1
|
Guo M, Yi Z, Li H, Liu Y, Ding L, Babailov SP, Xiong C, Huang G, Zhang J. NMR Immunosensor Based on a Targeted Gadolinium Nanoprobe for Detecting Salmonella in Milk. Anal Chem 2024; 96:11334-11342. [PMID: 38943569 DOI: 10.1021/acs.analchem.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Detecting harmful pathogens in food is not only a crucial aspect of food quality management but also an effective way to ensure public health. In this paper, a complete nuclear magnetic resonance biosensor based on a novel gadolinium (Gd)-targeting molecular probe was developed for the detection of Salmonella in milk. First, streptavidin was conjugated to the activated macromolecular polyaspartic acid (PASP) via an amide reaction to generate SA-PASP. Subsequently, the strong chelating and adsorption properties of PASP toward the lanthanide metal gadolinium ions were exploited to generate the magnetic complex (SA-PASP-Gd). Finally, the magnetic complex was linked to biotinylated antibodies to obtain the bioprobe and achieve the capture of Salmonella. Under optimal experimental conditions, the sensor we have constructed can achieve a rapid detection of Salmonella within 1.5 h, with a detection limit of 7.1 × 103 cfu mL-1.
Collapse
Affiliation(s)
- Mengdi Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Zhibin Yi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Huo Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yang Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Liping Ding
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Sergey P Babailov
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Avenue Lavrentyev 3, Novosibirsk 630090, Russian Federation
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | | |
Collapse
|
2
|
Fu X, Zhang F, Zhen F, Duan L, Zhou J, Ma J. A chemiluminescence immunoassay for type IV collagen as a promising marker for liver fibrosis and cirrhosis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2248-2255. [PMID: 38568684 DOI: 10.1039/d3ay02240d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Herein, a magnetic bead-based chemiluminescence assay is reported to detect type IV collagen (col-IV) in serum samples. Magnetic beads (MBs) exhibit biocompatibility. Taking advantage of this property, they were conjugated with the col-IV antibody. For the determination of col-IV, the interaction of the col-IV sample, anti-(col-IV)-alkaline phosphatase (anti-(col-IV)-ALP) and anti-col-IV-magnetic beads (anti-(col-IV)-MBs) was performed to generate chemiluminescence. Under the optimized conditions, the developed method displayed good linearity in the concentration range of 20-2000 ng mL-1 with the limit of 0.79 ng mL-1. The repeatability coefficient of variation (CV) for col-IV detection ranged from 3.16% to 7.50%. The col-IV level in samples collected from a hospital was assessed by the chemiluminescence assay. Satisfactory recoveries were obtained ranging from 93.30% to 100.14%. In conclusion, the magnetic bead-based chemiluminescence assay may be used as a routine and efficient tool to detect type IV collagen in clinical diagnosis.
Collapse
Affiliation(s)
- Xiaoling Fu
- The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fan Zhang
- Dalian Public Health Clinical Center, Dalian 116031, China
| | - Fangda Zhen
- The Fourth People's Hospital of Shenyang, Shenyang 110000, China
| | - Lian Duan
- The Chinese PLA General Hospital, Beijing 100026, China
| | - Jian Zhou
- Yulin Testing and Research Institute, Yulin 537000, China
| | - Jianguo Ma
- Shuyang Zhongxing Hospital, Jiangsu 223600, China.
| |
Collapse
|
3
|
Ndraha N, Lin HY, Tsai SK, Hsiao HI, Lin HJ. The Rapid Detection of Salmonella enterica, Listeria monocytogenes, and Staphylococcus aureus via Polymerase Chain Reaction Combined with Magnetic Beads and Capillary Electrophoresis. Foods 2023; 12:3895. [PMID: 37959014 PMCID: PMC10649415 DOI: 10.3390/foods12213895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Food safety concerns regarding foodborne pathogen contamination have gained global attention due to its significant implications. In this study, we developed a detection system utilizing a PCR array combined with an automated magnetic bead-based system and CE technology to enable the detection of three foodborne pathogens, namely Salmonella enterica, Listeria monocytogenes, and Staphylococcus aureus. The results showed that our developed method could detect these pathogens at concentrations as low as 7.3 × 101, 6.7 × 102, and 6.9 × 102 cfu/mL, respectively, in the broth samples. In chicken samples, the limit of detection for these pathogens was 3.1 × 104, 3.5 × 103, and 3.9 × 102 cfu/g, respectively. The detection of these pathogens was accomplished without the necessity for sample enrichment, and the entire protocols, from sample preparation to amplicon analysis, were completed in approximately 3.5 h. Regarding the impact of the extraction method on detection capability, our study observed that an automated DNA extraction system based on the magnetic bead method demonstrated a 10-fold improvement or, at the very least, yielded similar results compared to the column-based method. These findings demonstrated that our developed model is effective in detecting low levels of these pathogens in the samples analyzed in this study. The PCR-CE method developed in this study may help monitor food safety in the future. It may also be extended to identify other foodborne pathogens across a wide range of food samples.
