1
|
Muñoz-Shugulí C, Rodríguez-Mercado F, Guarda A, Galotto MJ, Jiménez A, Garrigós MC, Ramos M. Release and Disintegration Properties of Poly(lactic Acid) Films with Allyl Isothiocyanate-β-Cyclodextrin Inclusion Complexes for Active Food Packaging. Molecules 2024; 29:5859. [PMID: 39769948 PMCID: PMC11677350 DOI: 10.3390/molecules29245859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
This study aimed to enhance the properties and compostability of active poly(lactic acid) (PLA) films by incorporating β-cyclodextrin (β-CD) inclusion complexes with allyl isothiocyanate (AITC). Films were prepared using melt extrusion and characterized based on their structural, chemical, morphological, thermal, and barrier properties. These inclusion complexes improved the thermal stability and moisture absorption of films, enhancing disintegration under composting conditions. The release of AITC in the vapor phase was responsive to relative humidity, maintaining the antimicrobial functionality at low values and releasing effectively at higher humidity levels, with a maximum release at 100%. Incorporating 5% and 10% β-CD:AITC complexes accelerated disintegration under composting conditions, reducing the time by 5 days for disintegration compared to pure PLA, achieving up to 90% in 23 days. These results, with a general improvement in functional properties, suggest that PLA films with β-CD:AITC are promising for developing sustainable, biodegradable antimicrobial packaging solutions for food applications.
Collapse
Affiliation(s)
- Cristina Muñoz-Shugulí
- Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba EC060155, Ecuador;
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Santiago 9170124, Chile; (F.R.-M.); (A.G.); (M.J.G.)
| | - Francisco Rodríguez-Mercado
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Santiago 9170124, Chile; (F.R.-M.); (A.G.); (M.J.G.)
| | - Abel Guarda
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Santiago 9170124, Chile; (F.R.-M.); (A.G.); (M.J.G.)
| | - María José Galotto
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Santiago 9170124, Chile; (F.R.-M.); (A.G.); (M.J.G.)
| | - Alfonso Jiménez
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, 03690 Alicante, Spain; (A.J.); (M.C.G.)
| | - María Carmen Garrigós
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, 03690 Alicante, Spain; (A.J.); (M.C.G.)
| | - Marina Ramos
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, 03690 Alicante, Spain; (A.J.); (M.C.G.)
| |
Collapse
|
2
|
Liparoti S, Pantani R. Opacification Kinetics of PLA during Liquid Water Sorption. Polymers (Basel) 2024; 16:2621. [PMID: 39339085 PMCID: PMC11435793 DOI: 10.3390/polym16182621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
When in contact with water, poly(lactic acid), PLA, undergoes several physical changes. A very evident one is opacification, namely the change from the typical transparent appearance to a white opaque color. This phenomenon is particularly significant for many applications, including packaging, since opacity hinders the possibility of a clear look of the packed goods and also worsens the consumers' perceptions. In this work, we report an analysis of the time evolution of the phenomenon in different conditions of temperature and water concentration. The results allow us to define a time-scale of the phenomenon and to put it in relationship with the temperature and water content inside the material. In particular, opacification proceeds from the outer surface of the specimens toward the center. Both craze formation due to hydrolysis and crystallization contribute to the opacification phenomenon. Opacification becomes faster as temperature increases, whereas the increase in the solution density has the opposite effect. A model for describing the evolution of opacification was proposed and found to be consistent with the experimental data.
