1
|
Wu J, Jiao Y, Yu W, Zhang Y, Li Z, Wang X. Preparation of chitosan quaternary ammonium salt/pectin antifogging and antibacterial composite film loaded with riboflavin and its application in rape preservation. Food Chem 2025; 481:144129. [PMID: 40184923 DOI: 10.1016/j.foodchem.2025.144129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/14/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
In this study, riboflavin (RIB) was incorporated into a chitosan quaternary ammonium salt/pectin (HACC/PEC) matrix to produce a composite film with excellent antifogging properties and antibacterial activity. The incorporation of RIB significantly enhanced the mechanical properties (The TS and EAB of HP4-0.2 were 32.09 MPa and 107.1 %), ultraviolet blocking performance, thermal stability and antibacterial characteristics of the film. Riboflavin effectively reduced the water contact angle, enhancing its antifogging performance and preventing water vapor from condensing on the product's surface. The HP4-0.2 film with RIB resulted the shelf life of rape to 11 d at 4 °C. The film effectively preserved the quality of rape during storage, which reduced the total plate count and minimized the degradation of chlorophyll caused by ultraviolet rays. This study introduced a new idea for food antifogging and antibacterial packaging, establishing a foundation for research into multifunctional antifogging packaging.
Collapse
Affiliation(s)
- Junjie Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yingshuai Jiao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Wenlong Yu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yu Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Zongyang Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
2
|
Shi H, Jiang M, Zhang X, Xia G, Shen X. Characteristics and food applications of aquatic collagen and its derivatives: A review. Food Res Int 2025; 202:115531. [PMID: 39967124 DOI: 10.1016/j.foodres.2024.115531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Collagen and its hydrolysates have high bioavailability, good biocompatibility, biodegradability, and biological activity which has meant that they have been widely used in food, medicine, cosmetics, and other industries. Although the properties and applications of collagen have been reviewed recently, few studies have focused on aquatic collagen. To provide readers with a deeper understanding of aquatic collagen, this review addresses the structure and properties of aquatic collagen and compares them with mammalian collagen, as well as the differences between collagen, gelatin, and collagen peptides. In contrast to mammalian collagen, aquatic collagen prevents zoonotic diseases, reduces environmental pollution, improves the utilization of aquatic resources, and facilitates the extraction and separation of active oligopeptides. Additionally, methods for screening functional peptides using in vitro digestion have been introduced. Finally, the review focuses on the applications of collagen and its derivatives in food preservation (packaging films, coatings, additives, and antifreeze peptides), drug delivery (microcapsules, emulsions, nanoparticles, and hydrogels), nutrition, and healthcare.
Collapse
Affiliation(s)
- Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Mengqi Jiang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China.
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
3
|
Gui N, Zhang X, Yang C, Ran R, Yang C, Zeng X, Li G. A high-strength collagen-based antimicrobial film grafted with ε-polylysine fabrication by riboflavin-mediated ultraviolet irradiation for pork preservation. Food Chem 2024; 461:140889. [PMID: 39173254 DOI: 10.1016/j.foodchem.2024.140889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
In this study, a UV-cured collagen-based film (C-P-H film) with high mechanical strength and antimicrobial properties was developed by riboflavin-mediated ultraviolet irradiation of collagen solution containing histidine-modified ε-polylysine. Fourier transform infrared analysis indicated that covalent cross-linking was formed between the collagen molecule and the histidine-grafted ε-polylysine. Compared with the pure collagen film, the C-P-H film containing 5 wt% histidine-modified ε-polylysine showed higher tensile strength (145.98 MPa), higher thermal denaturation temperature (76.5 °C), lower water vapor permeability (5.54 × 10-11 g m-1 s-1 Pa) and excellent antimicrobial activities against Escherichia coli and Staphylococcus aureus. In addition, the wrapping of the C-P-H film effectively inhibited bacterial growth of pork during storage time, successfully prolonging the shelf-life of pork by approximately 4 days compared to that of plastic wrap. These results suggested that collagen-based film grafted with histidine-modified ε-polylysine via riboflavin-mediated ultraviolet irradiation process had a great potential for pork preservation.
