1
|
Sumida Y, Tsunoda M. Development of a Two-Dimensional Liquid Chromatographic Method for Analysis of Urea Cycle Amino Acids. Molecules 2024; 29:700. [PMID: 38338444 PMCID: PMC10856254 DOI: 10.3390/molecules29030700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The urea cycle has been found to be closely associated with certain types of cancers and other diseases such as cardiovascular disease and chronic kidney disease. An analytical method for the precise quantification of urea cycle amino acids (arginine, ornithine, citrulline, and argininosuccinate) by off-line two-dimensional liquid chromatography (2D-LC) combined with fluorescence-based detection was developed. Before analysis, the amino acids were derivatised with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) to obtain NBD-amino acids. The first dimension involved the reversed-phase separation, in which NBD derivatives of urea cycle amino acids were completely separated from each other and mostly separated from the 18 NBD-proteinogenic amino acids. The samples were eluted with stepwise gradient using 0.02% trifluoroacetic acid in water-acetonitrile as the mobile phase. In the second dimension, an amino column was used for the separation of NBD-ornithine, -citrulline, and -argininosuccinate, while a sulfonic acid column was used to separate NBD-arginine. The developed 2D-LC system was used to analyse human plasma samples. The fractions of NBD-urea cycle amino acids obtained in the first dimension were collected manually and introduced into the second dimension. By choosing appropriate mobile phases for the second dimension, each NBD-urea cycle amino acid eluted in the first dimension was well separated from the other proteinogenic amino acids and interference from endogenous substance. This could not be achieved in the first dimension. The urea cycle amino acids in human plasma sample were quantified, and the method was well validated. The calibration curves for each NBD-urea cycle amino acid showed good linearity from 3 (ASA) or 15 (Orn, Cit, and Arg) to 600 nM, with correlation coefficients higher than 0.9969. The intraday and interday precisions were less than 7.9% and 15%, respectively. The 2D-LC system is expected to be useful for understanding the involvement of the urea cycle in disease progression.
Collapse
Affiliation(s)
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Ding Q, Li R, Wang Q, Yu L, Zi F. A pan-cancer analysis of the role of argininosuccinate synthase 1 in human tumors. Front Oncol 2023; 13:1049147. [PMID: 38053661 PMCID: PMC10694447 DOI: 10.3389/fonc.2023.1049147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Aim There is accumulating evidence indicating that ASS1 is closely related to tumors. No pan-cancer analysis of ASS1 was available. Methods Here we explored the gene expression and survival analysis of ASS1 across thirty-three tumors based on the datasets of the TCGA (Cancer Genome Atlas), the GEO (Gene Expression Omnibus), and the GEPIA2 (Gene Expression Profiling Interactive Analysis, version 2). Results ASS1 is highly expressed in most normal tissues and is related to the progression of some tumors. We also report ASS1 genetic alteration and their association with tumor prognosis and report differences in ASS1 phosphorylation sites between tumors and control normal tissues. ASS1 expression was associated with the infiltration of cancer-associated fibroblasts (CAFs) for the TCGA tumors of BRCA (Breast invasive carcinoma), CESC (Cervical squamous cell carcinoma and endocervical adenocarcinoma), COAD (Colon adenocarcinoma), ESCA (Esophageal carcinoma), SKCM (Skin cutaneous melanoma), SKCM-Metastasis, TGCT (Testicular germ cell tumors), and endothelial cell for the tumors of BRCA, BRCA-Basal, CESC, ESCA, KIRC (Kidney renal clear cell carcinoma), LUAD (Lung adenocarcinoma), LUSC (Lung squamous cell carcinoma), SKCM, SKCM-Metastasis, SKCM-Primary, STAD (Stomach adenocarcinoma), and TGCT. The KEGG and GO analysis were used to analyze ASS1-related signaling pathways. Finally, we used Huh7 cell line to verify the function of ASS1 in vitro. After ASS1 knockdown using small interfering RNA (siRNA), the proliferation and invasion of Huh7 were enhanced, cyclin D1 was up-regulated, and anti-apoptotic protein bax was down-regulated, suggesting that ASS1 is a tumor suppressor gene in hepatocellular carcinoma. Conclusion Our first pan-cancer study offers a relatively comprehensive understanding of the roles of ASS1 in different tumors.
