1
|
Xiang J, Li H, Guo Z, Li T, Yamada T, Li X, Bao S, Da L, Borjigin G, Cang M, Tong B. Effect of FABP4 Gene Polymorphisms on Fatty Acid Composition, Chemical Composition, and Carcass Traits in Sonid Sheep. Animals (Basel) 2025; 15:226. [PMID: 39858226 PMCID: PMC11758647 DOI: 10.3390/ani15020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Fatty acids (FAs) are a group of organic compounds that are regulated by polygenic and environmental factors and affect the taste, nutritional value, and quality of meat. Lamb meat is rich in FAs required by the human body, which has directed more attention to sheep research and meat production. The fatty acid-binding protein 4 (FABP4) gene is considered a candidate gene that can affect FA composition in livestock. Therefore, the aim of this study was to screen for genetic polymorphisms of FABP4 and confirm the association between these polymorphisms and FAs, chemical composition, and carcass traits in Sonid lambs. The results of the association study showed that g.57764667T>C, g.57764436T>G, g.57764242G>A, and g.57757988A>G were associated with the composition of certain long-chain FAs, and g.57764242G>A, g.57764436T>G, and g.57758026G>A were associated with free amino acid levels. In addition, g.57764667T>C and g.57757988A>G were associated with carcass weight and live weight in Sonid lambs. Therefore, the polymorphisms of the FABP4 gene are expected to be a genetic selection marker for superior traits in Sonid sheep breeding, which also provides new insights into how the ovine FABP4 gene affects traits of lamb quality.
Collapse
Affiliation(s)
- Jiada Xiang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Haofan Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhaoxin Guo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Terigele Li
- Inner Mongolia Agriculture Animal Husbandry Fishery and Biology Experiment Research Centre, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Takahisa Yamada
- Department of Agrobiology, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Lai Da
- Institute of Animal Science, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Ming Cang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Bin Tong
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
2
|
Zhang Y, Diao Y, Raza SHA, Huang J, Wang H, Tu W, Zhang J, Zhou J, Tan Y. Flavor characterization of pork cuts in Chalu black pigs using multi-omics analysis. Meat Sci 2025; 219:109668. [PMID: 39321667 DOI: 10.1016/j.meatsci.2024.109668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/09/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
The study investigated the flavor variations in four different fresh pork cuts (longissimus thoracis, LT; trapezius muscle, TM; hamstring muscle, HM; Pork Belly, PB) from Chalu black pigs (ten castrated boars) using multi-omics techniques. The research also explored the influence of muscle fiber type on the flavor profiles of these cuts. Results from quantitative real-time PCR (qRT-PCR) indicated significant differences in muscle fiber type across the four pork cuts in various anatomical locations. Each cut exhibited distinctive volatile organic compounds (VOCs) profiles, with HM displaying a sweet and fruity green flavor, LT showcasing a fatty and nutty taste, PB presenting a fresh, citrusy, and green flavor, and TM offering a floral and bitter note. Variations in fatty acid carbon number and saturation were observed among the cuts, with HM, LT, and PB being rich in fatty acids with C16-18, C19-21, and 3 double bonds, respectively. The metabolites specific to each cut were found to play key roles in different metabolic pathways, such as protein-related pathways for HM, arginine biosynthesis for LT, lysine biosynthesis for PB, and D-arginine and D-ornithine metabolism for TM. Differentially expressed genes (DEGs) were associated with amino acid metabolism for HM, glycolysis/gluconeogenesis for LT, and cellular aromatic compound organization for PB. Notably, HM and PB displayed unique flavor characteristics, while TM exhibited relatively neutral features. The study also identified correlations among VOCs, muscle fiber type, lipids, metabolites, and gene patterns specific to each cut, highlighting the complex interplay of factors influencing pork flavor.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| | - Yuduan Diao
