1
|
Du Y, Tian Q, Kuang X, Deng Y, Jiang Y, Yi J. Advanced application of alkaline/basic electrolyzed water in the food and agriculture industry as cleaning, processing, preserving, and functional agents. Compr Rev Food Sci Food Saf 2025; 24:e70129. [PMID: 39898905 DOI: 10.1111/1541-4337.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 02/04/2025]
Abstract
With a growing emphasis on sustainable and eco-friendly technologies, the food industry is actively seeking innovative solutions to improve safety, quality, and operational efficiency. Alkaline/basic electrolyzed water (ALEW/BEW), produced through the electrochemical dissociation of water and salts, presents a promising alternative that minimizes environmental impact while enhancing hygiene and safety standards. While prior studies have explored its individual applications, comprehensive reviews specifically examining ALEW/BEW within food systems are scarce. This review aims to fill the gap in current research by providing a comprehensive analysis of the latest developments in ALEW/BEW applications across food processing, preservation, and agriculture. It highlights the significant advancements in ALEW/BEW's role in decontamination, pesticide residue removal, bioactive compound extraction, and shelf-life extension, distinguishing it from other sanitation technologies. Distinct from previous work, this review delves into ALEW/BEW's overlooked health benefits, including enhancing gut health, circulation, oral hygiene, and reducing oxidative stress. It also explores its potential in sustainable agriculture, focusing on soil pH, crop resistance, and livestock health. While acknowledging challenges such as instability, corrosion, and regulatory barriers, this review offers a forward-looking perspective on overcoming these issues. By synthesizing the latest research, this review contributes a new, integrated understanding of ALEW/BEW's role in food safety, quality, sustainability, and human health, offering valuable insights for academia and industry.
Collapse
Affiliation(s)
- Yanlin Du
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming University of Science and Technology, Kunming, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming University of Science and Technology, Kunming, China
| | - Qi Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming University of Science and Technology, Kunming, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming University of Science and Technology, Kunming, China
| | - Xiangmin Kuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming University of Science and Technology, Kunming, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming University of Science and Technology, Kunming, China
| | - Yishu Deng
- College of Architecture and Engineering, Yunnan Agricultural University, Kunming, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming University of Science and Technology, Kunming, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming University of Science and Technology, Kunming, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming University of Science and Technology, Kunming, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
2
|
Zhang Y, Zhang T, Yang T, Xie X, Chen Y. Alkaline electrolyzed water-assisted ultrasonic extraction of lutein from daylily (Hemerocallis spp.): Structural preservation and activity evaluation. Food Chem 2025; 463:141334. [PMID: 39312830 DOI: 10.1016/j.foodchem.2024.141334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
During lutein extraction, isomerization from all-trans to cis form reduced stability and antioxidant capacity. Alkaline electrolyzed water (AEW), with its reduced-state and small molecular clusters, effectively extracted bioactive substances and inhibited oxidation. Thus, an AEW-assisted ultrasonic extraction method was used to extract lutein from daylily. Compared to ultrasonic extraction alone, AEW treatment increased the lutein yield by 60 %. Structural analysis confirmed the preservation of all-trans lutein by AEW. Assess AEW extraction's impact on lutein's bioactivity by examining its protection against blue light cell damage. The results showed that that lutein extracted using AEW exhibited enhanced antioxidant capacity, significantly boosting the viability of ARPE-19 cells and the activity of intracellular antioxidant enzymes, thereby mitigating oxidative stress damage to the retina caused by blue light exposure. This study provided an effective method for efficiently extracting bioactive substances and preventing the impact of the extraction process on their structure and function.
Collapse
Affiliation(s)
- Yifu Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tiantian Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tongliang Yang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixian Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ye Chen
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Boateng ID, Clark K. Trends in extracting Agro-byproducts' phenolics using non-thermal technologies and their combinative effect: Mechanisms, potentials, drawbacks, and safety evaluation. Food Chem 2024; 437:137841. [PMID: 37918151 DOI: 10.1016/j.foodchem.2023.137841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
The agro-food industries generate significant waste with adverse effects. However, these byproducts are rich in polyphenols with diverse bioactivities. Innovative non-thermal extraction (NTE) technologies (Naviglio extractor®, cold plasma (CP), high hydrostatic pressure (HHP), pulse-electric field (PEF), ultrasound-assisted extraction (UAE), etc.) and their combinative effect (integrated UAE + HPPE, integrated PEF + enzyme-assisted extraction, etc.) could improve polyphenolic extraction. Hence, this article comprehensively reviewed the mechanisms, applications, drawbacks, and safety assessment of emerging NTE technologies and their combinative effects in the last 5 years, emphasizing their efficacy in improving agro-byproduct polyphenols' extraction. According to the review, incorporating cutting-edge NTE might promote the extraction ofmore phenolic extractfrom agro-byproducts due to numerous benefits,such as increased extractability,preserved thermo-sensitive phenolics, and low energy consumption. The next five years should investigate combined novel NTE technologies as they increase extractability. Besides, more research must be done on extracting free and bound phenolics, phenolic acids, flavonoids, and lignans from agro by-products. Finally, the safety of the extraction technology on the polyphenolic extract needs a lot of studies (in vivo and in vitro), and their mechanisms need to be explored.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America; Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America; Kumasi Cheshire Home, Off Edwenase Road, Kumasi, Ghana.
