1
|
Brătfelan DO, Tăbăran A, Dan SD, Tăbăran AF, Mărgăoan R, Crişan-Reget OL, Mihaiu M. Assessment of Microbiological Contamination and Prevalence of Pathogenic Strains in Cattle Carcasses from Romanian Slaughterhouses. Pathogens 2025; 14:248. [PMID: 40137733 PMCID: PMC11945336 DOI: 10.3390/pathogens14030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Food safety, particularly within the meat industry, is a significant concern addressed under the One Health concept, emphasizing the necessity of enhanced surveillance and hygiene protocols to mitigate contamination risks. This study assessed microbiological risks in Romanian bovine slaughterhouses by analyzing 150 samples from stool and carcasses at the post-evisceration and cooling stages over seven months in two abattoirs, using standardized microbiological methods and PCR to quantify aerobic colony counts (ACCs), Enterobacteriaceae, and pathogens (E. coli, Salmonella spp., and Listeria spp.). ACCs and Enterobacteriaceae levels decreased significantly [p < 0.05] during processing, highlighting effective hygiene measures. Pathogenic E. coli was identified in 14% of fecal samples and 5% of carcasses, indicating cross-contamination risks. Salmonella spp. were found in 28% of fecal samples but absent on carcasses, suggesting successful containment. Listeria spp. were rare and not detected on carcasses. PCR confirmed the presence of pathogenic strains in stool samples, emphasizing the need for strict hygiene practices and regular monitoring to improve meat safety and protect public health. In conclusion, the prevalence of E. coli, particularly serogroups like O101 and O26, and the absence of Salmonella and Listeria in carcass samples reflect both regional differences in pathogenic strains and the need for comprehensive, multi-stage control measures. Further studies should broaden pathogen surveillance to include more E. coli serogroups and implement stricter hygiene protocols to prevent cross-contamination during evisceration, skinning, and cooling. Regular monitoring of Salmonella and Listeria, especially in silage-fed cattle regions, along with improved coordination across the food production, health, and environmental sectors, is essential to mitigate contamination risks and safeguard public health.
Collapse
Affiliation(s)
| | - Alexandra Tăbăran
- Department of Animal Husbandry and Public Health, Faculty of Veterinary Medicine Cluj-Napoca, University of Agricultural Sciences and Veterinary Medicine Cluj, 400372 Cluj-Napoca, Romania; (D.-O.B.); (S.D.D.); (A.-F.T.); (R.M.); (O.L.C.-R.); (M.M.)
| | | | | | | | | | | |
Collapse
|
2
|
Heckler C, Vale MG, Canales HDS, Stradiotto GC, Giordano ALPL, Schreiber AZ, Sant'Ana AS. Spore-forming bacteria in gelatin: Characterization, identification by 16S rRNA and MALDI-TOF mass spectrometry (MS), and presence of heat resistance and virulence genes. Int J Food Microbiol 2024; 422:110813. [PMID: 38970997 DOI: 10.1016/j.ijfoodmicro.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Gelatin, a versatile protein derived from collagen, is widely used in the food, pharmaceutical and medical sectors. However, bacterial contamination by spore-forming bacteria during gelatin processing represents a significant concern for product safety and quality. In this study, an investigation was carried out to explore the heat and chemical resistance, as well as the identification and characterization of spore-forming bacteria isolated from gelatin processing. The methodologies involved chemical resistance tests with drastic pH in microplates and thermal resistance tests in capillary tubes of various isolates obtained at different processing stages. In addition, phenotypic and genotypic analyses were carried out to characterize the most resistant isolates of spore-forming bacteria. The findings of this study revealed the presence of several species, including Bacillus cereus, Bacillus licheniformis, Bacillus sonorensis, Bacillus subtilis, Geobacillus stearothermophilus, and Clostridium sporogenes, with some isolates exhibiting remarkable chemical and heat resistances. In addition, a significant proportion of the most resistant isolates showed gelatinase activity (n = 19/21; 90.5 %) and the presence of heat resistance (n = 5/21; 23.8 %), and virulence genes (n = 11/21; 52.4 %). The results of this study suggest that interventions should be done in quality control practices and that process parameter adjustments and effective contamination reduction strategies should be implemented through gelatin processing.