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Ji Huang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Hongyang Wang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Weilong Tu
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Jiajie Zhang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jieke Zhou
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Yongsong Tan
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
3
|
Jia D, Zhang J, Jin S, Luo S, Ma Y, Quek SY, Yan D, Dong X. Changes of physicochemical and volatile flavor compounds of dry-cured Diqing Tibetan pig hams during fermentation. Food Res Int 2024; 197:115136. [PMID: 39593353 DOI: 10.1016/j.foodres.2024.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 11/28/2024]
Abstract
This study aimed to explore the flavor formation mechanism of Diqing Tibetan pig hams by investigating changes of their physicochemical and volatile flavor compounds during fermentation (0, 30, 90, 180, 360, and 540d) using amino acid analyzer , texture profile analysis, and gas chromatography-ion mobility spectroscopy (GC-IMS). During fermentation, the hams significantly decreased in moisture and centrifugal loss, while increased in chewiness, hardness, and proteolysis index, with their free amino acids content reaching the maximum at 360d and significantly decreasing at 540d. GC-IMS identified 78 volatile organic compounds, with the highest total content of alcohols and aldehydes at 180d, ketones and heterocycles at 360d, and esters at 540d. PLS-DA screened 24 volatile flavor markers, with aldehyde (2-methyl-2-propenal), ketone (2-heptanone-D), alcohol (3-methylbutanol-D), ester (ethyl3-methylbutanoate-M), and heterocyclic substances (2,3-dimethylpyrazine-M) as the main VFMs at 360d. The unique flavor of 540d Diqing Tibetan pig hams was attributed to their higher content of 3-methyl-2-butenal, 3-(methylthio) propanal, ethyl caproate and 2-butanone. These findings provide a scientific basis for the flavor formation mechanism of hams which favoring the further development processing strategies for Diqing Tibetan pig.
Collapse
Affiliation(s)
- Dan Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Siqi Jin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shuyuan Luo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Siew-Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand.
| | - Dawei Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - XinXing Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
4
|
Li C, Zheng Z, Wang G, Chen G, Zhou N, Zhong Y, Yang Y, Wu H, Yang C, Liao G. Revealing the intrinsic relationship between microbial communities and physicochemical properties during ripening of Xuanwei ham. Food Res Int 2024; 186:114377. [PMID: 38729733 DOI: 10.1016/j.foodres.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
To clarify the relationship between microorganisms and physicochemical indicators of Xuanwei ham. Six ham samples for the first, second and third year were selected, respectively. The changes of physicochemical properties, the free fatty acids and microbial communities of Xuanwei ham were investigated by GC-MS and high-throughput sequencing technology. Results showed that scores of colour, overall acceptability, texture, taste and aroma were the highest in the third year sample. With increasing ripening time, moisture content, water activity (Aw), lightness (L*), springiness, and resilience decreased continuously, and yellowness (b*) was the highest in the second year sample. 31 free fatty acids were detected, and unsaturated fatty acids such as palmitoleic acid, oleic acid, and linoleic acid were the major fatty acids. The content of palmitoleic acid, oleic acid and eicosenoic acid increased significantly during processing. At the phylum level, the dominant bacteria were Proteobacteria and Firmicutes, and fungi were Ascomycota. At the genus level, the dominant bacteria were Staphylococcus and Psychrobacter, and fungi were Aspergillus. Correlation analysis showed that water content and Aw were closely related to microorganisms, and most unsaturated fatty acids were significantly correlated with microorganisms. These findings showed that microorganisms played an important role in the quality of Xuanwei ham, and provided a scientific basis for the quality control of Xuanwei ham.