Collapse
Affiliation(s)
- Qiang Ding
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Hematology, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ruiqi Li
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Hematology, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingming Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Hematology, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Yu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Hematology, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fuming Zi
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Hematology, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Assi G, Faour WH. Arginine deprivation as a treatment approach targeting cancer cell metabolism and survival: A review of the literature. Eur J Pharmacol 2023:175830. [PMID: 37277030 DOI: 10.1016/j.ejphar.2023.175830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Amino acid requirement of metabolically active cells is a key element in cellular survival. Of note, cancer cells were shown to have an abnormal metabolism and high-energy requirements including the high amino acid requirement needed for growth factor synthesis. Thus, amino acid deprivation is considered a novel approach to inhibit cancer cell proliferation and offer potential treatment prospects. Accordingly, arginine was proven to play a significant role in cancer cell metabolism and therapy. Arginine depletion induced cell death in various types of cancer cells. Also, the various mechanisms of arginine deprivation, e.g., apoptosis and autophagy were summarized. Finally, the adaptive mechanisms of arginine were also investigated. Several malignant tumors had high amino acid metabolic requirements to accommodate their rapid growth. Antimetabolites that prevent the production of amino acids were also developed as anticancer therapies and are currently under clinical investigation. The aim of this review is to provide a concise literature on arginine metabolism and deprivation, its effects in different tumors, its different modes of action, as well as the related cancerous escape mechanisms.
Collapse
Affiliation(s)
- Ghaith Assi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon, P.O. Box 36
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon, P.O. Box 36.
| |
Collapse
|
4
|
Liu Y, Wu M, Xu S, Niu X, Liu W, Miao C, Lin A, Xu Y, Yu L. PSMD2 contributes to the progression of esophageal squamous cell carcinoma by repressing autophagy. Cell Biosci 2023; 13:67. [PMID: 36998052 DOI: 10.1186/s13578-023-01016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND The ubiquitin-proteasome and autophagy-lysosomal systems collaborate in regulating the levels of intracellular proteins. Dysregulation of protein homeostasis is a central feature of malignancy. The gene encoding 26S proteasome non-ATPase regulatory subunit 2 (PSMD2) of the ubiquitin-proteasome system is an oncogene in various types of cancer. However, the detailed role of PSMD2 in autophagy and its relationship to tumorigenesis in esophageal squamous cell carcinoma (ESCC) remain unknown. In the present study, we have investigated the tumor-promoting roles of PSMD2 in the context of autophagy in ESCC. METHODS Molecular approaches including DAPgreen staining, 5-Ethynyl-2'-deoxyuridine (EdU), cell counting kit 8 (CCK8), colony formation, transwell assays, and cell transfection, xenograft model, immunoblotting and Immunohistochemical analysis were used to investigate the roles of PSMD2 in ESCC cells. Data-independent acquisition (DIA) quantification proteomics analysis and rescue experiments were used to study the roles of PSMD2 in ESCC cells. RESULTS We demonstrate that the overexpression of PSMD2 promotes ESCC cell growth by inhibiting autophagy and is correlated with tumor progression and poor prognosis of ESCC patients. DIA quantification proteomics analysis shows a significant positive correlation between argininosuccinate synthase 1 (ASS1) and PSMD2 levels in ESCC tumors. Further studies indicate that PSMD2 activates the mTOR pathway by upregulating ASS1 to inhibit autophagy. CONCLUSIONS PSMD2 plays an important role in repressing autophagy in ESCC, and represents a promising biomarker to predict prognosis and a therapeutic target of ESCC patients.
Collapse
Affiliation(s)
- Yachen Liu
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Meng Wu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shuxiang Xu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xiangjie Niu
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Weiling Liu
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Chuanwang Miao
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Ai Lin
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yang Xu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Lili Yu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
5
|
Schwarz R, Zitzow E, Fiebig A, Hering S, Humboldt Y, Schoenwaelder N, Kämpfer N, Volkmar K, Hinz B, Kreikemeyer B, Maletzki C, Fiedler T. PEGylation increases antitumoral activity of arginine deiminase of Streptococcus pyogenes. Appl Microbiol Biotechnol 2021; 106:261-271. [PMID: 34910240 PMCID: PMC8720082 DOI: 10.1007/s00253-021-11728-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022]
Abstract
Abstract Arginine auxotrophy is a metabolic defect that renders tumor cells vulnerable towards arginine-depleting substances, such as arginine deiminase (ADI) from Streptococcus pyogenes (SpyADI). Previously, we confirmed SpyADI susceptibility on patient-derived glioblastoma multiforme (GBM) models in vitro and in vivo. For application in patients, serum half-life of the enzyme has to be increased and immunogenicity needs to be reduced. For this purpose, we conjugated the S. pyogenes-derived SpyADI with 20 kDa polyethylene glycol (PEG20) moieties, achieving a PEGylation of seven to eight of the 26 accessible primary amines of the SpyADI. The PEGylation reduced the overall activity of the enzyme by about 50% without affecting the Michaelis constant for arginine. PEGylation did not increase serum stability of SpyADI in vitro, but led to a longer-lasting reduction of plasma arginine levels in mice. Furthermore, SpyADI-PEG20 showed a higher antitumoral capacity towards GBM cells in vitro than the native enzyme. Key points • PEGylation has no effect on the affinity of SpyADI for arginine • PEGylation increases the antitumoral effects of SpyADI on GBM in vitro • PEGylation prolongs plasma arginine depletion by SpyADI in mice
Collapse
Affiliation(s)
- Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Eric Zitzow
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Adina Fiebig
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Silvio Hering
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Yvonne Humboldt
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Nina Schoenwaelder
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany.,Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Neele Kämpfer
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany.,Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Kerren Volkmar
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany.,Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.,Division of Immunology, Paul-Ehrlich-Institute, Langen, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Tomas Fiedler
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany.