Collapse
Affiliation(s)
- Nina Gui
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Xiaoxia Zhang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Chun Yang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Ruimin Ran
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Changkai Yang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Xingling Zeng
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
4
|
Mahmud J, Muranyi P, Salmieri S, Shankar S, Lacroix M. UV-C-Activated Riboflavin Crosslinked Gelatin Film with Bioactive Nanoemulsion for Enhanced Preservation of Fresh Beef in Modified Atmosphere Packaging. Foods 2024; 13:3504. [PMID: 39517288 PMCID: PMC11544885 DOI: 10.3390/foods13213504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This study explores a new eco-friendly approach for developing bioactive gelatin films using UV-C irradiation-induced photo-crosslinking. Riboflavin, a food-grade photoinitiator, was selected at an optimal concentration of 1.25% (w/w) for crosslinking gelatin under UV-C exposure for 4 to 22 min. Physicochemical analyses revealed enhanced tensile strength, reduced water vapor permeability, and lower water solubility in films crosslinked for up to 13 min. FTIR analysis demonstrated significant molecular changes, confirming the formation of crosslinking connections in gelatin-riboflavin films. Antimicrobial nanoemulsion (NE) (0.5, 0.75, 1% v/v) was incorporated into crosslinked films and applied to fresh beef. The 1% NE film exhibited the strongest antimicrobial effect, extending shelf-life by 20 days. In vitro release study confirmed Fickian diffusion behavior in the 1% NE film. This study also investigated the synergy between 1% NE film and three different types of modified atmosphere packaging (MAP) on the microbiological and physicochemical properties of beef for 26 days. The best results were achieved with 1% NE film under MAP1 and MAP2, which preserved meat redness and prevented lipid oxidation, extending the shelf-life up to 26 days. Therefore, UV-C irradiation-induced crosslinked bioactive film combined with high-oxygen MAP offers a promising solution for prolonging the shelf-life of beef.
Collapse
Affiliation(s)
- Jumana Mahmud
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and Quality, Institute of Nutrition and Functional Foods (INAF), 531 Des Prairies Blvd, Laval, QC H7V 1B7, Canada; (J.M.); (S.S.); (S.S.)
| | - Peter Muranyi
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser, Str. 35, 85354 Freising, Germany;
| | - Stephane Salmieri
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and Quality, Institute of Nutrition and Functional Foods (INAF), 531 Des Prairies Blvd, Laval, QC H7V 1B7, Canada; (J.M.); (S.S.); (S.S.)
| | - Shiv Shankar
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and Quality, Institute of Nutrition and Functional Foods (INAF), 531 Des Prairies Blvd, Laval, QC H7V 1B7, Canada; (J.M.); (S.S.); (S.S.)
| | - Monique Lacroix
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and Quality, Institute of Nutrition and Functional Foods (INAF), 531 Des Prairies Blvd, Laval, QC H7V 1B7, Canada; (J.M.); (S.S.); (S.S.)
| |
Collapse
|
5
|
Wang K, Sun H, Cui Z, Wang J, Hou J, Lu F, Liu Y. Lactoferrin-Chitosan Composite Hydrogels Induced by Microbial Transglutaminase: Potential Delivery Systems for Thermosensitive Bioactive Substances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14302-14314. [PMID: 38865607 DOI: 10.1021/acs.jafc.4c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this work, lactoferrin (LF)-chitosan (CS) composite hydrogels with good loading capacity of thermosensitive bioactive substances were successfully obtained by microbial transglutaminase (MTG)-induced cross-linking. We evaluated the rheological, textural, and microstructural characteristics of the composite hydrogels under different conditions. The results demonstrated that the concentrations of LF and CS as well as the amount of MTG could regulate the textural properties, rheological properties, and water holding capability. The results of FTIR and fluorescence spectroscopy indicated that the main interactions within the composite gel were hydrogen and isopeptide bonds. Additionally, in vitro digestion simulation results verified that riboflavin kept stable in stomach due to the protection of LF-CS composite hydrogels and was released in small intestine. These results suggested that thermosensitive bioactive substance could be encapsulated and delivered by the LF-CS composite hydrogel, which could be applied in lots of potential applications in functional food as a new material.