Collapse
Affiliation(s)
- Caroline Heckler
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Matheus G Vale
- Department of Integrated Systems, Faculty of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Héctor D S Canales
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Graziele C Stradiotto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Luisa P L Giordano
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Angelica Z Schreiber
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Hong S, Moon JS, Yoon SS, Kim HY, Lee YJ. Levels of Indicator Bacteria and Characteristics of Foodborne Pathogens from Carcasses of Cattle Slaughterhouses in Korea. J Food Prot 2024; 87:100220. [PMID: 38215980 DOI: 10.1016/j.jfp.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
The initial microbial contamination of carcasses during slaughtering adversely affects spoilage and shelf life and is of global concern for food safety and meat quality. This study evaluated the hygiene and quality using the prevalence of foodborne pathogens and the level of indicator bacteria on 200 carcasses, collecting 10 from each of 20 cattle slaughterhouses in Korea. The distribution of aerobic bacterial count in carcasses was significantly highest at 2.0-3.0 log10 CFU/cm2 (34.1%), whereas the Escherichia coli count was significantly highest at under 1.0 log10 CFU/cm2 (94.0%) (P < 0.05). Clostridium perfringens was most prevalent (60.0% of slaughterhouses; 17.5% of carcasses), followed by Yersinia enterocolitica (30.0% of slaughterhouses; 6.5% of carcasses), Staphylococcus aureus (15.0% of slaughterhouses; 4.0% of carcasses), Listeria monocytogenes 1/2a (5.0% of slaughterhouses; 1.0% of carcasses), Salmonella enterica subsp. enterica serovar Infantis (5.0% of slaughterhouses; 1.0% of carcasses), and Shiga toxin-producing E. coli O:66 (5.0% of slaughterhouses; 0.5% of carcasses). Although 28 C. perfringens isolates from 11 slaughterhouses were divided into 21 pulsotypes, all isolates showed the same toxinotype as type A and only carried the cpa. Interestingly, 83.3% of isolates from two slaughterhouses located in the same province showed resistance to tetracycline. Furthermore, 13 Y. enterocolitica isolates from six slaughterhouses were divided into seven pulsotypes that were divided into biotypes 1A and 2 and serotypes O:5 and O:8, except for isolates that could not be typed. Twelve (92.3%) isolates only carried ystB, but one (7.7%) isolate carried ail and ystA. Moreover, 46.2% of Y. enterocolitica isolates showed multidrug resistance against ampicillin, cefoxitin, and amoxicillin/clavulanic acid. This study supports the need for continuous monitoring of slaughterhouses and hygiene management to improve the microbiological safety of carcasses.
Collapse
Affiliation(s)
- Serim Hong
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-San Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Ha-Young Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea.
| | - Young Ju Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Wardhana DK, Haskito AEP, Purnama MTE, Safitri DA, Annisa S. Detection of microbial contamination in chicken meat from local markets in Surabaya, East Java, Indonesia. Vet World 2021; 14:3138-3143. [PMID: 35153404 PMCID: PMC8829415 DOI: 10.14202/vetworld.2021.3138-3143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
Background and Aim: Chicken meat can be contaminated by microorganisms anywhere in the supply chain, from farm to market, and these microorganisms can be transmitted to humans through direct contact, contact with the environment, and food consumption. The microbial contamination has a serious impact on public health. This study aimed to analyze the microbial contamination of chicken meat sampled from local markets in Surabaya, East Java, Indonesia. Materials and Methods: A total of 60 samples of fresh chicken meat obtained from 10 traditional markets (six samples per market) were examined for the presence of bacteria. Staphylococcus aureus, Salmonella spp., and Escherichia coli were identified using Gram staining, culturing, and biochemical tests. The most probable number (MPN) method was used to identify E. coli. Results: Most chicken meat samples were positive for S. aureus (58.3%), Salmonella spp. (48.3%), and E. coli (40%). The samples were considered positive for E. coli if the MPN value was higher than 1×101 CFU/g. Conclusion: High microbial contamination was found in all the chicken meat sampled from local markets in Surabaya. Such contamination can lead to foodborne diseases so, proper hygiene and sanitation standards should be followed from slaughterhouses to the end-users.