Collapse
Affiliation(s)
- Cong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhijie Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Guiying Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Guanghui Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Nannan Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yanru Zhong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuan Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongyan Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunfang Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
5
|
Li C, Zou Y, Liao G, Zheng Z, Chen G, Zhong Y, Wang G. Identification of characteristic flavor compounds and small molecule metabolites during the ripening process of Nuodeng ham by GC-IMS, GC-MS combined with metabolomics. Food Chem 2024; 440:138188. [PMID: 38100964 DOI: 10.1016/j.foodchem.2023.138188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
To investigate effects of metabolites and volatile compounds on the quality of Nuodeng ham, gas chromatography-mass spectrometry (GC-MS), ultra-high performance liquid chromatography-Q exactive orbitrap-mass spectrometry (UHPLC-QE-MS), and gas chromatography-ion transfer spectroscopy (GC-IMS) were used to analyze the differences of free fatty acids, small molecule metabolites and volatile compounds of Nuodeng ham at different ripening stages (the first, second and third year sample). 40 free fatty acids were detected. 757 and 300 metabolites were detected in positive and negative ion modes, respectively. 48 differential metabolites (VIP ≥ 1.5, P < 0.05) might important components affecting flavor differences of Nuodeng ham. Metabolic pathways revealed that fermenting-ripening of ham was associated with 31 metabolic pathways, among, 19 pathways were significant (Impact > 0.01, P < 0.05). 58 volatile compounds were identified, combined with PCA and PLS-DA, 15 flavor markers were screened out. These findings provide a scientific basis for further research on the flavor formation mechanism of Nuodeng ham.
Collapse
Affiliation(s)
- Cong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yingling Zou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| | - Zhijie Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guanghui Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yanru Zhong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guiying Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
6
|
Jia R, Yang Y, Liao G, Yang Y, Gu D, Wang G. Effect of Stewing Time on the Small Molecular Metabolites, Free Fatty Acids, and Volatile Flavor Compounds in Chicken Broth. Food Sci Anim Resour 2024; 44:651-661. [PMID: 38765279 PMCID: PMC11097019 DOI: 10.5851/kosfa.2024.e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 05/21/2024] Open
Abstract
Chicken broth has a taste of umami, and the stewing time has an important effect on the quality of chicken broth, but there are fewer studies on the control of the stewing time. Based on this, the study was conducted to analyze the effects of different stewing times on the sensory, small molecular metabolites, free fatty acids, and volatile flavor compounds contents in chicken broths by liquid chromatography-quadrupole/time-of-flight mass spectrometry, gas chromatography-mass spectrometry, headspace solid-phase microextraction, and gas chromatography-mass spectrometry. Eighty-nine small molecular metabolites, 15 free fatty acids, and 86 volatile flavor compounds were detected. Palmitic and stearic acids were the more abundant fatty acids, and aldehydes were the main volatile flavor compounds. The study found that chicken broth had the best sensory evaluation, the highest content of taste components, and the richest content of volatile flavor components when the stewing time was 2.5 h. This study investigated the effect of stewing time on the quality of chicken broth to provide scientific and theoretical guidance for developing and utilizing local chicken.
Collapse
Affiliation(s)
- Rong Jia
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yucai Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yuan Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Dahai Gu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guiying Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
7
|
Wang H, Yin X, Zhang L, Wang X, Zhang J, Wen R, Cao J. Insight into the Relationship between the Causes of Off-Odour and Microorganism Communities in Xuanwei Ham. Foods 2024; 13:776. [PMID: 38472889 PMCID: PMC10930425 DOI: 10.3390/foods13050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
To expound on the correlation between the microorganism communities and the formation of off-odour in Xuanwei ham, the microorganism communities and volatile compounds were investigated in the biceps femoris (BF) and semimembranosus (SM) of Xuanwei ham with different quality grades (normal ham and spoiled ham). The single molecule real-time sequencing showed that differential bacteria and fungi were more varied in normal hams than in spoiled hams. Headspace solid-phase microextraction-gas chromatography (HS-SPME-GC-MS) results indicated that aldehydes and alcohols were significantly higher in spoiled hams than those in normal hams (p < 0.05). The off-odour of spoiled hams was dominated by ichthyic, malodourous, sweaty, putrid, sour, and unpleasant odours produced by compounds such as trimethylamine (SM: 13.05 μg/kg), hexanal (BF: 206.46 μg/kg), octanal (BF: 59.52 μg/kg), methanethiol (SM: 12.85 μg/kg), and valeric acid (BF: 15.08 μg/kg), which are positively correlated with Bacillus cereus, Bacillus subtilis, Bacillus licheniformis, Pseudomonas sp., Aspergillus ruber, and Moraxella osloensis. Furthermore, the physicochemical property and quality characteristics results showed that high moisture (BF: 56.32 g/100 g), pH (BF: 6.63), thiobarbituric acid reactive substances (TBARS) (SM: 1.98 MDA/kg), and low NaCl content (SM: 6.31%) were also responsible for the spoilage of hams with off-odour. This study provided a deep insight into the off-odour of Xuanwei ham from the perspective of microorganism communities and a theoretical basis for improving the flavour and overall quality of Xuanwei hams.