| | - Kerry Clark
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
4
|
Anoopkumar AN, Aneesh EM, Sirohi R, Tarafdar A, Kuriakose LL, Surendhar A, Madhavan A, Kumar V, Awasthi MK, Binod P, Sindhu R. Bioactives from citrus food waste: types, extraction technologies and application. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:444-458. [PMID: 38327864 PMCID: PMC10844169 DOI: 10.1007/s13197-023-05753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 02/09/2024]
Abstract
The Citrus fruits belong to the category where the groups of fruits are recognized to be an admirable repository of bioactive elements and phytochemical constituents, with strong biological potentials. The prominent use of Citrus fruits for nutrition as well as food processing has led to the release of a large amount of waste into the environment and surrounding, and it simultaneously burdens the nature and existence of many organisms including the human population. In order to rectify such consequences, the reuse of food waste from citrus for various advantageous effects. In this regard, the first part of the article primarily focussed on the various strategies available for the extraction of chemical elements from citrus waste and the remaining strand of the article focussed on the various bioactive compounds with special reference to their pharmacological as well as the medicinal benefits and future prospects. Graphical abstract
Collapse
Affiliation(s)
- A. N. Anoopkumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala India
| | - Embalil Mathachan Aneesh
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248 001 India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| | - Laya Liz Kuriakose
- Department of Food Technology, T K M Institute of Technology, Kollam, Kerala 691505 India
| | - A. Surendhar
- Department of Food Technology, T K M Institute of Technology, Kollam, Kerala 691505 India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525 India
| | - Vinod Kumar
- Fermentation Technology Division, CSIR- Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, UT of Jammu and Kashmir 180 001 India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712 100 Shaanxi China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, Kerala 691505 India
| |
Collapse
|
5
|
Durmus N, Kilic-Akyilmaz M. Bioactivity of non-extractable phenolics from lemon peel obtained by enzyme and ultrasound assisted extractions. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
6
|
Flavonoid Components, Distribution, and Biological Activities in Taxus: A review. Molecules 2023; 28:molecules28041713. [PMID: 36838700 PMCID: PMC9959731 DOI: 10.3390/molecules28041713] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Taxus, also known as "gold in plants" because of the famous agents with emphases on Taxol and Docetaxel, is a genus of the family Taxaceae, distributed almost around the world. The plants hold an important place in traditional medicine in China, and its products are used for treating treat dysuria, swelling and pain, diabetes, and irregular menstruation in women. In order to make a further study and better application of Taxus plants for the future, cited references from between 1958 and 2022 were collected from the Web of Science, the China National Knowledge Internet (CNKI), SciFinder, and Google Scholar, and the chemical structures, distribution, and bioactivity of flavonoids identified from Taxus samples were summed up in the research. So far, 59 flavonoids in total with different skeletons were identified from Taxus plants, presenting special characteristics of compound distribution. These compounds have been reported to display significant antibacterial, antiaging, anti-Alzheimer's, antidiabetes, anticancer, antidepressant, antileishmaniasis, anti-inflammatory, antinociceptive and antiallergic, antivirus, antilipase, neuronal protective, and hepatic-protective activities, as well as promotion of melanogenesis. Flavonoids represent a good example of the utilization of the Taxus species. In the future, further pharmacological and clinical experiments for flavonoids could be accomplished to promote the preparation of relative drugs.
