β carotene/100 g, respectively, were a pH value of 7.32, an equilibrium temperature of 55 °C, and an equilibrium time of 43.03 min. The obtained bioactives' recovery values under the optimized conditions corresponded to the predicted ones, indicating the suitability of the employed RSM model. These results highlight the effectiveness of CPE in extracting bioactive compounds with varying polarities from agricultural by-products, underscoring its potential for enhancing the value of food waste and advancing sustainable practices in food processing. According to microbiological food safety parameters, the optimal CPE extract is suitable for food applications, while its storage under refrigerated and dark conditions is particularly beneficial. The CPE extract's enhanced stability under these conditions makes it a more viable option for long-term storage, preserving both safety and quality.
Collapse
Affiliation(s)
- Vanja Travičić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Teodora Cvanić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Senka Vidović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Lato Pezo
- Engineering Department, Institute of General and Physical Chemistry, Studentski trg 12/V, 11000 Belgrade, Serbia
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Olja Šovljanski
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Gordana Ćetković
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
3
|
Janić Hajnal E, Babič J, Pezo L, Banjac V, Filipčev B, Miljanić J, Kos J, Jakovac-Strajn B. Reduction of Alternaria Toxins via the Extrusion Processing of Whole-Grain Red Sorghum Flour. Foods 2024; 13:255. [PMID: 38254556 PMCID: PMC10815308 DOI: 10.3390/foods13020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This study delved into the impact of two extrusion processing parameters-screw speed (SS at 400, 600, 800 RPM) and material moisture content in the extruder barrel (M at 12, 15, 18%) at constant feed rate (50 kg/h)-on reducing the content of alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), and tentoxin (TEN) in whole-grain red sorghum flour. Ultra-performance liquid chromatography combined with a triple-quadrupole mass spectrometer (UPLC-MS/MS) was employed for the determination of Alternaria toxin levels. The extruder die temperature fluctuated between 136 and 177 °C, with die pressures ranging from 0.16 to 6.23 MPa. The specific mechanical energy spanned from 83.5 to 152.3 kWh/t, the torque varied between 88 and 162.8 Nm, and the average material retention time in the barrel ranged from 5.6 to 13 s. The optimal parameters for reducing the concentration of all Alternaria toxins with a satisfactory quality of the sorghum snacks were: SS = 400 RPM, M = 12%, with a reduction of 61.4, 76.4, 12.1, and 50.8% for AOH, AME, TeA, and TEN, respectively.
Collapse
Affiliation(s)
- Elizabet Janić Hajnal
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia (B.F.); (J.M.); (J.K.)
| | - Janja Babič
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.)
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia;
| | - Vojislav Banjac
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia (B.F.); (J.M.); (J.K.)
| | - Bojana Filipčev
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia (B.F.); (J.M.); (J.K.)
| | - Jelena Miljanić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia (B.F.); (J.M.); (J.K.)
| | - Jovana Kos
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia (B.F.); (J.M.); (J.K.)
| | - Breda Jakovac-Strajn
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.)
| |
Collapse
|
4
|
Nutritional and Technological Aspects of the Production of Proteic Extruded Snacks Added of Novel Raw Materials. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Monteiro Cordeiro de Azeredo H, Carvalho de Matos M, Madazio Niro C. Something to chew on: technological aspects for novel snacks. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2191-2198. [PMID: 34859443 DOI: 10.1002/jsfa.11701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Snacks have accompanied people for a long time, meeting our needs for something fast and filling between meals. Societies and technologies have changed, and so have snacks, adapting to people's daily lives, concerns, and demands. Although traditional snacks, such as potato chips, are still ubiquitous and popular worldwide, there is not unanimity around them anymore, since many people have been looking for healthier snacks. Studies have been carried out to propose healthier snack options by changing their composition and/or techniques to produce them, minimizing contents of energy-dense components and/or maximizing the retention or bioavailability of nutrients. This mini-review presents the main trends on development of snacks and future perspectives. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Matheus Carvalho de Matos
- Postgraduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Carolina Madazio Niro
- Postgraduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
6
|
Pavani M, Singha P, Dash DR, Asaithambi N, Singh SK. Novel encapsulation approaches for phytosterols and their importance in food products: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mekala Pavani
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Poonam Singha
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Dibya Ranjan Dash
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Niveditha Asaithambi
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Sushil Kumar Singh
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| |
Collapse
|
7
|
Janić Hajnal E, Babič J, Pezo L, Banjac V, Čolović R, Kos J, Krulj J, Pavšič-Vrtač K, Jakovac-Strajn B. Effects of extrusion process on Fusarium and Alternaria mycotoxins in whole grain triticale flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Xie F, Gu BJ, Saunders SR, Ganjyal GM. High methoxyl pectin enhances the expansion characteristics of the cornstarch relative to the low methoxyl pectin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106131] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Li W, Chen S, Peng J, Pan L, Tu K. Effects of twin‐screw extrusion processing variables on physicochemical properties and antioxidant activity of rice incorporated with
Agriophyllum squarrosum
flour. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wenting Li
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Shaoxia Chen
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Jing Peng
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Leiqing Pan
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Kang Tu
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| |
Collapse
|
10
|
|
11
|
Possibility to Save Water and Energy by Application of Fresh Vegetables to Produce Supplemented Potato-Based Snack Pellets. Processes (Basel) 2020. [DOI: 10.3390/pr8020153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to examine the effect of fresh vegetable addition on processing efficiency, and to ascertain the energy and water consumption during production of potato-based snack pellets. The extrusion-cooking process with a modified single screw extruder was applied at variable screw speeds and amounts of vegetable additives. A mixture of potato flakes, potato grits and starch was used as a basic recipe. The potato composition was supplemented with fresh pulp of onion, leek, kale and carrot in amounts of 2.5–30.0% as replacement of a related amount of potato starch. The water consumption, as well as processing indicators: the production efficiency, the specific mechanical energy (SME), and the total SME requirements during snack pellets processing at the laboratory scale were evaluated. As a result of this work, we found that the amount of applied vegetable additives had little impact on both processing efficiency and SME depending on the screw speeds applied. Moreover, we saw increased processing efficiency with increased screw speed during extrusion. Of particular note, maximum value of processing efficiency was observed if fresh onion was used as an additive at the highest speed screw. Furthermore, the lowest specific mechanical energy consumption was noted for extrudates supplemented with fresh onion addition processed at the lowest screw speed. The most important limiting of water consumption during processing without negative effects on processing efficiency and quality of the final snack pellets was observed if 20% to 30% of fresh vegetables were used in the recipe. We believe that application of fresh vegetable pulp limited the energy requirements by mitigating the drying process of additives.