Collapse
Affiliation(s)
- Dhandy Koesoemo Wardhana
- Department of Veterinary Sciences, Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ajeng Erika Prihastuti Haskito
- Laboratorium of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang 65151, Indonesia
| | - Muhammad Thohawi Elziyad Purnama
- Department of Veterinary Sciences, Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Devi Ayu Safitri
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Suwaibatul Annisa
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
5
|
Jaja IF, Jaja CJI, Chigor NV, Anyanwu MU, Maduabuchi EK, Oguttu JW, Green E. Antimicrobial Resistance Phenotype of Staphylococcus aureus and Escherichia coli Isolates Obtained from Meat in the Formal and Informal Sectors in South Africa. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3979482. [PMID: 33015163 PMCID: PMC7525293 DOI: 10.1155/2020/3979482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Foodborne diseases (FBD) caused by resistant pathogens are a global public health problem. One main driver of the increasing FBD incidence is the transfer of pathogenic organisms from animal guts to carcasses during processing and subsequent transfer from meat products to consumers. METHODS In this study, meat samples from abattoirs in the formal meat sector (FMS) (n = 140) and slaughter points in the informal meat sector (IMS) (n = 104) were collected for microbial detection and phenotypic AMR determination using polymerase chain reaction. RESULTS The antibiogram of Staphylococcus aureus isolates revealed that resistance to clindamycin (74.3%) and ampicillin (59.5%) was highest in the FMS, while resistance to penicillin (83.8%) and tetracycline (82.1%) was highest in the IMS. Escherichia coli isolates show significant resistance to chloramphenicol (90.7%) and tetracycline (82.3%) in the FMS. Likewise, resistance to tetracycline (92.3%) and sulfamethoxazole/trimethoprim (87.5%) was highest in the IMS. The multiple antibiotic resistance index (MARI) for S. aureus and E. coli ranged from 0.3 to 0.8 and 0.2 to 0.5, respectively. CONCLUSION This study suggests high-level contamination of meat with resistant pathogens and highlights the public health consequences associated with consuming such unhygienic products.
Collapse
Affiliation(s)
- Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
- Department of Agriculture and Animal Health, University of South Africa, Roodepoort Johannesburg 1710, South Africa
| | - Chinwe-Juliana Iwu Jaja
- Department of Nursing and Midwifery, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Nnamdi Vincent Chigor
- Department of Microbiology, Faculty of Science, University of Nigeria, Nsukka, Nigeria
| | - Madubuike Umunna Anyanwu
- Microbiology Unit, Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Ezealisiji Kenneth Maduabuchi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, University of Port Harcourt, Port Harcourt, Nigeria
| | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, University of South Africa, Roodepoort Johannesburg 1710, South Africa
| | - Ezekiel Green
- Department of Biotechnology and Food Science, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
6
|
Kukhtyn M, Salata V, Berhilevych O, Malimon Z, Tsvihun A, Gutyj B, Horiuk Y. Evaluation of storage methods of beef by microbiological and chemical indicators. POTRAVINARSTVO 2020. [DOI: 10.5219/1381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meat and meat products are a major part of a person's ration. However, due to their high nutritional value, they are a favorable environment for the development of microorganisms and require refrigerated storage. The purpose of this work was to evaluate the storage methods for refrigerated and frozen beef by microbiological and chemical parameters and to suggest criteria for evaluating beef by the content of psychrotrophic microorganisms. It was found out that the storage of beef meat with an