Collapse
Affiliation(s)
- Kangning Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hui Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhihan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jiayi Hou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
6
|
Brebu M, Dumitriu RP, Pamfil D, Butnaru E, Stoleru E. Riboflavin mediated UV crosslinking of chitosan-gelatin cryogels for loading of hydrophobic bioactive compounds. Carbohydr Polym 2024; 324:121521. [PMID: 37985057 DOI: 10.1016/j.carbpol.2023.121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
Chitosan-gelatin cryogels with good loading capacity of hydrophobic compounds were successfully obtained by UV-induced crosslinking. Using riboflavin as photoinitiator was a suitable alternative to classical carbodiimide crosslinking in obtaining carrier matrices for bioactive hydrophobic compounds. Chitosan had a double role, acting both as a base polymer for the hydrogel network and as co-initiator in riboflavin photo-crosslinking. This co-initiator role of chitosan is due to its electron donor capacity, being well known as a Lewis base type macromolecule. The rheological behaviour of the chitosan-gelatin hydrogel precursor solutions was greatly influenced by riboflavin addition as well as by UV irradiation. As a consequence, the temperature of the sol-gel transition during cooling decreased to 25.5 °C. Compared with classical carbodiimide crosslinking, UV irradiation lead to gels with increased network stability, enhanced elastic behaviour, higher structural strength and almost total stress recovery yield (99 %), the latter indicating self-healing capacity. The cryogels manifested pH responsive swelling, this being highest at close to neutral pH of 7.4. Although hydrophilic in nature, the chitosan-gelatin cryogels crosslinked under the combined effect of riboflavin and UV exposure possess the necessary chemical functionality and morphology that allowed successful embedding of hydrophobic clove essential oil. This was loaded by immersion or fumigation and imparted antioxidant activity to the polymeric matrix.
Collapse
Affiliation(s)
- Mihai Brebu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, 700487, Iasi, Romania
| | - Raluca Petronela Dumitriu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, 700487, Iasi, Romania
| | - Daniela Pamfil
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, 700487, Iasi, Romania
| | - Elena Butnaru
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, 700487, Iasi, Romania
| | - Elena Stoleru
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, 700487, Iasi, Romania.
| |
Collapse
|
7
|
Gelatin films from wastes: a review of production, characterization, and application trends in food preservation and agriculture. Food Res Int 2022; 162:112114. [DOI: 10.1016/j.foodres.2022.112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
8
|
Sarvari R, Keyhanvar P, Agbolaghi S, Roshangar L, Bahremani E, Keyhanvar N, Haghdoost M, Keshel SH, Taghikhani A, Firouzi N, Valizadeh A, Hamedi E, Nouri M. A comprehensive review on methods for promotion of mechanical features and biodegradation rate in amniotic membrane scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:32. [PMID: 35267104 PMCID: PMC8913518 DOI: 10.1007/s10856-021-06570-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/07/2021] [Indexed: 06/14/2023]
Abstract
Amniotic membrane (AM) is a biological tissue that surrounds the fetus in the mother's womb. It has pluripotent cells, immune modulators, collagen, cytokines with anti-fibrotic and anti-inflammatory effect, matrix proteins, and growth factors. In spite of the biological characteristics, some results have been released in preventing the adhesion on traumatized surfaces. Application of the AM as a scaffold is limited due to its low biomechanical resistance and rapid biodegradation. Therefore, for using the AM during surgery, its modification by different methods such as cross-linking of the membrane collagen is necessary, because the cross-linking is an effective way to reduce the rate of biodegradation of the biological materials. In addition, their cross-linking is likely an efficient way to increase the tensile properties of the material, so that they can be easily handled or sutured. In this regard, various methods related to cross-linking of the AM subsuming the composite materials, physical cross-linking, and chemical cross-linking with the glutraldehyde, carbodiimide, genipin, aluminum sulfate, etc. are reviewed along with its advantages and disadvantages in the current work.