Collapse
Affiliation(s)
- Nodali Ndraha
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (N.N.); (H.-Y.L.)
| | - Hung-Yun Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (N.N.); (H.-Y.L.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| | | | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan;
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (N.N.); (H.-Y.L.)
| |
Collapse
|
4
|
Feng X, Li P, Xiao M, Li T, Chen B, Wang X, Wang L. Recent advances in the detection of pathogenic microorganisms and toxins based on field-effect transistor biosensors. Crit Rev Food Sci Nutr 2023; 64:9161-9190. [PMID: 37171049 DOI: 10.1080/10408398.2023.2208677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In food safety analysis, the detection and control of foodborne pathogens and their toxins are of great importance. Monitoring of virus transmission is equally important, especially in light of recent findings that coronaviruses have been detected in frozen foods and packages during the current global epidemic of coronavirus disease 2019. In recent years, field-effect transistor (FET) biosensors have attracted considerable scholarly attention for pathogenic microorganisms and toxins detection and sensing due to their rapid response time, high sensitivity, wide dynamic range, high specificity, label-free detection, portability, and cost-effectiveness. FET-based biosensors can be modified with specific recognition elements, thus providing real-time qualitative and semiquantitative analysis. Furthermore, with advances in nanotechnology and device design, various high-performance nanomaterials are gradually applied in the detection of FET-based biosensors. In this article, we review specific detection in different biological recognition elements are immobilized on FET biosensors for the detection of pathogenic microorganisms and toxins, and we also discuss nonspecific detection by FET biosensors. In addition, there are still unresolved challenges in the development and application of FET biosensors for achieving efficient, multiplexed, in situ detection of pathogenic microorganisms and toxins. Therefore, directions for future FET biosensor research and applications are discussed.
Collapse
Affiliation(s)
- Xiaoxuan Feng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pengzhen Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Tingxian Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Baiyan Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaoying Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Kang Y, Shi S, Sun H, Dan J, Liang Y, Zhang Q, Su Z, Wang J, Zhang W. Magnetic Nanoseparation Technology for Efficient Control of Microorganisms and Toxins in Foods: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16050-16068. [PMID: 36533981 DOI: 10.1021/acs.jafc.2c07132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Outbreaks of foodborne diseases mediated by food microorganisms and toxins remain one of the leading causes of disease and death worldwide. It not only poses a serious threat to human health and safety but also imposes a huge burden on health care and socioeconomics. Traditional methods for the removal and detection of pathogenic bacteria and toxins in various samples such as food and drinking water have certain limitations, requiring a rapid and sensitive strategy for the enrichment and separation of target analytes. Magnetic nanoparticles (MNPs) exhibit excellent performance in this field due to their fascinating properties. The strategy of combining biorecognition elements with MNPs can be used for fast and efficient enrichment and isolation of pathogens. In this review, we describe new trends and practical applications of magnetic nanoseparation technology in the detection of foodborne microorganisms and toxins. We mainly summarize the biochemical modification and functionalization methods of commonly used magnetic nanomaterial carriers and discuss the application of magnetic separation combined with other instrumental analysis techniques. Combined with various detection techniques, it will increase the efficiency of detection and identification of microorganisms and toxins in rapid assays.
