1
|
Cho J, Song H, Yoon HC, Yoon H. Rapid Dot-Blot Immunoassay for Detecting Multiple Salmonella enterica Serotypes. J Microbiol Biotechnol 2024; 34:340-348. [PMID: 37986605 PMCID: PMC10940738 DOI: 10.4014/jmb.2308.08006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Salmonella, a major contributor to foodborne infections, typically causes self-limiting gastroenteritis. However, it is frequently invasive and disseminates across the intestinal epithelium, leading to deadly bacteremia. Although the genus is subdivided into >2,600 serotypes based on their antigenic determinants, only few serotypes are responsible for most human infections. In this study, a rapid dot-blot immunoassay was developed to diagnose multiple Salmonella enterica serotypes with high incidence rates in humans. The feasibility of 10 commercial antibodies (four polyclonal and six monoclonal antibodies) was tested using the 18 serotypes associated with 67.5% Salmonella infection cases in the United States of America (U.S.A) in 2016. Ab 3 (polyclonal; eight of 18 serotypes), Ab 8 (monoclonal; 13 of 18 serotypes), and Ab 9 (monoclonal; 10 of 18 serotypes) antibodies exhibited high detection rates in western blotting and combinations of two antibodies (Ab 3+8, Ab 3+9, and Ab 8+9) were applied to dot-blot assays. The combination of Ab 3+8 identified 15 of the tested 18 serotypes in 3 h, i.e., S. Enteritidis, S. Typhimurium, S. Javiana, S. I 4,[5],12:i:-, S. Infantis, S. Montevideo, S. Braenderup, S. Thompson, S. Saintpaul, S. Heidelberg, S. Oranienburg, S. Bareilly, S. Berta, S. Agona, and S. Anatum, which were responsible for 53.7% Salmonella infections in the U.S. in 2016. This cost-effective and rapid method can be utilized as an on-site colorimetric method for Salmonella detection.
Collapse
Affiliation(s)
- Jeongik Cho
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Heymin Song
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun C. Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Surti PV, Kim MW, Phan LMT, Kailasa SK, Mungray AK, Park JP, Park TJ. Progress on dot-blot assay as a promising analytical tool: Detection from molecules to cells. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
3
|
Zhao X, Smith G, Javed B, Dee G, Gun’ko YK, Curtin J, Byrne HJ, O’Connor C, Tian F. Design and Development of Magnetic Iron Core Gold Nanoparticle-Based Fluorescent Multiplex Assay to Detect Salmonella. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3917. [PMID: 36364693 PMCID: PMC9655581 DOI: 10.3390/nano12213917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Salmonella is a bacterial pathogen which is one of the leading causes of severe illnesses in humans. The current study involved the design and development of two methods, respectively using iron oxide nanoparticle (IONP) and iron core gold nanoparticle (ICGNP), conjugated with the Salmonella antibody and the fluorophore, 4-Methylumbelliferyl Caprylate (4-MUCAP), used as an indicator, for its selective and sensitive detection in contaminated food products. Twenty double-blind beverage samples, spiked with Salmonella enteritidis, Staphylococcus aureus, and Escherichia coli, were prepared in sterile Eppendorf® tubes at room temperature. The gold layer and spikes of ICGNPs increased the surface areas. The ratio of the surface area is 0.76 (IONPs/ICGNPs). The comparative sensitivity and specificity of the IONP-based and the ICGNP-based methods to detect Salmonella were determined. The ICGNP method shows the limit of detection is 32 Salmonella per mL. The ICGNPs had an 83.3% sensitivity and a 92.9% specificity value for the presence and detection of Salmonella. The IONP method resulted in a limit of detection of 150 Salmonella per mL, and a 66.7% sensitivity and 83.3% specificity for the presence and detection of Salmonella. The higher surface area of ICGNPs increases the efficiency of detection. The monitoring of Salmonella can thus be achieved by a rapid magnetic fluorescent assay using a smartphone for image capture and analyze, providing quantitative results. The findings from the present study would help to detect Salmonella rapidly in water. It can improve the microbial quality of water and food safety due to the presence of Salmonella in the water environment.
Collapse
Affiliation(s)
- Xinyi Zhao
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin, Ireland
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Gwendoline Smith
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Bilal Javed
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin, Ireland
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Garret Dee
- AMBER, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Christine O’Connor
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Furong Tian
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
4
|
Sobhan A, Jia F, Kelso LC, Biswas SK, Muthukumarappan K, Cao C, Wei L, Li Y. A Novel Activated Biochar-Based Immunosensor for Rapid Detection of E. coli O157:H7. BIOSENSORS 2022; 12:908. [PMID: 36291044 PMCID: PMC9599117 DOI: 10.3390/bios12100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
E. coli O157:H7, one of the major foodborne pathogens, can cause a significant threat to the safety of foods. The aim of this research is to develop an activated biochar-based immunosensor that can rapidly detect E. coli O157:H7 cells without incubation in pure culture. Biochar was developed from corn stalks using proprietary reactors and then activated using steam-activation treatment. The developed activated biochar presented an enhanced surface area of 830.78 m2/g. To develop the biosensor, the gold electrode of the sensor was first coated with activated biochar and then functionalized with streptavidin as a linker and further immobilized with biotin-labeled anti-E. coli polyclonal antibodies (pAbs). The optimum concentration of activated biochar for sensor development was determined to be 20 mg/mL. Binding of anti-E. coli pAbs with E. coli O157:H7 resulted in a significant increase in impedance amplitude from 3.5 to 8.5 kΩ when compared to an only activated biochar-coated electrode. The developed immunosensor was able to detect E. coli O157:H7 cells with a limit of detection of 4 log CFU/mL without incubation. Successful binding of E. coli O157:H7 onto an activated biochar-based immunosensor was observed on the microelectrode surface in scanning electron microscopy (SEM) images.
Collapse
Affiliation(s)
- Abdus Sobhan
- Department of Biological and Agricultural Engineering, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA or
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Fei Jia
- Department of Biological and Agricultural Engineering, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA or
| | - Lisa Cooney Kelso
- Department of Biological and Agricultural Engineering, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA or
| | - Sonatan Kumar Biswas
- Department of Biological and Agricultural Engineering, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA or
| | | | - Changyong Cao
- Department of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Advanced Platform Technology (APT) Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Lin Wei
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA or
| |
Collapse
|
5
|
Rahi S, Lanjekar V, Ghormade V. Development of a rapid dot-blot assay for ochratoxin A (OTA) detection using peptide conjugated gold nanoparticles for bio-recognition and detection. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Wangman P, Surasilp T, Pengsuk C, Sithigorngul P, Longyant S. Development of a
species‐specific
monoclonal antibody for rapid detection and identification of foodborne pathogen
Vibrio vulnificus. J Food Saf 2021. [DOI: 10.1111/jfs.12939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pradit Wangman
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| | - Thanai Surasilp
- Major of General Science, Department of Science and Technology, Faculty of Liberal Arts and Science Roi Et Rajabhat University Roi Et Thailand
| | - Chalinan Pengsuk
- Faculty of Agricultural Product Innovation and Technology Srinakharinwirot University Nakhon Nayok Thailand
| | - Paisarn Sithigorngul
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| | - Siwaporn Longyant
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
| |
Collapse
|