1
|
Oladeinde A, Chung T, Mou C, Rothrock MJ, Li G, Adeli A, Looft T, Woyda R, Abdo Z, Lawrence JP, Cudnik D, Zock G, Teran J, Li X. Broiler litter moisture and trace metals contribute to the persistence of Salmonella strains that harbor large plasmids carrying siderophores. Appl Environ Microbiol 2025; 91:e0138824. [PMID: 40079597 PMCID: PMC12016502 DOI: 10.1128/aem.01388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Broiler litter sampling has proven to be an effective method for determining the Salmonella status of a broiler chicken flock and understanding the ecology of Salmonella prior to harvest. In this study, we investigated the ecology of Salmonella within the litter (n = 224) from two commercial broiler houses in the United States. We employed culture enrichment methods and quantitative polymerase chain reaction to determine the prevalence and load of Salmonella and utilized antimicrobial susceptibility testing and whole-genome sequencing (WGS) to characterize select isolates. Additionally, we applied machine learning algorithms and in vitro experiments to identify environmental selective pressures that may contribute to the persistence of Salmonella in litter. Our findings indicate that the prevalence and abundance of Salmonella in broiler litter are influenced by the downtime between flocks as well as by the flock raised on the litter. A Decision Tree Classifier model developed demonstrated that the moisture in the caked part of litter was the most influential environmental parameter for predicting the prevalence of viable Salmonella. WGS analysis revealed that Typhimurium, Infantis, and Kentucky strains that harbored large self-conjugative plasmids encoding fitness factors for iron siderophore production were the dominant Salmonella population found in litter, and exposure to iron-limiting and copper-enriched culture media affected Salmonella growth. Our results suggest that trace metals may select for siderophores harbored on plasmids, and interventions that reduce litter moisture can potentially curtail the persistence of Salmonella in pre-harvest environments.IMPORTANCEBroiler chicken meat is the most consumed protein worldwide, and global poultry imports are projected to reach 17.5 million tons by 2031. To raise billions of chickens, litter is reused multiple times by the top global producers and exporters of chicken (Brazil and the United States). Chickens are in continuous contact with litter and depend on it for warmth and coprophagy. Consequently, litter serves as a major route for pathogens such as Salmonella to infect chickens, making it crucial to understand the environmental and genetic selective pressures that might explain why certain Salmonella strains persist on broiler farms more than others. In this study, we demonstrated that Salmonella strains that harbored siderophores on large conjugative plasmids persisted in litter and suggested that reducing litter moisture would significantly control Salmonella prevalence. However, a complete eradication of persisting Salmonella strains will require novel, innovative, and multifaceted approaches.
Collapse
Affiliation(s)
| | - Taejung Chung
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
- SCINet Program, ARS AI Center of Excellence, Office of National Programs, USDA Agricultural Research Service, Beltsville, Maryland, USA
| | - Connie Mou
- Danisco Animal Nutrition & Health (IFF), Cedar Rapids, Iowa, USA
| | | | - Guoming Li
- Department of Poultry Science, University of Georgia, Athens, Georgia, USA
| | - Ardeshir Adeli
- Genetics and Sustainable Agriculture Research, USDA-ARS, Mississippi State, Mississippi, USA
| | - Torey Looft
- National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Denice Cudnik
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| | - Gregory Zock
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| | - Jose Teran
- College of Civil Engineering, University of Georgia, Athens, Georgia, USA
| | - Xiang Li
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| |
Collapse
|
2
|
Matović K, Galić N, Vidanović D, Šekler M, Dmitrić M, Vasković N, Debeljak Z, Tešović B, Simović A, Bošnjak I, Krnjaić D, Linde J, Methner U. Whole-genome sequence of Salmonella enterica subsp. diarizonae serovar 17: l,v:z: a new serovar isolated from a nose-horned viper in Republic of Serbia. Microbiol Resour Announc 2025; 14:e0117424. [PMID: 39882874 PMCID: PMC11895451 DOI: 10.1128/mra.01174-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
We report the draft genome sequence of Salmonella enterica subsp. diarizonae serovar 17: l,v:z isolated from a nose-horned viper (Vipera ammodytes) in Republic of Serbia which might be considered a new serovar of Salmonella.