Collapse
Affiliation(s)
- Haoyi Wang
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Xiaoyu Yin
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Lu Zhang
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Xuejiao Wang
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Jiliang Zhang
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Rongxin Wen
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Jianxin Cao
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| |
Collapse
|
8
|
Wu X, Pan D, Xia Q, Sun Y, Geng F, Cao J, Zhou C. The combination of high-throughput sequencing and LC-MS/MS reveals the mechanism of Staphylococcus inoculation on bacterial community succession and taste development during the processing of dry-cured bacon. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7187-7198. [PMID: 37351843 DOI: 10.1002/jsfa.12806] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND To understand the mechanism of co-inoculation of Staphylococcus vitulinus and Staphylococcus xylosus (SX&SV) on taste quality of dry-cured bacon, physicochemical parameters, microbial community, metabolite compositions and taste attributes were investigated during the processing of dry-cured bacon with Staphylococcus inoculation. The potential correlation between core bacteria and metabolites was evaluated, and the metabolic pathway of key metabolites was further explored. RESULTS The values of pH, water activity and adhesiveness were significantly lower in SX&SV, and more than 2.56- and 2.15-fold higher values in richness and overall acceptance were found in SX&SV bacon than in CK bacon. The overwhelming advantage of Staphylococcus was confirmed in SX&SV by high-throughput sequencing. Sixty-six metabolites were identified by liquid chromatography-tandem mass spectrometry, and oligopeptides, amino acid derivatives and organic acids were the key components. Pearson correlation demonstrated that the accumulation of oligopeptides, amino acid derivatives and organic acids were positively correlated with high abundance of Staphylococcus. The pathways of purine metabolism, glutathione metabolism and glutamate metabolism were mainly involved in developing the taste quality of SX&SV. CONCLUSION The co-inoculation of Staphylococcus vitulinus and Staphylococcus xylosus enhanced the taste attributes of dry-cured bacon. The present study provides the theoretical reference with respect to regulating the taste quality of fermented meat products by starter cultures of Staphylococcus during manufacture. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueyi Wu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Chen H, Zhang Y, Wang X, Nie X, Liu D, Zhao Z. The Volatile Flavor Substances, Microbial Diversity, and Their Potential Correlations of Inner and Surface Areas within Chinese Qingcheng Mountain Traditional Bacon. Foods 2023; 12:3729. [PMID: 37893622 PMCID: PMC10606684 DOI: 10.3390/foods12203729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The objective of this study was to explore the microbial diversity, volatile flavor substances, and their potential correlations in inner and surface Chinese Qingcheng Mountain traditional bacon (CQTB). The results showed that there were 39 volatile flavor substances in inner and surface CQTB detected by headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS). Moreover, significant differences in volatile flavor substances between the inner and surface CQTB were observed. Sixteen key volatile flavor substances were screened (OAV > 1), including guaiacol, nonanal, ethyl isovalerate, and others. High-throughput sequencing (HTS) result indicated that Firmicutes, Proteobacteria, and Actinobacteria were the predominant bacterial phyla, and Ascomycota and Mucoromycota were the predominant fungal phyla. Staphylococcus, Psychrobacter, and Brochothrix were the predominant bacteria, and Debaryomyces, Penicillium, and Mucor were the predominant fungal genera. Spearman correlation coefficient analysis suggested that Apiotrichum and Lactobacillus were closely and positively correlated with the formation of key phenol compounds. The present work demonstrates the microbial diversity and related volatile flavor substances and their potential correlations in CQTB and provides a theoretical basis for the development of microbial starter culture and green processing of CQTB.