Collapse
Affiliation(s)
- Raana Sarvari
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
- ARTAN1100 Startup Accelerator, Tabriz, Iran.
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, P.O. BOX: 5375171379, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Bahremani
- Alavi Ophthalmological Treatment and Educational Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Keyhanvar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Gene Yakhteh Keyhan (Genik) Company (Ltd), Pharmaceutical Biotechnology Incubator, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Haghdoost
- Department of Infectious Diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Taghikhani
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nima Firouzi
- Stem Cell and Tissue Engineering Research Laboratory, Chemical Engineering Faculty, Sahand University of Technology, P.O.BOX:51335-1996, Tabriz, Iran
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene, OR, 97403, USA
| | - Amir Valizadeh
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Hamedi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Su L, Huang J, Li H, Pan Y, Zhu B, Zhao Y, Liu H. Chitosan-riboflavin composite film based on photodynamic inactivation technology for antibacterial food packaging. Int J Biol Macromol 2021; 172:231-240. [PMID: 33453253 DOI: 10.1016/j.ijbiomac.2021.01.056] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/29/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
Photodynamic inactivation (PDI) is a novel sterilization technology that has proven effective in medicine. This study focused on applying PDI to food packaging, where chitosan (CS) films containing photosensitizing riboflavin (RB) were prepared via solution casting. The CS-RB composite films exhibited good ultraviolet (UV)-barrier properties, and had a visually appealing highly transparent yellow appearance. Scanning electron microscopy (SEM) confirmed even dispersion of RB throughout the CS film. The addition of RB led to improved film characteristics, including the thickness, mechanical properties, solubility, and water barrier properties. The CS-RB5 composite films produced sufficient singlet oxygen under blue LED irradiation for 2 h to inactivate two food-borne pathogens (Listeria monocytogenes and Vibrio parahaemolyticus) and one spoilage bacteria (Shewanella baltica). The CS-RB composite films were assessed as a salmon packaging material, where inhibition of bacterial growth was observed. The film is biodegradable, and has the potential to alleviate the issues associated with the excessive use of petrochemical materials, such as environmental pollution and limited resources. The CS-RB composite films showed potential as a novel environmentally friendly packaging material for shelf-life extension of refrigerated food products.