Collapse
Affiliation(s)
| | - Natasa Galić
- Institute of Public Health of Serbia Dr Milan Jovanovic Batut, Belgrade, Serbia
| | | | - Milanko Šekler
- Veterinary Specialized Institute Kraljevo, Kraljevo, Serbia
| | - Marko Dmitrić
- Veterinary Specialized Institute Kraljevo, Kraljevo, Serbia
| | | | - Zoran Debeljak
- Veterinary Specialized Institute Kraljevo, Kraljevo, Serbia
| | - Bojana Tešović
- Veterinary Specialized Institute Kraljevo, Kraljevo, Serbia
| | | | - Ivan Bošnjak
- Academy of Applied Preschool Teaching and Health Studies Kruševac—Ćuprija Department, Ćuprija, Serbia
| | - Dejan Krnjaić
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|
3
|
Costa-Ribeiro A, Lamas A, Garrido-Maestu A. Evaluating Commercial Loop-Mediated Isothermal Amplification Master Mixes for Enhanced Detection of Foodborne Pathogens. Foods 2024; 13:1635. [PMID: 38890864 PMCID: PMC11172173 DOI: 10.3390/foods13111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Loop-mediated isothermal amplification, LAMP, is nowadays the most popular isothermal nucleic acid amplification technique, and as such, several commercial, ready-to-use master mixes have flourished. Unfortunately, independent studies to determine their performance are limited. The current study performed an independent evaluation of the existing ready-to-use commercial LAMP master mixes WarmStart® LAMP Kit, LavaLAMP™ DNA Master Mix, Saphir Bst Turbo GreenMaster, OptiGene Fast Master Mix ISO-004, and SynLAMP Mix. To reduce bias, three different genes, namely ttr (Salmonella spp.), rfbE (E. coli O157), and hly (Listeria monocytogenes), were targeted. The comparison was based on amplification speed, performance with decreasing DNA concentrations, and the effect of five typical LAMP reaction additives (betaine, DMSO, pullulan, TMAC, and GuHCl). Significant differences were observed among the different master mixes. OptiGene provided the fastest amplification and showed less detrimental effects associated with the supplements evaluated. Out of the chemicals tested, pullulan provided the best results in terms of amplification speed. It is noteworthy that the different additives impacted the master mixes differently. Overall, the current study provides insights into the performance of commercial LAMP master mixes, which can be of value for the scientific community to better select appropriate reagents when developing new methods.
Collapse
Affiliation(s)
- Ana Costa-Ribeiro
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Alexandre Lamas
- Food Hygiene, Inspection and Control Laboratory (Lhica), Department of Analytical Chemistry, Nutrition and Bromatology, Veterinary School, Campus Terra, University of Santiago de Compostela (USC), 27002 Lugo, Spain;
| | - Alejandro Garrido-Maestu
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
- Laboratory of Microbiology and Technology of Marine Products (MicroTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain
| |
Collapse
|
4
|
Delgado E, Katchman B, Stice S, Calle A. Independent evaluation of a DNA microarray system for Salmonella detection in ground beef. Food Microbiol 2024; 118:104406. [PMID: 38049268 DOI: 10.1016/j.fm.2023.104406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 12/06/2023]
Abstract
A new DNA microarray test kit has been developed to detect foodborne pathogens in various food matrices. This study focuses on evaluating the PathogenDx microarray-based system to detect Salmonella in ground beef and verify critical parameters that could interfere with the method's effectiveness, such as enrichment incubation time, ground beef fat content, inclusivity, exclusivity, and analytical sensitivity. Sample preparation protocols were evaluated at 6, 8, 12, 18, and 24 h enrichment times at varying bacterial levels to identify optimal conditions to detect the invA gene using the PathogenDx microarray. An 8 h enrichment step was selected based on 100% detection when initial inoculum levels were ≥5 CFU/g, and fractional detection was achieved when the concentration was as low as 1 CFU/g. Thus, the detection of Salmonella using the PathogenDx microarray system can be conducted in 12.5 h, including sample preparation, labeling PCR, hybridization, and analysis. Regarding fat content, there was no significant difference in detection rates of PathogenDx protocol among the highest and lowest commercially sold lean-to-fat ratios of ground beef. Inclusivity and exclusivity experiments showed that Salmonella was correctly identified 100% of the time. Using the ground beef matrix, PathogenDx method is comparable to the United States Department of Agriculture's Microbiology Laboratory Guidebook methodology for detection, which correctly identified Salmonella in 100% of the samples. Salmonella was detected between 93.33 and 100% when ground beef was inoculated with 1 and 5 CFU/g, respectively.