Collapse
Affiliation(s)
- Yi Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Shuo Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Hao Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Jie Dan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Yanmin Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Qiuping Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zehui Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
6
|
Zhang Y, Du B, Wu Y, Liu Z, Wang J, Xu J, Tong Z, Mu X, Liu B. Fe 3O 4@PDA@PEI Core-Shell Microspheres as a Novel Magnetic Sorbent for the Rapid and Broad-Spectrum Separation of Bacteria in Liquid Phase. MATERIALS 2022; 15:ma15062039. [PMID: 35329490 PMCID: PMC8949534 DOI: 10.3390/ma15062039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/03/2022]
Abstract
Bacterial infection is a significant cause of morbidity and mortality to humans worldwide. Thus, a method for nonspecific, sensitive, and rapid enrichment of such bacteria is essential for bacteria detection and treatment. This study demonstrates a self-made core-shell Fe3O4@Polydopamine@Polyethyleneimine magnetic beads (Fe3O4@PDA@PEI MBs) with a high density positive charge-based magnetic separation scheme for the broad-spectrum rapid enrichment of microorganisms in the liquid phase. MBs with a high-density positive charge have a strong electrostatic attraction to most microorganisms in nature. Our scheme is as follows: (1) wrapping dopamine (DA) on the iron oxide through self-polymerization and wrapping PEI on the outermost shell layer in a mode of crosslinking with the PDA; (2) subsequently, the Fe3O4@PDA@PEI MBs were used to concentrate microorganisms from the sample solution; (3) performing magnetic separation and calculating the adsorption efficiency. The as-prepared Fe3O4@PDA@PEI MBs composite was carefully characterized by zeta potential analysis, Value stream-mapping (VSM), transmission electron microscopy (TEM), and Fourier transforms infrared spectrometry (FT-IR). In this study, both gram-positive and gram-negative bacteria could be captured in three minutes through electrostatic interaction. Furthermore, the adsorption efficiency on gram-negative (>98%) is higher than that on gram-positive (>95%), allowing for a simple, rapid assay to enrich organisms in resource-limited settings.
Collapse
|
7
|
Fan W, Gao XY, Li HN, Guo WP, Li YY, Wang SW. Rapid and simultaneous detection of Salmonella spp., Escherichia coli O157:H7, and Listeria monocytogenes in meat using multiplex immunomagnetic separation and multiplex real-time PCR. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03933-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Bao H, Yuan M, Xiao C, Liu D, Lai W. Development of a signal-enhanced LFIA based on tyramine-induced AuNPs aggregation for sensitive detection of danofloxacin. Food Chem 2021; 375:131875. [PMID: 34959139 DOI: 10.1016/j.foodchem.2021.131875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
A signal-enhanced LFIA based on tyramine (TYR)-induced AuNPs aggregation has been developed for the sensitive detection of danofloxacin (DAN). In the model, the hydroxyl radical produced by HRP catalyzing H2O2 can trigger the TYR-AuNPs to aggregate on the T or C line for enhancing the detection signal. The linear range of TYR-AuNPs LFIA was 0.25-5 ng mL-1 with the limit of detection (LOD) of 0.032 ng mL-1, and the LOD was 8-fold lower than that of the traditional AuNPs LFIA (0.26 ng mL-1). The TYR-AuNPs LFIA could be used with the naked eyes to qualitatively detect DAN with a cut-off limit of 2.5 ng mL-1, which was 4-fold lower than that of the traditional AuNPs LFIA (10 ng mL-1). The recoveries of TYR-AuNPs LFIA were 86.04-105.14% and 92.41-110.19%, with the coefficient of variation of 1.71-2.05% and 4.42-5.89% in chicken and pork, respectively.
Collapse
Affiliation(s)
- Huanhuan Bao
- State Key Laboratory of Food Science and Technology, Nanchang University 235, East Nanjing Road, Nanchang 330047, China
| | - Meifang Yuan
- Jiangxi Institute for Food Control, Nanchang 330001, China
| | - Chengui Xiao
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, Guangdong 518045, China
| | - Daofeng Liu
- Jiangxi Province Centre for Disease Control and Prevention, 555, East Beijing Road, Nanchang 330029, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University 235, East Nanjing Road, Nanchang 330047, China.
