1
|
Song X, Kang J, Wei X, Liu L, Liu Y, Wang F. Insights into the antibacterial effectiveness of linalool against Shigella flexneri on pork surface: Changes in bacterial growth and pork quality. Int J Food Microbiol 2024; 418:110718. [PMID: 38678956 DOI: 10.1016/j.ijfoodmicro.2024.110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Shigella flexneri has the ability to contaminate pork and cause foodborne diseases. This study aimed to examine the effectiveness of linalool (a natural preservative) against S. flexneri and explore its potential application in contaminated pork. The results showed that linalool was capable of damaging the cell membrane and binding to the DNA of S. flexneri, and inhibiting biofilm formation and disrupting mature biofilms. The antibacterial effectiveness of linalool on the surface of pork was further demonstrated by analyzing the physicochemical properties of the pork (i.e., weight loss rate, pH value, color index, and TVB-N value) and its protein profiles. Linalool did not completely kill S. flexneri in pork at minimum bactericidal concentration (MBC) concentration and its antibacterial effect of linalool was stronger during the initial stage of storage. During storage, linalool influenced the abundance of specific proteins in the pork, particularly those involved in pathways related to fat metabolism. These findings offer novel insights into the antibacterial efficacy of linalool and its underlying mechanism in pork.
Collapse
Affiliation(s)
- Xueying Song
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiamu Kang
- School of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Xingyan Wei
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Liu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng Wang
- Xi'an Supervision & Inspection Institute of Product Quality, Xi'an 710068, China
| |
Collapse
|
2
|
Choudhary A, Midha T, Gulati I, Baranwal S. Isolation, Genomic Characterization of Shigella prophage fPSFA that effectively infects multi-drug resistant Shigella isolates from the Indian Poultry Sector. Microb Pathog 2024; 188:106538. [PMID: 38184177 DOI: 10.1016/j.micpath.2024.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
Because of uncontrolled use of antibiotics, emergence of multidrug-resistant Shigella species poses a huge potential of zoonotic transfer from poultry sector. With increasing resistance to current antibiotics, there is a critical need to explore antibiotic alternatives. Using a Shigella flexneri reference strain, we isolated a novel fPSFA phage after inducing with mitomycin C. The phage was found to be stable for wide ranges of temperature -20 °C-65 °C and pH 3 to 11. fPSFA shows a latent period that ranges from 20 to 30 min and generation times of 50-60 min. The genome analysis of phage reveals two major contigs of 23788 bp and 23285 bp with 50.16 % and 39.33 % G + C content containing a total of 80 CDS and 2 tRNA genes. The phage belongs to Straboviridae family and lacks any virulence or antimicrobial resistance gene, thus making it a suitable candidate for treatment of drug-resistant infections. To confirm lytic ability of novel phage, we isolated 54 multidrug-resistant Shigella species from thirty-five poultry fecal samples that shows multiple antibiotic resistance index ranging from 0.15 to 0.75 (from 3 Indian states). The fPSFA showed lytic activity against multidrug-resistant Shigella isolates (73.08 %) (MARI≥0.50). The wide host ranges of fPSFA phage demonstrate its potential to be used as a biocontrol agent.
Collapse
Affiliation(s)
- Aaina Choudhary
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, 151401, India
| | - Tushar Midha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, 151401, India
| | - Ishita Gulati
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, 151401, India
| | - Somesh Baranwal
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, 151401, India.
| |
Collapse
|
3
|
Peng F, Chen L, Wang X, Yu Z, Cheng C, Yang Y. Effect of Chestnut ( Castanea Mollissima Blume) Bur Polyphenol Extract on Shigella dysenteriae: Antibacterial Activity and the Mechanism. Molecules 2023; 28:6990. [PMID: 37836834 PMCID: PMC10574539 DOI: 10.3390/molecules28196990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Shigella dysenteriae is a highly pathogenic microorganism that can cause human bacillary dysentery by contaminating food and drinking water. This study investigated the antibacterial activity of chestnut bur polyphenol extract (CBPE) on S. dysenteriae and the underlying mechanism. The results showed that the minimum inhibitory concentration (MIC) of CBPE for S. dysenteriae was 0.4 mg/mL, and the minimum bactericidal concentration (MBC) was 1.6 mg/mL. CBPE treatment irreversibly disrupted cell morphology, decreased cell activity, and increased cell membrane permeability, cell membrane depolarization, and cell content leakage of S. dysenteriae, indicating that CBPE has obvious destructive effects on the cell membrane and cell wall of S. dysenteriae. Combined transcriptomic and metabolomics analysis revealed that CBPE inhibits S. dysenteriae by interfering with ABC protein transport, sulfur metabolism, purine metabolism, amino acid metabolism, glycerophospholipid metabolism, and some other pathways. These findings provide a theoretical basis for the prevention and treatment of S. dysenteriae infection with extract from chestnut burs.