Collapse
Affiliation(s)
| | - Roberto Pantani
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| |
Collapse
|
3
|
Mehraban Khaledi S, Taherimehr M, Hassaninejad-Darzi SK. Porous Fe-Porphyrin as an Efficient Adsorbent for the Removal of Ciprofloxacin from Water. ACS OMEGA 2024; 9:15950-15958. [PMID: 38617652 PMCID: PMC11007850 DOI: 10.1021/acsomega.3c09200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Antibiotics are widely used in medicine, but they are not fully metabolized in the body and can end up in wastewater. Conventional wastewater treatment methods fail to completely remove antibiotic residues, which can then enter rivers and streams. Adsorption is a promising technique for removing antibiotics from wastewater, even at low concentrations. The successful one-pot synthesis of an adsorbent, iron-containing porphyrin-based porous organic polymer (Fe-POP), was achieved through the reaction of pyrrole groups and terephthalaldehyde in the presence of FeCl3. Characterized by a substantial BET surface area of 597 m2 g-1, Fe-POP was systematically investigated for its adsorption potential in the removal of the antibiotic Ciprofloxacin (CIP) from aqueous solutions. By systematic variation of key parameters, including pH, adsorbent loading, and CIP concentration, the adsorption conditions were optimized. Under the optimal conditions at pH = 3, CIP concentration of 5 ppm, and 25 mg of Fe-POP, the maximum adsorption capacity reached an impressive 263 mg g-1. The robust adsorption behavior was elucidated through the fitting of experimental data to the Langmuir adsorption isotherm (R2 = 0.962) and the pseudo-second-order kinetic model (R2 = 0.999) with lower error values. These models suggested that the adsorption process predominantly involved chemical interactions between CIP molecules and the Fe-POP surface. Fe-POP exhibited a robust structure with a high adsorption capacity, showcasing its efficacy in removing CIP contaminants from water. Therefore, Fe-POP can be considered a valuable adsorbent for water treatment applications, specifically for antibiotic removal.
Collapse
Affiliation(s)
| | - Masoumeh Taherimehr
- Department of Chemistry, Babol
Noshirvani University of Technology, Babol 47148-71167, Iran
| | | |
Collapse
|
4
|
The Effect of a New Bionanocomposite Packaging Film on Postharvest Quality of Strawberry at Modified Atmosphere Condition. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Optimization of processing parameters in poly(lactic acid)-reinforced acetylated starch composite films by response surface methodology. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-022-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Murariu M, Paint Y, Murariu O, Laoutid F, Dubois P. Tailoring and Long-Term Preservation of the Properties of PLA Composites with "Green" Plasticizers. Polymers (Basel) 2022; 14:4836. [PMID: 36432967 PMCID: PMC9696962 DOI: 10.3390/polym14224836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Concerning new polylactide (PLA) applications, the study investigates the toughening of PLA-CaSO4 β-anhydrite II (AII) composites with bio-sourced tributyl citrate (TBC). The effects of 5-20 wt.% TBC were evaluated in terms of morphology, mechanical and thermal properties, focusing on the enhancement of PLA crystallization and modification of glass transition temperature (Tg). Due to the strong plasticizing effects of TBC (even at 10%), the plasticized composites are characterized by significant decrease of Tg and rigidity, increase of ductility and impact resistance. Correlated with the amounts of plasticizer, a dramatic drop in melt viscosity is also revealed. Therefore, for applications requiring increased viscosity and enhanced melt strength (extrusion, thermoforming), the reactive modification, with up to 1% epoxy functional styrene-acrylic oligomers, was explored to enhance their rheology. Moreover, larger quantities of products were obtained by reactive extrusion (REX) and characterized to evidence their lower stiffness, enhanced ductility, and toughness. In current prospects, selected samples were tested for the extrusion of tubes (straws) and films. The migration of plasticizer was not noted (at 10% TBC), whereas the mechanical and thermal characterizations of films after two years of aging evidenced a surprising preservation of properties.