Collapse
Affiliation(s)
- Hongfan Chen
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China (D.L.)
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Yulin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China (D.L.)
| | - Xinyi Wang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China (D.L.)
| | - Xin Nie
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China (D.L.)
| | - Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China (D.L.)
| |
Collapse
|
10
|
Fu Y, Cao S, Yang L, Li Z. Flavor formation based on lipid in meat and meat products: A review. J Food Biochem 2022; 46:e14439. [PMID: 36183160 DOI: 10.1111/jfbc.14439] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Meat product is popular throughout the world due to its unique taste. Flavor is one of the most important quality characteristics of meat products and also is a key influencing factor in the overall acceptability of meat products. The flavor of meat products is formed by precursors undergoing a series of complex reactions. During meat product processing, lipids are hydrolyzed by lipase to produce flavor precursors such as free fatty acid, then further oxidized to form volatile flavor compounds. This review summarizes lipolysis, lipid oxidation, and interaction of lipid with Maillard reaction and amino acid during meat products processing and storage as well as influencing factors on lipid degradation including raw meat (source of meat, feeding pattern, and castration), processing methods (thermal processing, nonthermal processing, salting, and fermentation) and additives. Meanwhile, the volatile compounds produced by lipids in meat products including aldehydes, alcohols, ketones, and hydrocarbons are summed up. Analytical methods of volatile compounds and the application of lipidomics analysis in mechanisms of flavor formation of meat products are also reviewed. PRACTICAL APPLICATIONS: Flavor is one of the most important quality characteristics of meat products, which influences the acceptability of meat products for consumption. Lipids play an important role in the flavor formation of meat products. Understanding the relationship between flavor compounds and changes in lipid compositions during the processing and storage of meat products will be helpful to control the quality of meat products.
Collapse
Affiliation(s)
- Yinghua Fu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Shenyi Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Li Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Zhenglei Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
11
|
Zhang J, Wei Z, Zhang H, Xie L, Vincenzetti S, Polidori P, Li L, Liu G. Changes in the Physical-Chemical Properties and Volatile Flavor Components of Dry-Cured Donkey Leg during Processing. Foods 2022; 11:foods11213542. [PMID: 36360155 PMCID: PMC9658863 DOI: 10.3390/foods11213542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
In order to explore the quality variation and flavor formation of dry-cured donkey leg, the changes in physical−chemical composition, lipolytic, free amino acids content and volatile flavor compounds were investigated in this study. Six fresh, trimmed hind legs with average weight of 8.12 ± 0.8 kg were taken from male Dezhou donkeys slaughtered at the age of 24 months with the average live weight of 240 kg. The entire processing time was eight months long including six stages, specifically: cooling, salting, air-drying, fermenting and aging. Samples were collected at 0 d, 10 d, 20 d, 30 d, 65 d, 105 d and 165 d of processing. The results showed that the pH value remained stable in the range of 6.2~6.6. The moisture and water activity significantly decreased (p < 0.05) during processing. The chloride content, ash, total volatile basic nitrogen (TVB-N) and peroxide value (POV) significantly increased (p < 0.05), from 0.45% to 12.39%, from 3% to 17%, from 1.43 mg/kg to 8.98 mg/kg and from 1.39 g/100 g to 5.26 g/100 g, respectively. The thiobarbituric acid (TBARS) value reached its highest value of 0.39 mg MDA/kg at the end of the salting stage and then decreased to 0.34 mg MDA/kg. Eighteen free amino acids and fifteen free fatty acids were detected, and their contents were significantly increased during processing (p < 0.05). Volatile compounds were analyzed using solid-phase microextraction (SPME) and gas chromatography−mass spectrometry (GC−MS). Among 114 volatile compounds detected in dry-cured donkey leg, aldehydes, esters, alkane and alcohols were more abundant in the final products, with relative concentrations of 41.88%, 5.72%, 5.35% and 5.25%, respectively. Processing significantly affected the physical−chemical properties, which could contribute to the formation of flavor substances of dry-cured donkey leg.