Collapse
Affiliation(s)
- Fei Peng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (F.P.); (L.C.); (Z.Y.); (C.C.)
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao 066000, China
| | - Linan Chen
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (F.P.); (L.C.); (Z.Y.); (C.C.)
| | - Xiuping Wang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (F.P.); (L.C.); (Z.Y.); (C.C.)
| | - Zuoqing Yu
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (F.P.); (L.C.); (Z.Y.); (C.C.)
| | - Caihong Cheng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (F.P.); (L.C.); (Z.Y.); (C.C.)
| | - Yuedong Yang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (F.P.); (L.C.); (Z.Y.); (C.C.)
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao 066000, China
| |
Collapse
|
4
|
Bacitracin-Ag Nanoclusters as a Novel Antibacterial Agent Combats Shigella flexneri by Disrupting Cell Membrane and Inhibiting Biofilm Formation. NANOMATERIALS 2021; 11:nano11112928. [PMID: 34835692 PMCID: PMC8619489 DOI: 10.3390/nano11112928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
A novel nanomaterial Bacitracin-Ag Nanoclusters (Bacitracin-AgNCs) was formed to achieve a better antibacterial effect on Shigella flexneri which poses a serious threat to human health. In the current study, X-ray photoelectron spectrometer (XPS), Fourier transform infrared (FTIR), field-emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HR-TEM) and thermal gravimetric analysis (TGA) were used to characterize the properties of composited Bacitracin-AgNCs. Furthermore, the inhibitory effects of Bacitracin-AgNCs against S. flexneri were explored, and the inhibition mechanism was discussed in terms of its aspects of cell membrane ravage, ATPase activity decline and biofilm inhibition. The results reveal that the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Bacitracin-AgNCs against S. flexneri were 0.03 mg/mL and 4 mg/mL. Bacitracin-AgNCs may cause irreversible impairment to cells and greatly change the cell morphology. The cell membrane integrity of S. flexneri was destroyed with changes in the characteristics of membrane permeability and intracellular substances leakage. Moreover, our study further proved that Bacitracin-AgNCs significantly inhibited the formation of S. flexneri biofilms and reduced the number of viable bacteria in biofilm. These findings provide a potential method for the exploitation of organic composite nanomaterials as a novel antimicrobial agent and its application in the food industry.
Collapse
|
5
|
Antibiotic Resistance: From Pig to Meat. Antibiotics (Basel) 2021; 10:antibiotics10101209. [PMID: 34680790 PMCID: PMC8532907 DOI: 10.3390/antibiotics10101209] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Pork meat is in high demand worldwide and this is expected to increase. Pork is often raised in intensive conditions, which is conducive to the spread of infectious diseases. Vaccines, antibiotics, and other biosafety measures help mitigate the impact of infectious diseases. However, bacterial strains resistant to antibiotics are more and more frequently found in pig farms, animals, and the environment. It is now recognized that a holistic perspective is needed to sustainably fight antibiotic resistance, and that an integrated One Health approach is essential. With this in mind, this review tackles antibiotic resistance throughout the pork raising process, including their microbiome; many factors of their environment (agricultural workers, farms, rivers, etc.); and an overview of the impact of antibiotic resistance on pork meat, which is the end product available to consumers. Antibiotic resistance, while a natural process, is a public health concern. If we react, and act, collectively, it is expected to be, at least partially, reversible with judicious antibiotic usage and the development of innovative strategies and tools to foster animal health.