| |
Collapse
|
6
|
Yao S, Janku F, Koenig K, Tsimberidou AM, Piha-Paul SA, Shi N, Stewart J, Johnston A, Bomalaski J, Meric-Bernstam F, Fu S. Phase 1 trial of ADI-PEG 20 and liposomal doxorubicin in patients with metastatic solid tumors. Cancer Med 2021; 11:340-347. [PMID: 34841717 PMCID: PMC8729058 DOI: 10.1002/cam4.4446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 01/30/2023] Open
Abstract
Background Arginine depletion interferes with pyrimidine metabolism and DNA damage repair pathways. Preclinical data demonstrated that depletion of arginine by PEGylated arginine deiminase (ADI‐PEG 20) enhanced liposomal doxorubicin (PLD) cytotoxicity in cancer cells with argininosuccinate synthase 1 (ASS1) deficiency. The objective of this study was to assess safety and tolerability of ADI‐PEG 20 and PLD in patients with metastatic solid tumors. Methods Patients with advanced ASS1‐deficient solid tumors were enrolled in this phase 1 trial of ADI‐PEG 20 and PLD following a 3 + 3 design. Eligible patients were given intravenous PLD biweekly and intramuscular (IM) ADI‐PEG 20 weekly. Toxicity and efficacy were evaluated according to the Common Terminology Criteria for Adverse Events (version 4.0) and Response Evaluation Criteria in Solid Tumors (version 1.1), respectively. Results Of 15 enrolled patients, 9 had metastatic HER2‐negative breast carcinoma. We observed no dose‐limiting toxicities or treatment‐related deaths. One patient safely received 880 mg/m2 PLD in this study and 240 mg/m2 doxorubicin previously. Treatment led to stable disease in 9 patients and was associated with a median progression‐free survival time of 3.95 months in 15 patients. Throughout the duration of treatment, decreased arginine and increased citrulline levels in peripheral blood remained significant in a majority of patients. We detected no induction of anti‐ADI‐PEG 20 antibodies by week 8 in one third of patients. Conclusion Concurrent IM injection of ADI‐PEG 20 at 36 mg/m2 weekly and intravenous infusion of PLD at 20 mg/m2 biweekly had an acceptable safety profile in patients with advanced ASS1‐deficient solid tumors. Further evaluation of this combination is under discussion.
Collapse
Affiliation(s)
- Shuyang Yao
- Department of Investigational Cancer Therapeutics, Houston, Texas, USA.,Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, Houston, Texas, USA
| | | | | | | | - Nai Shi
- Department of Investigational Cancer Therapeutics, Houston, Texas, USA
| | - John Stewart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - John Bomalaski
- Polaris Pharmaceuticals, Inc., San Diego, California, USA
| | | | - Siqing Fu
- Department of Investigational Cancer Therapeutics, Houston, Texas, USA
| |
Collapse
|
7
|
Chan SL, Cheng PNM, Liu AM, Chan LL, Li L, Chu CM, Chong CCN, Lau YM, Yeo W, Ng KKC, Yu SCH, Mok TSK, Chan AWH. A phase II clinical study on the efficacy and predictive biomarker of pegylated recombinant arginase on hepatocellular carcinoma. Invest New Drugs 2021; 39:1375-1382. [PMID: 33856599 PMCID: PMC8426309 DOI: 10.1007/s10637-021-01111-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND Pegylated recombinant human arginase (PEG-BCT-100) is an arginine depleting drug. Preclinical studies showed that HCC is reliant on exogenous arginine for growth due to the under-expression of the arginine regenerating enzymes argininosuccinate synthetase (ASS) and ornithine transcarbamylase (OTC). METHODS This is a single arm open-label Phase II trial to assess the potential clinical efficacy of PEG-BCT-100 in chemo naïve sorafenib-failure HCC patients. Pre-treatment tumour biopsy was mandated for ASS and OTC expression by immunohistochemistry (IHC). Weekly intravenous PEG-BCT-100 at 2.7 mg/kg was given. Primary endpoint was time to progression (TTP); secondary endpoints included radiological response as per RECIST1.1, progression free survival (PFS) and overall survival (OS). Treatment outcomes were correlated with tumour immunohistochemical expressions of ASS and OTC. RESULTS In total 27 patients were recruited. The median TTP and PFS were both 6 weeks (95% CI, 5.9-6.0 weeks). The disease control rate (DCR) was 21.7% (5 stable disease). The drug was well tolerated. Post hoc analysis showed that duration of arginine depletion correlated with OS. For patients with available IHC results, 10 patients with ASS-negative tumour had OS of 35 weeks (95% CI: 8.3-78.0 weeks) vs. 15.14 weeks (95% CI: 13.4-15.1 weeks) in 3 with ASS-positive tumour; expression of OTC did not correlate with treatment outcomes. CONCLUSIONS PEG-BCT-100 in chemo naïve post-sorafenib HCC is well tolerated with moderate DCR. ASS-negative confers OS advantage over ASS-positive HCC. ASS-negativity is a potential biomarker for OS in HCC and possibly for other ASS-negative arginine auxotrophic cancers. TRIAL REGISTRATION NUMBER NCT01092091. Date of registration: March 23, 2010.