Collapse
Affiliation(s)
- Jingjing Zhang
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, School of Agriculture Science and Engineering, Liaocheng University, Liaocheng 252000, China
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93, 62024 Matelica, Italy
| | - Zixiang Wei
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, School of Agriculture Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Huachen Zhang
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, School of Agriculture Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Lan Xie
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, School of Agriculture Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93, 62024 Matelica, Italy
| | - Paolo Polidori
- School of Pharmacy, University of Camerino, Via Gentile da Varano, 62032 Camerino, Italy
- Correspondence: (P.P.); (G.L.); Tel.: +39-3778375761 (P.P.)
| | - Lanjie Li
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, School of Agriculture Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Guiqin Liu
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, School of Agriculture Science and Engineering, Liaocheng University, Liaocheng 252000, China
- Correspondence: (P.P.); (G.L.); Tel.: +39-3778375761 (P.P.)
| |
Collapse
|
12
|
Chen H, Pan D, Du H, Ma J, Kong B, Diao J. Flavor Differences of Edible Parts of Grass Carp between Jingpo Lake and Commercial Market. Foods 2022; 11:foods11172594. [PMID: 36076779 PMCID: PMC9455230 DOI: 10.3390/foods11172594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 12/10/2022] Open
Abstract
This study investigated the flavor differences among three individual parts (abdomen, back, and tail) of Jingpo Lake grass carp (JPGC) and commercial grass carp (CGC). The growing environment and fish parts influenced the volatile compounds of the fish. The highest total contents of alcohols and ethers were found in the back of JPGC (p < 0.05). The combination of an electronic tongue and electronic nose (E-nose) could effectively distinguish the flavor differences between the different parts of JPGC and CGC by principal component analysis. Both the content of total free amino acids (FAAs) and content of amino acids contributing to the sweet and fresh flavors were higher in JPGC than CGC (p < 0.05). Among the ATP-associated products, the inosine 5’-monophosphate (IMP) contents of the back and tail of JPGC were higher (p < 0.05), but the abdomen content was lower (p > 0.05) than the respective contents in the corresponding parts of CGC. Sensory evaluation shows that JPGC had a better texture, odor, and taste, compared to CGC. Correlation analysis showed that the E-nose data and FAAs were highly correlated with the content of alcohols, aldehydes, and ethers. This study showed that the flavors of the different parts of JPGC differed significantly from those of CGC.