initial mesophilic bacterial content of about 4.88 log CFU.cm-2 of surface and psychrotrophic bacteria 3.79 log CFU.cm-2 at temperature 0 °C is only possible for 8 days, further, the microbiological indices exceed the acceptable standards. Investigation of the dynamics of microflora reproduction during the storage of beef in the frozen state at temperature -2 to -3 °C for 20 days established a decrease in 1.3 times the number of mesophilic bacteria in 10 days of storage. At the same time, the number of psychrotrophic microorganisms during this storage time was increased in 4.5 times, and 20 days in 7.9 times and amounted to 5.3 log CFU.cm-2 of surface area. This indicates that the storage of meat in the frozen state inhibits or completely stops the development of mesophilic microorganisms for 20 days. It was found out that storing of beef in the cooled state at a temperature of 0 ±0.5 °C for more than eight days is impractical, as its biochemical indices are worsening and signs of spoilage are appearing. At the same time, storing of beef in the frozen state at a temperature of -2 to -3 °C for 20 days does not cause such significant biochemical changes as in beef stored in the cooled state at a temperature of 0 ±0.5 °C for 16 days. Therefore, we have experimentally substantiated the quantitative indicators of the content of psychrotrophic microorganisms on the surface of beef intended for storage in a cooled or frozen state. The proposed microbiological criteria will improve the safety of beef.
Collapse
|
7
|
Ncoko P, Jaja IF, Oguttu JW. Microbiological quality of beef, mutton, and water from different abattoirs in the Eastern Cape Province, South Africa. Vet World 2020; 13:1363-1371. [PMID: 32848312 PMCID: PMC7429376 DOI: 10.14202/vetworld.2020.1363-1371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/20/2020] [Indexed: 12/04/2022] Open
Abstract
Background and Aim: Abattoir processes from skinning, evisceration, to chilling usually lead to meat contamination by foodborne pathogens. Hence, continual microbial surveillance of slaughter carcasses by veterinary public health officials is key to preventing contamination and outbreak of meat-related foodborne diseases. This study was conducted to determine the Enterobacteriaceae count and aerobic plate count (APC) and to detect Escherichia coli and Salmonella spp. in meat and water from selected slaughter facilities. Materials and Methods: Retrospective data (n=100) collected in 2017 by the Provincial Veterinary Department of the Eastern Cape Province from abattoirs and prospective survey data of meat (n=50) collected in 2018 from abattoirs in the Eastern Cape Province were utilized in this study. APC and Enterobacteriaceae were enumerated from the samples. In addition, Salmonella and E. coli were isolated from samples using selective media. Results: The APC in both retrospective and prospective studies for all samples ranged between 2 and 4.50 log CFU/cm2; similar counts of 2-4.00 log CFU/cm2 were recorded for Enterobacteriaceae. No significant difference (p>0.05) for APC and Enterobacteriaceae count across all meat types was noted. Salmonella and E. coli were detected in 50% of beef. E. coli was not detected from mutton, but Salmonella was found in 66.7%. Moreover, 91.7% of the water samples had E. coli, but none had Salmonella. Conclusion: The levels of Enterobacteriaceae and APC observed in meat satisfy regulatory conditions outlined by the Department of Agriculture, Forestry and Fisheries, South Africa and show that meat produced from these abattoirs is of acceptable microbial quality. However, the quality of water used in the abattoirs does not meet the requirements set by the government, and contributes to contamination of meat produced in the abattoirs under study. Therefore, we recommend that sources of water be continuously investigated to eliminate or reduce the risk of contamination of meat processed in the abattoirs.