Collapse
Affiliation(s)
- Marius Murariu
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
| | - Yoann Paint
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
| | - Oltea Murariu
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
| | - Fouad Laoutid
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
| | - Philippe Dubois
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMons), Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
7
|
Khalid MY, Arif ZU. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
High-heat and UV-barrier poly(lactic acid) by microwave-assisted functionalization of waste natural fibers. Int J Biol Macromol 2022; 220:827-836. [PMID: 35998855 DOI: 10.1016/j.ijbiomac.2022.08.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
The application of poly(lactic acid) (PLA) in the packaging area is frequently dwarfed by the inadequate gas/water barrier properties, low heat resistance and high UV transmittance. Herein, an environmentally friendly and high-efficiency microwave-assisted functionalization (MAF) approach was proposed to aqueous grafting waste bamboo fibers with the bridging agent. It permitted significant promotion of interfacial interactions between the MAF bamboo fibers (MAFBs) and neighboring PLA chains, contributing to uniform dispersion and intimate interphase. Featuring the morphological features, the MAFB-reinforced (5, 10 and 20 wt%) PLA biocomposites achieved an unexpected combination of high mechanical properties, exceptional resistance to heat deflection and UV irradiation, and excellent water barrier performance. Upon addition of only 5 wt% MAFBs, the tensile strength and toughness of PLA composite films were increased to 46.5 MPa and 0.6 MJ/m3, increasing over 52 % and nearly 107 % compared to those of the counterpart loaded pristine bamboo fibers (PBFs), respectively. This was favorably accompanied by the remarkably reduced water vapor permeability, falling down to the lowest value of 3.5 × 10-11 g∙m/Pa∙s∙m2 for PLA/MAFB (80/20) with a decrease of nearly 79 % compared to the counterpart. It is of interest to note the MAFB-enabled nearly 100 % UV-blocking ratio for PLA loaded 10 and 20 wt% fibers, as well as excellent resistance to heat deflection even at high temperatures like 120 °C. This effort paves the way to multifunctional natural fibers with high affinity to PLA for elegant implementation of high-heat and UV-resistant packaging materials in an ecofriendly manner.
Collapse
|
9
|
Cheng Z, Chen Z, Zhao B, Liao H, Yu T, Li Y. High-performance degradable films of poly(lactic acid)/thermochromic microcapsule composites with thermochromic and energy storage functions via blown film process. Int J Biol Macromol 2022; 220:238-249. [PMID: 35985393 DOI: 10.1016/j.ijbiomac.2022.08.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/05/2022]
Abstract
In this study, the polylactic acid (PLA)/reversible thermochromic microcapsule (TCM) packaging application film was successfully synthesized by the blown film process. White mineral oil (WMO) was used as a dispersant to prepare PLA/TCM extruded materials with different mass fractions, in which the mass fraction of TCM was up to 20 wt% and the structural, thermal, mechanical, barrier, thermochromic, and heat storage-release properties were evaluated. It was found that WMO had a plasticizing effect, the elongation at break and water vapor transmission rate of the films with the addition of 7 wt% TCM were increased by 533 % and 31.38 %, respectively. For each thermochromic film, significant thermochromic and energy storage release phenomena were observed. For instance, 20 wt% TCM thermochromic film was most effective for prolonging the holding time and suspending the temperature drop rate. In general, thermochromic packaging films with optimized constitutes were successfully synthesized by the blown film process, which provides essential reference significance for the large-scale thermochromic film applications.
Collapse
Affiliation(s)
- Zefei Cheng
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Zixuan Chen
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Binbin Zhao
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Haoran Liao
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Tao Yu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; The Shanghai Key Laboratory of Space Mapping and Remote Sensing for Planetary Exploration, Tongji University, Shanghai 200092, PR China.
| | - Yan Li
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
10
|
Optimization of PCL Polymeric Films as Potential Matrices for the Loading of Alpha-Tocopherol by a Combination of Innovative Green Processes. Processes (Basel) 2021. [DOI: 10.3390/pr9122244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Active food packaging represents an innovative way to conceive food packages. The innovation lies in using natural-based and biodegradable materials to produce a system intended to interact with the food product to preserve its quality and shelf-life. Compared to traditional plastics, active packaging is designed and regulated to release substances in a controlled manner, mainly antimicrobial and antioxidant compounds. Conventional technologies are not suitable for treating these natural substances; therefore, the research for innovative and green techniques represents a challenge in this field. The aim of this work is to compare two different polymeric structures: nanofibrous films obtained by electrospinning and continuous films obtained by solvent casting, to identify the best solution and process conditions for subjecting the samples to the supercritical fluids impregnation process (SFI). The supports optimized were functionalized by impregnating alpha-tocopherol using the SFI process. In particular, the different morphologies of the samples both before and after the supercritical impregnation process were initially studied, identifying the limits and possible solutions to obtain an optimization of the constructs to be impregnated with this innovative green technology in the packaging field.
Collapse
|