Collapse
Affiliation(s)
- Linyue Su
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiaming Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huihui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Beiwei Zhu
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
10
|
Glow-in-the-Dark Patterned PET Nonwoven Using Air-Atmospheric Plasma Treatment and Vitamin B2-Derivative (FMN). SENSORS 2020; 20:s20236816. [PMID: 33260671 PMCID: PMC7730067 DOI: 10.3390/s20236816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 11/30/2022]
Abstract
Flavin mononucleotide (FMN) derived from Vitamin B2, a bio-based fluorescent water-soluble molecule with visible yellow-green fluorescence, has been used in the scope of producing photoluminescent and glow-in-the-dark patterned polyester (PET) nonwoven panels. Since the FMN molecule cannot diffuse inside the PET fiber, screen printing, coating, and padding methods were used in an attempt to immobilize FMN molecules at the PET fiber surface of a nonwoven, using various biopolymers such as gelatin and sodium alginate as well as a water-based commercial polyacrylate. In parallel, air atmospheric plasma activation of PET nonwoven was carried for improved spreading and adhesion of FMN bearing biopolymer/polymer mixture. Effectively, the plasma treatment yielded a more hydrophilic PET nonwoven, reduction in wettability, and surface roughness of the plasma treated fiber with reduced water contact angle and increased capillary uptake were observed. The standard techniques of morphological properties were explored by a scanning electron microscope (SEM) and atomic force microscopy (AFM). Films combining each biopolymer and FMN were formed on PS (polystyrene) Petri-dishes. However, only the gelatin and polyacrylate allowed the yellow-green fluorescence of FMN molecule to be maintained on the film and PET fabric (seen under ultraviolet (UV) light). No yellow-green fluorescence of FMN was observed with sodium alginate. Thus, when the plasma-activated PET was coated with the gelatin mixture or polyacrylate bearing FMN, the intense photoluminescent yellow-green glowing polyester nonwoven panel was obtained in the presence of UV light (370 nm). Screen printing of FMN using a gelatin mixture was possible. The biopolymer exhibited appropriate viscosity and rheological behavior, thus creating a glow-in-the-dark pattern on the polyester nonwoven, with the possibility of one expression in daylight and another in darkness (in presence of UV light). A bio-based natural product such as FMN is potentially an interesting photoluminescent molecule with which textile surface pattern designers may create light-emitting textiles and interesting aesthetic expressions.
Collapse
|
11
|
Zhang T, Sun R, Ding M, Tao L, Liu L, Tao N, Wang X, Zhong J. Effect of extraction methods on the structural characteristics, functional properties, and emulsion stabilization ability of Tilapia skin gelatins. Food Chem 2020; 328:127114. [DOI: 10.1016/j.foodchem.2020.127114] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
|
12
|
Duan S, Wang W, Li S, Zhang K, Guo Y, Ma Y, Zhao K, Li Y. Moderate laccase-crosslinking improves the mechanical and thermal properties of acid-swollen collagen-based films modified by gallotannins. Food Hydrocoll 2020; 106:105917. [DOI: 10.1016/j.foodhyd.2020.105917] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Wu X, Liu Q, Luo Y, Murad MS, Zhu L, Mu G. Improved packing performance and structure-stability of casein edible films by dielectric barrier discharges (DBD) cold plasma. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100471] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Characterization and Testing of a Novel Sprayable Crosslinked Edible Coating Based on Salmon Gelatin. COATINGS 2019. [DOI: 10.3390/coatings9100595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to develop and characterize a sprayable edible coating using salmon gelatin (SG) and its stabilization by photopolymerization using riboflavin (Rf). Suspensions of SG with Rf at pH values of 5.0 and 8.5 were exposed for 2 min to visible light (VL) and ultraviolet (UV) light and further characterized to determine structural changes of the different gelatin formulations. Rheology analysis showed that at pH 5, the loss modulus (G’’) was higher that the storage modulus (G’) for crosslinked samples (VL and UV light). However, at pH 8.5 G’ values increased over G’’, showing a strong crosslinking effect. Interestingly both moduli did not intersect at any point and their maximum values did not change upon cooling with respect to the gelatin suspension without light exposure, demonstrating that triple helix formation was not affected by the reaction. In fact, neither the gelation temperature nor the enthalpy values were significantly affected. Viscosity measurements confirmed the hydrogel formation using VL, showing higher viscosity values after exposure at increasing temperatures. Transmittance (T%) measurements showed an increase in T% in the suspensions after VL exposure, with only a 10% decrease compared to SG without riboflavin. For validation, the coating was sprayed in fresh salmon fillets, showing a 37% delay in spoilage and reduced weight loss. Therefore, photopolymerization of low viscosity gelatins would allow to manage viscoelasticity of the biomaterial stabilizing it as coating and preventing the deterioration of salmon fillets.
Collapse
|
15
|
Alginate/gelatin blended hydrogel fibers cross-linked by Ca2+ and oxidized starch: Preparation and properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1469-1476. [DOI: 10.1016/j.msec.2019.02.091] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 11/21/2022]
|