Collapse
|
6
|
Nisa I, Qasim M, Driessen A, Nijland J, Rafiullah, Ali A, Mirza MR, Khan MA, Khan TA, Jalal A, Rahman H. Prevalence and associated risk factors of Shigella flexneri isolated from drinking water and retail raw foods in Peshawar, Pakistan. J Food Sci 2021; 86:2579-2589. [PMID: 34056725 DOI: 10.1111/1750-3841.15777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Abstract
This study was designed to investigate the prevalence and associated risk factors of Shigella flexneri isolated from drinking water and retail raw food samples in Peshawar, Pakistan. A total of 1,020 different samples were collected from various areas of Peshawar between January 2016 and May 2017, followed by identification of S. flexneri through biochemical, serological, and 16S rRNA gene sequencing. Potential risk factors associated with the development and spreading of S. flexneri infection were also investigated. Overall, 45 (4.41%) samples were positive for Shigella species. Among these samples, the predominant species was S. flexneri (n = 44) followed by S. boydii (n = 1). Interestingly, S. sonnei and S. dysenteriae isolates were not found in any sample. The isolation rate of S. flexneri in drinking water samples, market raw milk, and fruits/vegetables from Peshawar were 6.47%, 3.5%, and 2.9%, respectively. The phylogenetic reconstruction showed genetic diversity among three clades, as clades I and II have isolates of S. flexneri that were circulating within the drinking water, milk, fruits/vegetables, while clade III isolates were recovered from milk samples. Most of S. flexneri were detected in June to September. Potential risk factors of S. flexneri were water sources contaminated by toilet wastes (p = 0.04), surface water drainage (p = 0.0002), hospital wastes (p = 0.01), unhygienic handling (p < 0.05), and transportation of raw food (p = 0.04). In conclusion, S. flexneri isolates of closely related lineage originating from non-clinical samples might be associated with an increased human risk to shigellosis in Pakistan, as significant numbers of S. flexneri were observed in the drinking water and retail raw food samples. PRACTICAL APPLICATION: This study demonstrated the presence of S. flexneri in drinking water and retail raw food samples which seem to possess a serious threat to public health. Potential sources of food and water contamination should properly be monitored by public health authorities to reduce cases of shigellosis.
Collapse
Affiliation(s)
- Iqbal Nisa
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Arnold Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, Institute, Rijksuniversiteit Groningen Faculty of Science and Engineering, Groningen, The Netherland
| | - Jeroen Nijland
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, Institute, Rijksuniversiteit Groningen Faculty of Science and Engineering, Groningen, The Netherland
| | - Rafiullah
- Bacteriology Laboratory Center of Microbiology and Bacteriology (CMB) Veterinary Research Institute, Peshawar, Pakistan
| | - Anwar Ali
- Bacteriology Laboratory Center of Microbiology and Bacteriology (CMB) Veterinary Research Institute, Peshawar, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Mirza Ali Khan
- Bacteriology Laboratory Center of Microbiology and Bacteriology (CMB) Veterinary Research Institute, Peshawar, Pakistan
| | - Taj Ali Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Abdullah Jalal
- Institute of Biotechnology and Genetic Engineering (IBGE), Peshawar, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
7
|
Fan Q, Yuan Y, Jia H, Zeng X, Wang Z, Hu Z, Gao Z, Yue T. Antimicrobial and anti-biofilm activity of thymoquinone against Shigella flexneri. Appl Microbiol Biotechnol 2021; 105:4709-4718. [PMID: 34014346 DOI: 10.1007/s00253-021-11295-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Shigella flexneri (Sh. flexneri), a common foodborne pathogen, has become one of the main threats to food safety and human health due to its high pathogenicity and persistent infection. The objective of this study was to explore the antimicrobial and anti-biofilm activities and the possible mechanism of thymoquinone (TQ) against Sh. flexneri. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of TQ against Sh. flexneri were 0.4 and 0.5 mg/mL, respectively. TQ showed bactericidal activity against Sh. flexneri in culture medium and milk system. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) observations demonstrated that TQ could induce abnormal cell morphology and destroy cell membrane. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis suggested that TQ could inhibit protein synthesis in Sh. flexneri. Also, at sub-inhibitory concentrations (SICs), TQ exhibited an inhibitory effect on Sh. flexneri biofilm formation, which was confirmed by crystal violet quantitative analysis and SEM observation. Real-time quantitative PCR (RT-qPCR) analyses revealed that TQ downregulated the expression of genes involved in Sh. flexneri biofilm formation. Thus, TQ has potential as a natural antimicrobial and anti-biofilm agent to address the contamination and infection caused by Sh. flexneri. KEY POINTS: • Antimicrobial and anti-biofilm activity of TQ on Shigella flexneri were investigated. • TQ inhibited biofilm formation by Shigella flexneri. • TQ provided a new strategy for Shigella flexneri control.