Collapse
|
7
|
Integration of pressurized liquid extraction and in-line solid-phase extraction to simultaneously extract and concentrate phenolic compounds from lemon peel (Citrus limon L.). Food Res Int 2022; 157:111252. [DOI: 10.1016/j.foodres.2022.111252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/17/2023]
|
8
|
Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, Battino M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem 2021; 378:131918. [PMID: 35085901 DOI: 10.1016/j.foodchem.2021.131918] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Agro-foodindustries generate colossal amounts of non-edible waste and by-products, easily accessible as raw materials for up-cycling active phytochemicals. Phenolic compounds are particularly relevant in this field given their abundance in plant residues and the market interest of their functionalities (e.g. natural antioxidant activity) as part of nutraceutical, cosmetological and biomedical formulations. In "bench-to-bedside" achievements, sample extraction is essential because valorization benefits from matrix desorption and solubilization of targeted phytocompounds. Specifically, the composition and polarity of the extractant, the optimal sample particle size and sample:solvent ratio, as well as pH, pressure and temperature are strategic for the release and stability of mobilized species. On the other hand, current green chemistry environmental rules require extraction approaches that eliminate polluting consumables and reduce energy needs. Thus, the following pages provide an update on advanced technologies for the sustainable and efficient recovery of phenolics from plant matrices.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
| | - Tamara Forbes-Hernández
- Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-product Processing, Jiangsu University, Zhenjiang, China; Research group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
9
|
Lo Fiego MJ, Lorenzetti AS, Silbestri GF, Domini CE. The use of ultrasound in the South Cone region. Advances in organic and inorganic synthesis and in analytical methods. ULTRASONICS SONOCHEMISTRY 2021; 80:105834. [PMID: 34814046 PMCID: PMC8608658 DOI: 10.1016/j.ultsonch.2021.105834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/30/2021] [Accepted: 11/13/2021] [Indexed: 05/25/2023]
Abstract
In organic and inorganic synthesis and in analytical methods, an external conventional heat source is usually applied to carry out a chemical reaction at a high temperature, or an extraction procedure. In the last decades, the use of ultrasound as an alternative energy source has become an interesting field of research in these topics in the South Cone region (Argentina, Chile, Uruguay, Southern Brazil and Paraguay). For this reason, the present review, covering the period 2009 to mid-2021, is a compilation of ultrasound-assisted synthetic and analytical methodologies.
Collapse
Affiliation(s)
- Marcos J Lo Fiego
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - Anabela S Lorenzetti
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - Gustavo F Silbestri
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca 8000, Argentina.
| | - Claudia E Domini
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca 8000, Argentina.
| |
Collapse
|
10
|
Dias MC, Pinto DCGA, Silva AMS. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021; 26:molecules26175377. [PMID: 34500810 PMCID: PMC8434187 DOI: 10.3390/molecules26175377] [Citation(s) in RCA: 535] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, more attention has been paid to natural sources of antioxidants. Flavonoids are natural substances synthesized in several parts of plants that exhibit a high antioxidant capacity. They are a large family, presenting several classes based on their basic structure. Flavonoids have the ability to control the accumulation of reactive oxygen species (ROS) via scavenger ROS when they are formed. Therefore, these antioxidant compounds have an important role in plant stress tolerance and a high relevance in human health, mainly due to their anti-inflammatory and antimicrobial properties. In addition, flavonoids have several applications in the food industry as preservatives, pigments, and antioxidants, as well as in other industries such as cosmetics and pharmaceuticals. However, flavonoids application for industrial purposes implies extraction processes with high purity and quality. Several methodologies have been developed aimed at increasing flavonoid extraction yield and being environmentally friendly. This review presents the most abundant natural flavonoids, their structure and chemical characteristics, extraction methods, and biological activity.
Collapse
Affiliation(s)
- Maria Celeste Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
- Correspondence: ; Tel.: +351-239-240-752
| | - Diana C. G. A. Pinto
- LAQV/REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| | - Artur M. S. Silva
- LAQV/REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| |
Collapse
|
11
|
Souza MC, Silva LC, Chaves JO, Salvador MP, Sanches VL, da Cunha DT, Foster Carneiro T, Rostagno MA. Simultaneous extraction and separation of compounds from mate ( Ilex paraguariensis) leaves by pressurized liquid extraction coupled with solid-phase extraction and in-line UV detection. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 2:100008. [PMID: 35415638 PMCID: PMC8991615 DOI: 10.1016/j.fochms.2020.100008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 12/19/2020] [Indexed: 11/25/2022]
Abstract
pH and temperature are the main variables affecting recovery and separation. The selection of the adsorbent is critical for the recovery of less polar compounds. Excellent separation of compounds in different fractions was achieved. The use of a UV–Vis detector allowed monitoring the process in real-time. The developed method provided higher recoveries than conventional methods.
The in-line coupling of the pressurized liquid extraction with a solid-phase adsorbent and a UV–Vis detector for the simultaneous extraction and separation of bioactive compounds from yerba mate (PLE-SPE-UV) was carried out in two stages. In the first stage, water was used as a solvent, while in the second stage, ethanol was used. For the optimization of the method, different adsorbents (Sepra C18-E, Isolute C18-EC, and Strata-X C18), temperatures (40–80 °C), solvent flow-rate (1–3 mL/min), and pH (4.0 and 8.0) were evaluated. By using a UV–Vis detector on-line, it is possible to monitor the process in real-time. The developed method allowed obtaining similar or higher recoveries of all the compounds classes than other methods, such as ultrasound-assisted extraction, stirring, maceration, and pressurized liquid extraction alone, in addition to separating them into fractions. The developed method could be used as sample preparation for the analysis of different compounds classes from mate.