Collapse
Affiliation(s)
- Hongsheng Chen
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- China-Canada Cooperation Agri-Food Research Center of Heilongjiang Province, Daqing 163319, China
| | - Deyin Pan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hongzhen Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinming Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingjing Diao
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence:
| |
Collapse
|
13
|
Li R, Geng C, Xiong Z, Cui Y, Liao E, Peng L, Jin W, Wang H. Evaluation of protein degradation and flavor compounds during the processing of Xuan'en ham. J Food Sci 2022; 87:3366-3385. [PMID: 35842841 DOI: 10.1111/1750-3841.16242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Protein degradation occurs during the processing of dry-cured ham, which has important influences on the flavor and quality of products. The aim of this work was to study the degradation kinetics of myofibrillar proteins (MPs) and sarcoplasmic proteins (SPs) extracted from the biceps femoris muscle during the processing of Xuan'en ham. A relationship between protein degradation and the flavor formation was found. During the processing of Xuan'en ham, MPs and SPs were mainly degraded in the salting stage and incipient fermentation. Accompanied by protein degradation, the content of carbonyl group in SPs increased gradually, but in MPs, it first increased and then decreased. Interconversion between sulfhydryl and disulfide bonds was investigated during this processing. Oxidation, degradation, and thermal effects significantly affected the surface hydrophobicity of proteins. More than one hundred volatile compounds have been identified at each stage of ham preparation. Among them, organic acids were the predominant group, followed by hydrocarbons, aldehydes, alcohols, ketones, and esters.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Cuizhu Geng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhemin Xiong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yingying Cui
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National R & D Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| | - Lijuan Peng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National R & D Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| | - Haibin Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National R & D Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| |
Collapse
|
14
|
Wang J, Pu S, Li Y. Changes in fatty acid composition of fatty fractions of dry‐cured beef during different drying temperature and chilled storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jungang Wang
- Biology and Food Engineering Department Bozhou University Bozhou People’s Republic of China
| | - Shunchang Pu
- Biology and Food Engineering Department Bozhou University Bozhou People’s Republic of China
| | - Yuhui Li
- Institute of Agro‐products Processing Science and Technology Xin Jiang Academy of Agricultural and Reclamation Science Shihezi People’s Republic of China
| |
Collapse
|
15
|
The Influence of the Type of Dry-Cured Italian PDO Ham on Cathepsin B Activity Trend during Processing. Foods 2021; 10:foods10123123. [PMID: 34945674 PMCID: PMC8701321 DOI: 10.3390/foods10123123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Cathepsin B activity was measured during processing in hams originating from the main Italian prosciutto PDOs: Parma, San Daniele and Toscano. Sixty-five heavy pig thighs, from sixty-five Italian large white x Italian Landrace pigs bred and slaughtered in the same conditions were considered. Five thighs represented the post-mortem control time. The other 60 were distributed one plant per PDO, following a balanced plan. The thighs were sampled at the biceps femoris in groups of four per plant in the following ripening phases: salting, resting, drying, greasing, end of curing. The activity of the Cathepsin B (U/g protein) was determined by means of fluorescence measurements. The Cathepsin B ripening trend of the various PDOs was significantly different, particularly during the initial and mid-curing stage. This activity correlates with the proteolysis index through a PDO dependent pattern, indicating that different processing conditions can influence the quality of prosciutto, since they determine its biochemical development.
Collapse
|
16
|
Comprehensive Evaluation of Flavor in Charcoal and Electric-Roasted Tamarix Lamb by HS-SPME/GC-MS Combined with Electronic Tongue and Electronic Nose. Foods 2021; 10:foods10112676. [PMID: 34828957 PMCID: PMC8623117 DOI: 10.3390/foods10112676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022] Open
Abstract
To prevent the pollution generated during charcoal roasting of tamarix lamb, environmental-friendly electric is gradually applied in meat processing. The profile and formation of flavor in roasted tamarix lamb were evaluated using HS-SPME/GC-MS combined with E-nose/-tongue. Results indicated that charcoal-roasted tamarix lamb exhibited the higher taste of umami and sourness in E-tongue and had higher contents of alcohols, aldehydes, ketones, alkanes, and aromatics in E-nose, while the electric ones exhibited the higher taste of sweetness and bitterness and had higher contents of nitrogen oxides, terpenes, aromatics, and organic sulfur. Compared with charcoal, application of the electric significantly decreased the numbers of key volatile compounds with VIP > 1 (markers) and the contents of most markers.