Collapse
Affiliation(s)
- Qiuxia Fan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xuejun Zeng
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhongqiu Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China. .,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China. .,College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
8
|
Kang J, Liu L, Liu Y, Wang X. Ferulic Acid Inactivates Shigella flexneri through Cell Membrane Destructieon, Biofilm Retardation, and Altered Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7121-7131. [PMID: 32588628 DOI: 10.1021/acs.jafc.0c01901] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance and capacity for biofilm formation of Shigella flexneri render previous prevention and control strategies minimally effective. Ferulic acid (FA) has been demonstrated to be useful due to its application in foods as an alternative natural preservative. However, information regarding the S. flexneri phenotype and molecular responses to FA exposure is limited. The present study investigated the effects of FA on S. flexneri planktonic growth and biofilm formation. The results demonstrated that the cell membrane of S. flexneri in planktonic growth mode exhibited irreversible destruction after FA exposure, as characterized by decreased cell viability, leakage of cytoplasmic constituents, accelerated adenosine triphosphate (ATP) consumption, cell membrane depolarization, and cellular morphological changes. FA significantly inhibited S. flexneri adhesion and biofilm formation at a working concentration (1/8 MIC) that almost did not inhibit planktonic growth. Transcriptomics profiling showed that the exposure to a subinhibitory concentration of FA dramatically altered gene expression in the S. flexneri biofilm, as a total of 169 differentially expressed genes (DEGs) were upregulated and 533 DEGs were downregulated, compared to the intact biofilm. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the DEGs were mainly involved in pathways of ribosomes, ABC transporters, and the citrate cycle. Furthermore, we show that FA altered the transcription of S. flexneri genes associated with adhesion, transcriptional regulation, and the synthesis and transport of extracellular polymeric substances that contribute to biofilm formation. These data provide novel insights into S. flexneri behavioral responses to FA exposure and suggest that FA could effectively constrain S. flexneri and its biofilm formation.
Collapse
Affiliation(s)
- Jiamu Kang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Liu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
9
|
Nisa I, Qasim M, Driessen A, Nijland J, Bari F, Haroon M, Rahman H, Yasin N, Khan TA, Hussain M, Ullah W. Molecular epidemiology of Shigella flexneri isolated from pediatrics in a diarrhea-endemic area of Khyber Pakhtunkhwa, Pakistan. Eur J Clin Microbiol Infect Dis 2020; 39:971-985. [PMID: 31938959 DOI: 10.1007/s10096-020-03811-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
Shigella flexneri is considered as an important causative agent of Shigellosis causing diarrhea in the countries with a low socioeconomic status. No study has been carried out on the molecular prevalence of S. flexneri in Khyber Pakhtunkhwa, Pakistan. So this study was designed to evaluate the molecular prevalence of S. flexneri and their associated risk factors. A total of 2014 diarrheal stool samples were collected from January 2016 to May 2017 from pediatrics patients of Khyber Pakhtunkhwa followed by identification of S. flexneri through biochemical, serological, and molecular methods. The overall prevalence of Shigella species was found to be 7.9% (n = 160). The predominant Shigella specie was S. flexneri (n = 155, 96.8%) followed by S. boydii (n = 5, 3.1%). Interestingly, no sample was found positive for S. sonnei and S. dysenteriae. The majority of Shigellosis cases occurred from June to September. Potential risk factors related with Shigellosis were unhygienic latrine usage, bad hand washing, and consumption of unhygienic food and water, and pipe leakage in the sewage system. In this study, we have observed a high number of Shigellosis cases especially those caused by S. flexneri. It is suggested that effective health awareness programs should be organized by the regional health authorities to minimize the magnitude of pediatrics Shigellosis.
Collapse
Affiliation(s)
- Iqbal Nisa
- Department of Microbiology, Kohat University of Science and Technology, Kohat, 26000, Pakistan
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology, Kohat, 26000, Pakistan.
| | - Arnold Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences, and Biotechnology Institute, Faculty of Science and Engineering, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Jeroen Nijland
- Department of Molecular Microbiology, Groningen Biomolecular Sciences, and Biotechnology Institute, Faculty of Science and Engineering, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Fazli Bari
- Department of Pathology, Lady Reading Hospital, Peshawar, Pakistan.,Department of Microbiology, Nowshera Medical College, Nowshera, Pakistan
| | - Mohammad Haroon
- Department of Medicine, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| | - Nusrat Yasin
- Department of Microbiology, Kohat University of Science and Technology, Kohat, 26000, Pakistan
| | - Taj Ali Khan
- Department of Microbiology, Kohat University of Science and Technology, Kohat, 26000, Pakistan
| | - Mubbashir Hussain
- Department of Microbiology, Kohat University of Science and Technology, Kohat, 26000, Pakistan
| | - Waheed Ullah
- Department of Microbiology, Kohat University of Science and Technology, Kohat, 26000, Pakistan
| |
Collapse
|