| |
Collapse
|
9
|
Duan Y, Wu W, Zhao Q, Liu S, Liu H, Huang M, Wang T, Liang M, Wang Z. Enzyme-Antibody-Modified Gold Nanoparticle Probes for the Ultrasensitive Detection of Nucleocapsid Protein in SFTSV. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124427. [PMID: 32575570 PMCID: PMC7344430 DOI: 10.3390/ijerph17124427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022]
Abstract
As humans and climate change continue to alter the landscape, novel disease risk scenarios have emerged. Sever fever with thrombocytopenia syndrome (SFTS), an emerging tick-borne infectious disease first discovered in rural areas of central China in 2009, is caused by a novel bunyavirus (SFTSV). The potential for SFTS to spread to other countries in combination with its high fatality rate, possible human-to-human transmission, and extensive prevalence among residents and domesticated animals in endemic regions make the disease a severe threat to public health. Because of the lack of preventive vaccines or useful antiviral drugs, diagnosis of SFTS is the key to prevention and control of the SFTSV infection. The development of serological detection methods will greatly improve our understanding of SFTSV ecology and host tropism. We describe a highly sensitive protein detection method based on gold nanoparticles (AuNPs) and enzyme-linked immunosorbent assay (ELISA)—AuNP-based ELISA. The optical sensitivity enhancement of this method is due to the high loading efficiency of AuNPs to McAb. This enhances the concentration of the HRP enzyme in each immune sandwich structure. The detection limit of this method to the nucleocapsid protein (NP) of SFTSV was 0.9 pg mL−1 with good specificity and reproducibility. The sensitivity of AuNP-based ELISA was higher than that of traditional ELISA and was comparable to real-time quantitative polymerase chain reaction (qRT-PCR). The probes are stable for 120 days at 4 °C. This can be applied to diagnosis and hopefully can be developed into a commercial ELISA kit. The ultrasensitive detection of SFTSV will increase our understanding of the distribution and spread of SFTSV, thus helping to monitor the changes in tick-borne pathogen SFTSV risk in the environment.
Collapse
Affiliation(s)
- Yuqin Duan
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.D.); (Q.Z.); (S.L.); (H.L.); (M.H.); (T.W.)
| | - Wei Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100000, China;
| | - Qiuzi Zhao
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.D.); (Q.Z.); (S.L.); (H.L.); (M.H.); (T.W.)
| | - Sihua Liu
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.D.); (Q.Z.); (S.L.); (H.L.); (M.H.); (T.W.)
| | - Hongyun Liu
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.D.); (Q.Z.); (S.L.); (H.L.); (M.H.); (T.W.)
| | - Mengqian Huang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.D.); (Q.Z.); (S.L.); (H.L.); (M.H.); (T.W.)
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.D.); (Q.Z.); (S.L.); (H.L.); (M.H.); (T.W.)
| | - Mifang Liang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100000, China;
- Correspondence: (M.L.); (Z.W.)
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Correspondence: (M.L.); (Z.W.)
| |
Collapse
|
10
|
Panferova NA, Panferov VG, Safenkova IV, Varitsev YA, Zherdev AV, Dzantiev BB. Development of Enzyme-Linked Immunosorbent Assay with Tiramine Amplification for the Detection of Potato Virus X. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819040136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Rapid detection of trace Salmonella in milk and chicken by immunomagnetic separation in combination with a chemiluminescence microparticle immunoassay. Anal Bioanal Chem 2019; 411:6067-6080. [DOI: 10.1007/s00216-019-01991-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
|
12
|
Ultrasensitive ELISA for the detection of hCG based on assembled gold nanoparticles induced by functional polyamidoamine dendrimers. Anal Chim Acta 2018; 1042:116-124. [DOI: 10.1016/j.aca.2018.08.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/20/2018] [Indexed: 11/21/2022]
|
13
|
Wang W, Zou Y, Yan J, Liu J, Chen H, Li S, Zhang L. Ultrasensitive colorimetric immunoassay for hCG detection based on dual catalysis of Au@Pt core-shell nanoparticle functionalized by horseradish peroxidase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:102-108. [PMID: 29223051 DOI: 10.1016/j.saa.2017.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/11/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
In this paper, an ultrasensitive colorimetric biosensor for human chorionic gonadotrophin (hCG) detection was designed from bottom-up method based on the dual catalysis of the horseradish peroxidase (HRP) and Au@Pt nanoparticles (NPs) relative to H2O2-TEM system. HRP and monoclonal mouse anti-hCG antibody (β-submit, mAb1) were co-immobilized onto the Au@Pt NP surface to improve catalytic efficiency and specificity, which formed a dual functionalized Au@Pt-HRP probe with the mean size of 42.8nm (D50). The colorimetric immunoassay was developed for the hCG detection, and the Au@Pt-HRP probe featured a higher sensitivity in the concentration range of 0.4-12.8IUL-1 with a low limit of detection (LOD) of 0.1IUL-1 compared with the LODs of 0.8IUL-1 for BA-ELISA and of 2.0IUL-1 for Au@Pt, which indicated that the Au@Pt-HRP probe possessed higher catalytic efficiency with 2.8-fold increase over Au@Pt and 33.8-fold increase over HRP. Also, the Au@Pt-HRP probe exhibited good precision and reproducibility, high specificity and acceptable accuracy with CV being less than 15%. The dual functionalized Au@Pt-HRP probe as a type of signal amplified method was firstly applied in the colorimetric immunoassay for the hCG detection.