Collapse
Affiliation(s)
- Philisani Ncoko
- Department of Livestock and Pasture, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape Province, South Africa
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape Province, South Africa.,Department of Agriculture and Animal Health, University of South Africa, Florida Campus, Johannesburg, 1709, South Africa
| | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, University of South Africa, Florida Campus, Johannesburg, 1709, South Africa
| |
Collapse
|
8
|
Thomas KM, de Glanville WA, Barker GC, Benschop J, Buza JJ, Cleaveland S, Davis MA, French NP, Mmbaga BT, Prinsen G, Swai ES, Zadoks RN, Crump JA. Prevalence of Campylobacter and Salmonella in African food animals and meat: A systematic review and meta-analysis. Int J Food Microbiol 2020; 315:108382. [PMID: 31710971 PMCID: PMC6985902 DOI: 10.1016/j.ijfoodmicro.2019.108382] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/20/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Campylobacter and Salmonella, particularly non-typhoidal Salmonella, are important bacterial enteric pathogens of humans which are often carried asymptomatically in animal reservoirs. Bacterial foodborne infections, including those derived from meat, are associated with illness and death globally but the burden is disproportionately high in Africa. Commercial meat production is increasing and intensifying in many African countries, creating opportunities and threats for food safety. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, we searched six databases for English language studies published through June 2016, that reported Campylobacter or Salmonella carriage or infection prevalence in food animals and contamination prevalence in food animal products from African countries. A random effects meta-analysis and multivariable logistic regression were used to estimate the species-specific prevalence of Salmonella and Campylobacter and assess relationships between sample type and region and the detection or isolation of either pathogen. RESULTS Seventy-three studies reporting Campylobacter and 187 studies reporting Salmonella across 27 African countries were represented. Adjusted prevalence calculations estimate Campylobacter detection in 37.7% (95% CI 31.6-44.3) of 11,828 poultry samples; 24.6% (95% CI 18.0-32.7) of 1975 pig samples; 17.8% (95% CI 12.6-24.5) of 2907 goat samples; 12.6% (95% CI 8.4-18.5) of 2382 sheep samples; and 12.3% (95% CI 9.5-15.8) of 6545 cattle samples. Salmonella were detected in 13.9% (95% CI 11.7-16.4) of 25,430 poultry samples; 13.1% (95% CI 9.3-18.3) of 5467 pig samples; 9.3% (95% CI 7.2-12.1) of 2988 camel samples; 5.3% (95% CI 4.0-6.8) of 72,292 cattle samples; 4.8% (95% CI 3.6-6.3) of 11,335 sheep samples; and 3.4% (95% CI 2.2-5.2) of 4904 goat samples. 'External' samples (e.g. hide, feathers) were significantly more likely to be contaminated by both pathogens than 'gut' (e.g. faeces, cloaca) while meat and organs were significantly less likely to be contaminated than gut samples. CONCLUSIONS This study demonstrated widespread prevalence of Campylobacter species and Salmonella serovars in African food animals and meat, particularly in samples of poultry and pig origin. Source attribution studies could help ascertain which food animals are contributing to human campylobacteriosis and salmonellosis and direct potential food safety interventions.
Collapse
Affiliation(s)
- Kate M Thomas
- Centre for International Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Kilimanjaro Clinical Research Institute, Good Samaritan Foundation, Moshi, United Republic of Tanzania.