Collapse
|
12
|
Kern C, Bähler B, Hinrichs J, Nöbel S. Waterless single screw extrusion of pasta-filata cheese: Process design based on thermo-rheological material properties. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Singh SK, Singha P, Muthukumarappan K. Modeling and optimizing the effect of extrusion processing parameters on nutritional properties of soy white flakes-based extrudates using response surface methodology. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Singha P, Singh SK, Muthukumarappan K. Textural and structural characterization of extrudates from apple pomace, defatted soy flour and corn grits. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Poonam Singha
- Department of Agricultural & Biosystems EngineeringSouth Dakota State University Brookings South Dakota
| | - Sushil K. Singh
- Department of Food Process EngineeringNational Institute of Technology Rourkela Rourkela Odisha India
| | | |
Collapse
|
15
|
Kojić JS, Ilić NM, Kojić PS, Pezo LL, Banjac VV, Krulj JA, Bodroža Solarov MI. Multiobjective process optimization for betaine enriched spelt flour based extrudates. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jovana S. Kojić
- Institute of Food Technology, University of Novi Sad; Novi Sad Serbia
| | - Nebojša M. Ilić
- Institute of Food Technology, University of Novi Sad; Novi Sad Serbia
| | | | - Lato L. Pezo
- Institute of General and Physical Chemistry, University of Belgrade; Beograd Serbia
| | | | - Jelena A. Krulj
- Institute of Food Technology, University of Novi Sad; Novi Sad Serbia
| | | |
Collapse
|
16
|
Singha P, Singh SK, Muthukumarappan K, Krishnan P. Physicochemical and nutritional properties of extrudates from food grade distiller's dried grains, garbanzo flour, and corn grits. Food Sci Nutr 2018; 6:1914-1926. [PMID: 30349681 PMCID: PMC6189619 DOI: 10.1002/fsn3.769] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 11/10/2022] Open
Abstract
Distiller's dried grains and garbanzo flour were blended with corn grits for the development of extruded snacks using a single screw extruder. Distiller's dried grains were processed for food application and termed as food grade distiller's dried grains or FDDG. Effects of different level of FDDG addition (0%-20%) and extrusion process parameters such as barrel and die temperature (100-140°C), screw speed (100-200 rpm), and feed moisture content (14%-20% wet basis) on the physical properties (expansion ratio, bulk density, color parameters), functional properties (water absorption and solubility indices), and nutritional properties (total dietary fiber, soluble and insoluble dietary fiber and protein content) of the extrudates were investigated and optimized using response surface methodology. FDDG incorporation had a significant effect (p < 0.05) on the total dietary fiber, color parameters, water solubility, and water absorption indices of the extruded snacks. Desirable expanded extrudates with a high level of total dietary fiber and protein were obtained with blends containing 20% FDDG extruded at 140°C extrusion temperature, 167 rpm screw speed, and 19% feed moisture content. Results indicate garbanzo flour, and FDDG can be successfully blended with corn grits to produce nutritious gluten-free extruded snacks which are high in protein and dietary fiber.
Collapse
Affiliation(s)
- Poonam Singha
- Department of Agricultural & Biosystems EngineeringSouth Dakota State UniversityBrookingsSouth Dakota
| | - Sushil K. Singh
- Department of Dairy and Food ScienceSouth Dakota State UniversityBrookingsSouth Dakota
| | | | - Padmanaban Krishnan
- Department of Dairy and Food ScienceSouth Dakota State UniversityBrookingsSouth Dakota
| |
Collapse
|
17
|
Singha P, Muthukumarappan K. Single screw extrusion of apple pomace-enriched blends: Extrudate characteristics and determination of optimum processing conditions. FOOD SCI TECHNOL INT 2018; 24:447-462. [DOI: 10.1177/1082013218766981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Response surface methodology was used to investigate the single screw extrusion of apple pomace–defatted soy flour–corn grits blends and the product properties. Five different blends at a level of 0–20% w/w apple pomace were extrusion cooked with varied barrel and die temperature (100–140℃), screw speed (100–200 rpm), and feed moisture content (14–20% wet basis). Increasing apple pomace content in the blends significantly ( P < 0.05) increased the bulk density, the total phenolic content, and the antioxidant activity of the extrudates. The expansion ratio increased with pomace inclusion level of 5% but decreased significantly ( P < 0.05) at higher levels of pomace inclusion (10–20%). Moisture content had quadratic influence on water absorption and solubility indices. Optimal extrusion cooking conditions most likely to produce apple pomace-enriched extruded snack products were at 140℃ barrel and die temperature, 20% feed moisture content, and 200 rpm screw speed. The results indicated active interaction between apple pomace and starch during expansion process.
Collapse
Affiliation(s)
- Poonam Singha
- Department of Agricultural & Biosystems Engineering, South Dakota State University, Brookings, USA
| | | |
Collapse
|