Collapse
Affiliation(s)
- Mariana C Souza
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Laise C Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Jaisa O Chaves
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Mayara P Salvador
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Diogo T da Cunha
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Tânia Foster Carneiro
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Mauricio A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
12
|
Schenk M, Ferrario M, Schmalko M, Rivero R, Taravini I, Guerrero S. Development of extracts obtained from yerba mate leaves with different industrial processing steps: Antimicrobial capacity, antioxidant properties, and induced damage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcela Schenk
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias Universidad de Buenos Aires Buenos Aires Argentina
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ) CONICET – Universidad de Buenos Aires Buenos Aires Argentina
| | - Mariana Ferrario
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias Universidad de Buenos Aires Buenos Aires Argentina
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ) CONICET – Universidad de Buenos Aires Buenos Aires Argentina
| | - Miguel Schmalko
- Facultad de Ciencias Químicas, Exactas y Naturales Universidad Nacional de Misiones Posadas Argentina
| | - Roy Rivero
- Facultad de Bromatología Universidad Nacional de Entre Ríos Gualeguaychú Argentina
| | - Irene Taravini
- Facultad de Bromatología Universidad Nacional de Entre Ríos Gualeguaychú Argentina
| | - Sandra Guerrero
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias Universidad de Buenos Aires Buenos Aires Argentina
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ) CONICET – Universidad de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
13
|
Chaves JO, de Souza MC, da Silva LC, Lachos-Perez D, Torres-Mayanga PC, Machado APDF, Forster-Carneiro T, Vázquez-Espinosa M, González-de-Peredo AV, Barbero GF, Rostagno MA. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front Chem 2020; 8:507887. [PMID: 33102442 PMCID: PMC7546908 DOI: 10.3389/fchem.2020.507887] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Flavonoids are one of the main groups of polyphenols found in natural products. Traditional flavonoid extraction techniques are being replaced by advanced techniques to reduce energy and solvent consumption, increase efficiency and selectivity, to meet increased market demand and environmental regulations. Advanced technologies, such as microwaves, ultrasound, pressurized liquids, supercritical fluids, and electric fields, are alternatives currently being used. These modern techniques are generally faster, more environmentally friendly, and with higher automation levels compared to conventional extraction techniques. This review will discuss the different methods available for flavonoid extraction from natural sources and the main parameters involved (temperature, solvent, sample quantity, extraction time, among others). Recent trends and their industrial importance are also discussed in detail, providing insight into their potential. Thus, this paper seeks to review the innovations of compound extraction techniques, presenting in each of them their advantages and disadvantages, trying to offer a broader scope in the understanding of flavonoid extraction from different plant matrices.
Collapse
Affiliation(s)
- Jaísa Oliveira Chaves
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Mariana Corrêa de Souza
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Laise Capelasso da Silva
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Daniel Lachos-Perez
- Laboratory of Optimization, Design and Advanced Control - Bioenergy Research Program, School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | - Paulo César Torres-Mayanga
- School of Food Engineering, University of Campinas, Campinas, Brazil
- Facultad de Ingeniería, Universidad Nacional Micaela Bastidas de Apurímac, Abancay, Peru
| | | | | | | | | | | | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
14
|
Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res Int 2020; 132:109114. [PMID: 32331689 DOI: 10.1016/j.foodres.2020.109114] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023]
Abstract
Citrus peel (CP) forms around 40-50% of the total fruit mass but is generally thought to be a waste. However, it is a substantial source of naturally occurring health enhancing compounds, particularly phenolic compounds and carotenoids. Phenolic compounds in CP mainly comprise phenolic acids (primarily caffeic, p-coumaric, ferulic and sinapic acid), flavanones (generally naringin and hesperidin) and polymethoxylated flavones (notably nobiletin and tangeretin). It has also been noted that CP's contain more amounts of these compounds than corresponding edible parts of the fruits. Phenolic compounds present in CP act as antioxidants (by either donation of protons or electrons) and protect cells against free radical damage as well as help in reducing the risk of many chronic diseases. Owing to the more abundance of polyphenols in CP's, their antioxidant activity is also higher than other edible fruit parts. Therefore, peels from citrus fruits can be used as sources of functional compounds and preservatives for the development of newer food products, that are not only safe but also have health-promoting activities. The present review provides in-depth knowledge about the phenolic composition, antioxidant potential and health benefits of CP.
Collapse
|