| | - William A de Glanville
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Joram J Buza
- School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania
| | - Sarah Cleaveland
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret A Davis
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Nigel P French
- mEpiLab, Massey University, Palmerston North, New Zealand; New Zealand Food Safety Science and Research Centre, New Zealand
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Good Samaritan Foundation, Moshi, United Republic of Tanzania
| | - Gerard Prinsen
- School of People, Environment and Planning, Massey University, Palmerston North, New Zealand
| | - Emmanuel S Swai
- State Department of Veterinary Services, Ministry of Livestock and Fisheries, Dodoma, United Republic of Tanzania
| | - Ruth N Zadoks
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - John A Crump
- Centre for International Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Jaja IF, Bhembe NL, Green E, Oguttu J, Muchenje V. Molecular characterisation of antibiotic-resistant Salmonella enterica isolates recovered from meat in South Africa. Acta Trop 2019; 190:129-136. [PMID: 30408462 DOI: 10.1016/j.actatropica.2018.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 12/25/2022]
Abstract
Salmonella enterica is a leading cause of human gastroenteritis in both developed and developing countries, causing significant economic losses on humans and animals worldwide. There are several routes for contracting salmonellosis, but the consumption of contaminated foods is by far the most frequent cause of human infections. This study aimed to assess the prevalence and resistance determinants of S. enterica isolates obtained from meat. Swab samples from meat were cultured for the identification of Salmonella spp., and 239 presumptive S. enterica isolates were recovered, purified and kept in glycerol stocks. The S. enterica. confirmed by polymerase chain reaction (PCR) were further tested against 15 antimicrobials using the disc-diffusion method on Muller-Hinton agar and the genotypic antimicrobial resistance determinants by PCR. Resistance among tetracyclines, bêta-lactams, and 3rd generation cephalosporins was found to be most frequent with a noticeable rise in the number of multi-drug resistance ranging from two to seven antimicrobials. A total of 20 resistance determinants were assessed with their prevalence and distributions obtained as follows; [aminoglycosides: aadA (89%), aacC2 (100%), aphA1 (38%), aphA2 (0%) and strA (7%)], [β-lactams: (ampC 100%), blaTEM, (33%), blaZ (17%) and blaOXA (10%)], [Chloramphenicol: catI (9%), catII (7%), and cmIA1 (10%)] and [tetracyclines: tetA (57%), tetB (30%), tetC (11%), tetD (73%), tetK (20%) and tetM, (43%)], and [sulfonamides: sulI (82%), sulII (7%)]. The findings signify a high prevalence of multidrug-resistant (MDR) S. enterica isolates and resistance determinants indicating increased public health risks associated with the consumption of contaminated meat.
Collapse
|
10
|
Jaja IF, Green E, Muchenje V. Aerobic Mesophilic, Coliform, Escherichia coli, and Staphylococcus aureus Counts of Raw Meat from the Formal and Informal Meat Sectors in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040819. [PMID: 29690529 PMCID: PMC5923861 DOI: 10.3390/ijerph15040819] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023]
Abstract
Foodborne disease (FBD) is a global public health concern, and foods from animal sources have been associated with outbreaks of food-related illness. In this study, animal carcasses from the two abattoirs (HT1 and HT2) in the formal meat sector (FMS) and slaughter points in the informal meat sector (INMS) were examined at two stages of slaughter (before washing and after washing) for aerobic colony counts (ACC) and total viable count (TCC), as well as Escherichia coli and Staphylococcus aureus count. At each stage, carcasses were sampled by swabbing at the neck, brisket, flank, and rump. ACC for beef, mutton, and pork carcasses at HT1 and HT2 before washing were between 2.5–5.8, 2.2–4.7, and 2.7–3.7 mean log CFU/cm2, respectively, and TCC count before washing was highest on the neck of cattle (6.3 ± 2.4) and after washing was highest on the perineal of sheep (5.7 ± 6.9). In the INMS, TCC count was highest on the brisket (6.9 ± 3.2) and in the neck (5.5 ± 2.4). Higher ACC values of 6.2–6.7 mean log CFU/cm2 were obtained in the INMS. The highest count for E. coli (4.2 mean log CFU/cm2) after washing was in the neck, while the highest count for S. aureus (4.0 mean log CFU/cm2) was in the flank. All bacteria count in the INMS exceeded acceptable limits, and washing did not significantly reduce microbial load in meat in the FMS and INMS. Bacteria count in the FMS and INMS exceeded acceptable standards. However, meat processed in the INMS poses a more significant risk of FBD to consumers.
