1
|
Hai A, Rambabu K, Al Dhaheri AS, Kurup SS, Banat F. Tapping into Palm Sap: Insights into extraction practices, quality profiles, fermentation chemistry, and preservation techniques. Heliyon 2024; 10:e35611. [PMID: 39170275 PMCID: PMC11336882 DOI: 10.1016/j.heliyon.2024.e35611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The quality profile, extraction yield, and fermentation chemistry of palm sap depend on various factors such as extraction technique, weather conditions, and preservation methods. This review aims to provide a detailed overview of palm sap extraction techniques and the methods for its preservation. The compositional analysis of palm sap, including physical and chemical parameters such as sugar content, acidity, and mineral composition, is discussed thoroughly. The role of microorganisms in fermentation and the effects of various influencing factors are also critically examined. Additionally, this review evaluates different preservation methods, including thermal processes, refrigeration, and electrical techniques, highlighting their effectiveness in extending the shelf life of palm sap. The review further explores the emerging impact of nanotechnology on palm sap preservation, offering insights into the latest industry challenges, developments, and future prospects. By presenting these findings, this review aims to enhance the scientific understanding of palm sap and stimulate additional research and innovation in the field, paving the way for improved production practices and product quality.
Collapse
Affiliation(s)
- Abdul Hai
- Department of Chemical and Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, United Arab Emirates
| | - K. Rambabu
- Department of Chemical and Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Ayesha S. Al Dhaheri
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Shyam S. Kurup
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical and Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
2
|
Katibi KK, Mohd Nor MZ, Yunos KFM, Jaafar J, Show PL. Strategies to Enhance the Membrane-Based Processing Performance for Fruit Juice Production: A Review. MEMBRANES 2023; 13:679. [PMID: 37505045 PMCID: PMC10383906 DOI: 10.3390/membranes13070679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Fruit juice is an essential food product that has received significant acceptance among consumers. Harmonized concentration, preservation of nutritional constituents, and heat-responsive sensorial of fruit juices are demanding topics in food processing. Membrane separation is a promising technology to concentrate juice at minimal pressure and temperatures with excellent potential application in food industries from an economical, stable, and standard operation view. Microfiltration (MF) and ultrafiltration (UF) have also interested fruit industries owing to the increasing demand for reduced pressure-driven membranes. UF and MF membranes are widely applied in concentrating, clarifying, and purifying various edible products. However, the rising challenge in membrane technology is the fouling propensity which undermines the membrane's performance and lifespan. This review succinctly provides a clear and innovative view of the various controlling factors that could undermine the membrane performance during fruit juice clarification and concentration regarding its selectivity and permeance. In this article, various strategies for mitigating fouling anomalies during fruit juice processing using membranes, along with research opportunities, have been discussed. This concise review is anticipated to inspire a new research platform for developing an integrated approach for the next-generation membrane processes for efficient fruit juice clarification.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete 23431, Nigeria
| | - Mohd Zuhair Mohd Nor
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, UPM, Serdang 43400, Selangor, Malaysia
| | - Khairul Faezah Md. Yunos
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Juhana Jaafar
- N29a, Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM Skudai, Johor Bahru 81310, Johor, Malaysia;
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| |
Collapse
|
3
|
Sarbatly R, Sariau J, Krishnaiah D. Recent Developments of Membrane Technology in the Clarification and Concentration of Fruit Juices. FOOD ENGINEERING REVIEWS 2023; 15:420-437. [PMCID: PMC10257186 DOI: 10.1007/s12393-023-09346-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/21/2023] [Indexed: 11/06/2023]
Abstract
Fruit juices are traditionally processed thermally to avoid microorganisms’ growth and increase their shelf-life. The concentration of juices by thermal evaporation is carried out to reduce their volume and consequently the storage and transportation costs. However, many studies revealed that the high-temperature operation destroys many valuable nutrients and the aroma of the juice. Currently, membrane technology has emerged as an alternative to conventional processes to clarify and concentrate fruit juices due to its ability to improve juices’ safety, quality, and nutritional values. Low-cost, low-energy requirement, and minimal footprint make membrane technology an attractive choice for industrial adoption. The low-temperature operation that preserves the nutritional and sensorial quality of the juice can fulfill the market demand for healthy juice products. In this review, the pressure-driven membrane processes, including microfiltration, ultrafiltration, and reverse osmosis; osmotic distillation; membrane distillation; and forward osmosis that have been widely investigated in recent years, are discussed.
Collapse
Affiliation(s)
- Rosalam Sarbatly
- Chemical Engineering, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400 Sabah, Malaysia
- Nanofiber and Membrane Research Laboratory, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400 Sabah, Malaysia
| | - Jamilah Sariau
- Chemical Engineering, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400 Sabah, Malaysia
| | - Duduku Krishnaiah
- Department of Chemical Engineering, University of Anurag, Hyderabad, 500088 India
| |
Collapse
|
4
|
Fabrication of Polyamide-6 Membranes—The Effect of Gelation Time towards Their Morphological, Physical, and Transport Properties. MEMBRANES 2022; 12:membranes12030315. [PMID: 35323791 PMCID: PMC8949474 DOI: 10.3390/membranes12030315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022]
Abstract
Porous polyamide-6 membranes were fabricated via a non-solvent induced phase inversion method, and the influence of gelation time on the properties of the membranes was investigated. Membrane samples with various gelation times were prepared. The evaluation of the membranes’ properties was carried out by various analyses and tests, such as scanning electron microscopy, atomic force microscopy, contact angle, wet and dry thickness, mean pore size measurements, porosity, water uptake, mechanical resistance, hydrodynamic water fluxes, membrane hydrodynamic permeability, and retention testing. The scanning electron microscopy images (both surface and cross-section) demonstrated that the increase in gelation time from 0 (M0) to 10 (M10) min led to the morphological change of membranes from isotropic (M0) to anisotropic (M10). The wet and dry thickness of the membranes showed a downward tendency with increasing gelation time. The M0 membrane exhibited the lowest bubble contact angle of 60 ± 4° and the lowest average surface roughness of 124 ± 22 nm. The highest values of mean pore size and porosity were observed for the M0 sample (0.710 ± 0.06 µm and 72 ± 2%, respectively), whereas the M10 membrane demonstrated the highest tensile strength of 4.1 MPa. The membrane water uptake was diminished from 62 to 39% by increasing the gelation time from 0 to 10 min. The M0 membrane also showed the highest hydrodynamic water flux among the prepared membranes, equal to 28.6 L m−2 h−1 (at Δp = 2 bar).
Collapse
|
5
|
Staszak K, Wieszczycka K. Membrane techniques in the production of beverages. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The most important developments in membrane techniques used in the beverage industry are discussed. Particular emphasis is placed on the production of fruit and vegetable juices and nonalcoholic drinks, including beer and wine. This choice was dictated by the observed consumer trends, who increasingly appreciate healthy food and its taste qualities.
Collapse
Affiliation(s)
- Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology , Berdychowo 4 , Poznan , Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology , Berdychowo 4 , Poznan , Poland
| |
Collapse
|