Collapse
Affiliation(s)
- Weiguo Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yake Zou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jinwu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jing Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Huixiong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510640, PR China; CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Shan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Lei Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
14
|
Bu T, Huang Q, Yan L, Huang L, Zhang M, Yang Q, Yang B, Wang J, Zhang D. Ultra technically-simple and sensitive detection for Salmonella Enteritidis by immunochromatographic assay based on gold growth. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Pathania P, Sharma A, Kumar B, Rishi P, Raman Suri C. Selective identification of specific aptamers for the detection of non-typhoidal salmonellosis in an apta-impedimetric sensing format. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2098-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Ye Y, Xiao L, Bin He, Zhang Q, Nie T, Yang X, Wu D, Cheng H, Li P, Wang Q. Oxygen-tuned nanozyme polymerization for the preparation of hydrogels with printable and antibacterial properties. J Mater Chem B 2017; 5:1518-1524. [PMID: 32264642 DOI: 10.1039/c6tb03317b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanozymes merge nanotechnology with biology and provide a lower cost and higher stability options, compared to that of natural enzymes. However, nanozyme catalyzed polymerization under physiological conditions is still a big challenge due to heavy oxygen inhibition. In this study, the simple glucose oxidase system can effectively adjust oxygen concentration and generate hydrogen peroxide, which assists in the realization of nanozyme-catalyzed polymerization. The nanozyme based hydrogel is printable due to its mild preparation with gradually increased viscosity. The antibacterial performance is ascribed to the in situ generated hydroxyl radical via the reaction of the bound nanozyme and glucose.
Collapse
Affiliation(s)
- Yuemei Ye
- School of Chemistry Science and Engineering, Tongji University, Shanghai 200092, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rapid Detection of Enterobacter Sakazakii in milk Powder using amino modified chitosan immunomagnetic beads. Int J Biol Macromol 2016; 93:615-622. [PMID: 27616695 DOI: 10.1016/j.ijbiomac.2016.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022]
Abstract
Chitosan immunomagnetic beads (CIBs) were first prepared through converting hydroxyl groups of natural polymer material-chitosan into amino groups using epichlorohydrin and ethylenediamine as modification agent and then coupling with polyclonal antibodies of Enterobacter sakazakii using glutaraldehyde as cross-linking agent. The beads before coupling with antibodies were characterized by magnetic property measurement, FTIR, SEM and XRD technologies. In the assay a natural polysaccharide-chitosan, which has good biological and chemical properties such as non-toxicity, biocompatibility and high chemical reactivity was first used for synthesis of immunomagnetic beads. The detection method first established in this paper that combined the beads with chromogenic medium together to rapid detect E. sakazakii in milk powder could greatly improve the detection specificity and working efficiency. The beads exhibited a maximum capturing capacity of 1×106cfu/g with the detection sensitivity of 4cfu/g. The results demonstrate that the assay is a straightforward, specific and sensitive alternative for rapid detection of E.sakazakii in food matrix. The total analysis time was as little as about 25h, which greatly shorten the detection time. The method can provides new ideas not only to preparation technique of immunomagnetic beads but to imunne detection technique in food safety.
Collapse
|
18
|
Gunda NSK, Chavali R, Mitra SK. A hydrogel based rapid test method for detection of Escherichia coli (E. coli) in contaminated water samples. Analyst 2016; 141:2920-9. [DOI: 10.1039/c6an00400h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have formulated a new chemical composition for rapid detection ofEscherichia coli(E. coli) with currently available enzymatic substrates.
Collapse
Affiliation(s)
- Naga Siva Kumar Gunda
- Micro & Nano-scale Transport Laboratory
- Lassonde School of Engineering
- York University
- Toronto
- Canada
| | - Ravi Chavali
- Micro & Nano-scale Transport Laboratory
- Lassonde School of Engineering
- York University
- Toronto
- Canada
| | - Sushanta K. Mitra
- Micro & Nano-scale Transport Laboratory
- Lassonde School of Engineering
- York University
- Toronto
- Canada
| |
Collapse
|