Collapse
Affiliation(s)
- Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa.
| | - Ezekiel Green
- Department of Biotechnology and Food Science, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Voster Muchenje
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa.
| |
Collapse
|
11
|
Wambui J, Lamuka P, Karuri E, Matofari J, Njage PMK. Microbial Contamination Level Profiles Attributed to Contamination of Beef Carcasses, Personnel, and Equipment: Case of Small and Medium Enterprise Slaughterhouses. J Food Prot 2018; 81:684-691. [PMID: 29557673 DOI: 10.4315/0362-028x.jfp-17-402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The microbial contamination level profiles (MCLPs) attributed to contamination of beef carcasses, personnel, and equipment in five Kenyan small and medium enterprise slaughterhouses were determined. Aerobic plate counts, Enterobacteriaceae, Staphylococcus, and Salmonella were used to determine contamination at four different slaughter stages, namely, dehiding, evisceration, splitting, and dispatch. Microbiological criteria of the four microorganisms were used to score contamination levels (CLs) as poor (0), poor to average (1), average (2), or good (3). MCLPs were further assigned to carcasses, personnel, and equipment at each stage by summing up the CL scores. The CL score attributed to aerobic plate count contamination was 2 or 3 for carcasses but 0 for personnel and equipment in almost all slaughterhouses. A score of 0 on carcasses was mostly attributed to Enterobacteriaceae at evisceration and to Salmonella at dehiding and evisceration. In addition, a score of 0 was mostly attributed to Staphylococcus contamination of personnel at dehiding. A score of 3 was attributed mostly to Enterobacteriaceae on hands at splitting, whereas a score of 2 was mostly attributed to the clothes at dehiding and evisceration. A CL score of 3 was mostly attributed to Enterobacteriaceae and Salmonella contamination of equipment at dehiding and splitting, respectively. Although CLs attributed to contamination of carcasses, personnel, and equipment ranged from 0 to 3, the maximum MCLP score of 9 was only attained in carcasses from two slaughterhouses at dehiding and from one slaughterhouse at dispatch. There is, therefore, a lot of room for small and medium enterprise slaughterhouses to improve their food safety objectives by improving food safety management systems at the points characterized by low CL scores.
Collapse
Affiliation(s)
- Joseph Wambui
- 1 Department of Food Science, Nutrition and Technology, Faculty of Agriculture, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya (ORCID: http://orcid.org/0000-0002-6071-5505 [J.W.]).,2 Institute of Food Safety and Hygiene, University of Zurich, Winterthurerstrasse 272, CH-8057 Zürich, Switzerland
| | - Peter Lamuka
- 1 Department of Food Science, Nutrition and Technology, Faculty of Agriculture, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya (ORCID: http://orcid.org/0000-0002-6071-5505 [J.W.])
| | - Edward Karuri
- 1 Department of Food Science, Nutrition and Technology, Faculty of Agriculture, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya (ORCID: http://orcid.org/0000-0002-6071-5505 [J.W.])
| | - Joseph Matofari
- 3 Department of Dairy and Food Science and Technology, Faculty of Agriculture, Egerton University, P.O. Box 536-20115, Egerton, Kenya; and
| | - Patrick Murigu Kamau Njage
- 1 Department of Food Science, Nutrition and Technology, Faculty of Agriculture, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya (ORCID: http://orcid.org/0000-0002-6071-5505 [J.W.]).,4 Division for Epidemiology and Microbial Genomics, National Food Institute, Technical University of Denmark, Søltofts Plads, Building 221, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
12
|
Bhembe NL, Jaja IF, Nwodo UU, Okoh AI, Green E. Prevalence of tuberculous lymphadenitis in slaughtered cattle in Eastern Cape, South Africa. Int J Infect Dis 2017; 61:27-37. [DOI: 10.1016/j.ijid.2017.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/29/2017] [Accepted: 05/09/2017] [Indexed: 11/29/2022] Open
|