Collapse
|
17
|
Evaluation of flavor characteristics of bacon smoked with different woodchips by HS-SPME-GC-MS combined with an electronic tongue and electronic nose. Meat Sci 2021; 182:108626. [PMID: 34284220 DOI: 10.1016/j.meatsci.2021.108626] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022]
Abstract
This study investigated the effects of different woodchip types (beech, oak, pear, and apple) on the volatile compounds and sensory characteristics of smoked bacon. The volatile compounds were influenced by woodchip types and the total content of ketones and phenols in pear-smoked bacon were higher than in bacon smoked with other woodchips (P < 0.05). The E-tongue combined with E-nose can effectively distinguish the difference in the flavor of bacon smoked with different woodchip types by the signal intensities. Sensory analysis showed that smoking increased bacon's redness, saltiness, and smoky flavor compared with the control (unsmoked bacon) (P < 0.05) and it had little impact on off-odor (P > 0.05). Correlation analysis showed that the E-nose and E-tongue data were highly correlated with contents of alcohols, aldehydes, and ketones. This study revealed that the different smoked materials greatly influenced the flavor and sensory properties of bacon.
Collapse
|
18
|
Wang Z, Wang Z, Ji L, Zhang J, Zhao Z, Zhang R, Bai T, Hou B, Zhang Y, Liu D, Wang W, Chen L. A Review: Microbial Diversity and Function of Fermented Meat Products in China. Front Microbiol 2021; 12:645435. [PMID: 34163441 PMCID: PMC8215344 DOI: 10.3389/fmicb.2021.645435] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Fermented meat products have a long history in China. These products exhibit a characteristic unique flavor, compact meat quality, clear color, long shelf life and wide variety and are easy to transport. During the processing and storage of fermented meat products, microorganisms are present and exhibit diverse characteristics. Microorganisms can accelerate the degradation of proteins and fats to produce flavor compounds, inhibit the growth and reproduction of heterozygous bacteria, and reduce the content of chemical pollutants. This paper reviews the microbial diversity of Chinese ham, sausage, preserved meat, pressed salted duck, preserved fish and air-dried meat and provides analyses of the microbial compositions of various products. Due to the differences in raw materials, technology, auxiliary materials, and fermentation technology, the microbial species found in various fermented meat products in China are different. However, most fermented meat products in China are subjected to pickling and fermentation, so their microbial compositions also have similarities. Microorganisms in fermented meat products mainly include staphylococci, lactobacilli, micrococci, yeasts, and molds. The study of microbial diversity is of great significance for the formation of quality flavor and the safety control of fermented meat products, and it provides some theoretical reference for the study of fermented meat products in China.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wei Wang
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Lin Chen
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| |
Collapse
|
19
|
Evaluation of small molecular metabolites and sensory properties of Xuanwei ham salted with partial replacement of NaCl by KCl. Meat Sci 2021; 175:108465. [PMID: 33610908 DOI: 10.1016/j.meatsci.2021.108465] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/05/2023]
Abstract
The study was to understand the effect of the partial substitution of NaCl by KCl on small molecular metabolites and sensory quality of Xuanwei ham. Thirty green hams were randomly divided into five treatments, and salted with 100% NaCl (I), 70% NaCl+30% KCl (II), 60% NaCl+40% KCl (III), 50% NaCl+50% KCl (IV) and 40% NaCl+60% KCl (V), respectively. With the increase of KCl substitution, the moisture content of Xuanwei ham increased. Non-targeted ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-Q-Exactive-MS) was used to study the effect of partial substitution of NaCl by KCl, and twenty-eight metabolites were identified as markers of small molecular metabolites in the different treatments. KCl substitution promoted the release of tryptophan, histidine, citrulline, lysine, creatine and oleic acid, which contributed to improve the flavor and taste of ham. Therefore, the treatment II and III could reduce the NaCl content of Xuanwei ham by 30% and 40%, and maintained a better sensory acceptability.
Collapse
|