Collapse
Affiliation(s)
- Emily Delgado
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, 79106, USA
| | | | | | - Alexandra Calle
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, 79106, USA.
| |
Collapse
|
5
|
Fang Z, Zhou X, Wang X, Shi X. Development of a 3-plex droplet digital PCR for identification and absolute quantification of Salmonella and its two important serovars in various food samples. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Whole genome sequencing and protein structure analyses of target genes for the detection of Salmonella. Sci Rep 2021; 11:20887. [PMID: 34686701 PMCID: PMC8536731 DOI: 10.1038/s41598-021-00224-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/07/2021] [Indexed: 12/04/2022] Open
Abstract
Rapid and sensitive detection of Salmonella is a critical step in routine food quality control, outbreak investigation, and food recalls. Although various genes have been the targets in the design of rapid molecular detection methods for Salmonella, there is limited information on the diversity of these target genes at the level of DNA sequence and the encoded protein structures. In this study, we investigated the diversity of ten target genes (invA, fimA, phoP, spvC, and agfA; ttrRSBCA operon including 5 genes) commonly used in the detection and identification of Salmonella. To this end, we performed whole genome sequencing of 143 isolates of Salmonella serotypes (Enteritidis, Typhimurium, and Heidelberg) obtained from poultry (eggs and chicken). Phylogenetic analysis showed that Salmonella ser. Typhimurium was more diverse than either Enteritidis or Heidelberg. Forty-five non-synonymous mutations were identified in the target genes from the 143 isolates, with the two most common mutations as T ↔ C (15 times) and A ↔ G (13 times). The gene spvC was primarily present in Salmonella ser. Enteritidis isolates and absent from Heidelberg isolates, whereas ttrR was more conserved (0 non-synonymous mutations) than ttrS, ttrB, ttrC, and ttrA (7, 2, 2, and 7 non-synonymous mutations, respectively). Notably, we found one non-synonymous mutation (fimA-Mut.6) across all Salmonella ser. Enteritidis and Salmonella ser. Heidelberg, C → T (496 nt postion), resulting in the change at AA 166 position, Glutamine (Q) → Stop condon (TAG), suggesting that the fimA gene has questionable sites as a target for detection. Using Phyre2 and SWISS-MODEL software, we predicted the structures of the proteins encoded by some of the target genes, illustrating the positions of these non-synonymous mutations that mainly located on the α-helix and β-sheet which are key elements for maintaining the conformation of proteins. These results will facilitate the development of sensitive molecular detection methods for Salmonella.
Collapse
|
7
|
Advancement in Salmonella Detection Methods: From Conventional to Electrochemical-Based Sensing Detection. BIOSENSORS-BASEL 2021; 11:bios11090346. [PMID: 34562936 PMCID: PMC8468554 DOI: 10.3390/bios11090346] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Large-scale food-borne outbreaks caused by Salmonella are rarely seen nowadays, thanks to the advanced nature of the medical system. However, small, localised outbreaks in certain regions still exist and could possess a huge threat to the public health if eradication measure is not initiated. This review discusses the progress of Salmonella detection approaches covering their basic principles, characteristics, applications, and performances. Conventional Salmonella detection is usually performed using a culture-based method, which is time-consuming, labour intensive, and unsuitable for on-site testing and high-throughput analysis. To date, there are many detection methods with a unique detection system available for Salmonella detection utilising immunological-based techniques, molecular-based techniques, mass spectrometry, spectroscopy, optical phenotyping, and biosensor methods. The electrochemical biosensor has growing interest in Salmonella detection mainly due to its excellent sensitivity, rapidity, and portability. The use of a highly specific bioreceptor, such as aptamers, and the application of nanomaterials are contributing factors to these excellent characteristics. Furthermore, insight on the types of biorecognition elements, the principles of electrochemical transduction elements, and the miniaturisation potential of electrochemical biosensors are discussed.
Collapse
|
8
|
Kreitlow A, Becker A, Schotte U, Malorny B, Plötz M, Abdulmawjood A. Establishment and validation of a loop-mediated isothermal amplification (LAMP) assay targeting the ttrRSBCA locus for rapid detection of Salmonella spp. in food. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Lin L, Zheng Q, Lin J, Yuk HG, Guo L. Immuno- and nucleic acid-based current technique for Salmonella detection in food. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-019-03423-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|