Collapse
Affiliation(s)
- Stephen L Chan
- State Key Laboratory of Translational Oncology, Hong Kong, China.
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China.
| | - Paul N M Cheng
- Bio-Cancer Treatment International Ltd., Hong Kong, China
| | - Angela M Liu
- Bio-Cancer Treatment International Ltd., Hong Kong, China
| | - Landon L Chan
- Department of Oncology, Princess Margaret Hospital, Hong Kong, China
| | - Leung Li
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheuk M Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Charing C N Chong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Yat M Lau
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Winnie Yeo
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin K C Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon C H Yu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tony S K Mok
- State Key Laboratory of Translational Oncology, Hong Kong, China
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony W H Chan
- Department of Anatomical and Cellular Pathology|, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Kim S, Lee M, Song Y, Lee SY, Choi I, Park IS, Kim J, Kim JS, Kim KM, Seo HR. Argininosuccinate synthase 1 suppresses tumor progression through activation of PERK/eIF2α/ATF4/CHOP axis in hepatocellular carcinoma. J Exp Clin Cancer Res 2021; 40:127. [PMID: 33838671 PMCID: PMC8035787 DOI: 10.1186/s13046-021-01912-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant cancers worldwide, and liver cancer has increased in mortality due to liver cancer because it was detected at an advanced stages in patients with liver dysfunction, making HCC a lethal cancer. Accordingly, we aim to new targets for HCC drug discovery using HCC tumor spheroids. METHODS Our comparative proteomic analysis of HCC cells grown in culture as monolayers (2D) and spheroids (3D) revealed that argininosuccinate synthase 1 (ASS1) expression was higher in 3D cells than in 2D cells due to upregulated endoplasmic reticulum (ER) stress responses. We investigated the clinical value of ASS1 in Korean patients with HCC. The mechanism underlying ASS1-mediated tumor suppression was investigated in HCC spheroids. ASS1-mediated improvement of chemotherapy efficiency was observed using high content screening in an HCC xenograft mouse model. RESULTS Studies of tumor tissue from Korean HCC patients showed that, although ASS1 expression was low in most samples, high levels of ASS1 were associated with favorable overall survival of patients. Here, we found that bidirectional interactions between ASS1 ER stress responses in HCC-derived multicellular tumor spheroids can limit HCC progression. ASS1 overexpression effectively inhibited tumor growth and enhanced the efficacy of in vitro and in vivo anti-HCC combination chemotherapy via activation of the PERK/eIF2α/ATF4/CHOP axis, but was not dependent on the status of p53 and arginine metabolism. CONCLUSIONS These results demonstrate the critical functional roles for the arginine metabolism-independent tumor suppressor activity of ASS1 in HCC and suggest that upregulating ASS1 in these tumors is a potential strategy in HCC cells with low ASS1 expression.
Collapse
Affiliation(s)
- Sanghwa Kim
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400 Republic of Korea
| | - Minji Lee
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400 Republic of Korea
| | - Yeonhwa Song
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400 Republic of Korea
| | - Su-Yeon Lee
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400 Republic of Korea
| | - Inhee Choi
- Medicinal Chemistry, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 South Korea
| | - I-Seul Park
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 South Korea
| | - Jiho Kim
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 South Korea
| | - Jin-sun Kim
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
| | - Kang mo Kim
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
| | - Haeng Ran Seo
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400 Republic of Korea
| |
Collapse
|
9
|
Phase 1 trial of ADI-PEG20 plus cisplatin in patients with pretreated metastatic melanoma or other advanced solid malignancies. Br J Cancer 2021; 124:1533-1539. [PMID: 33674736 DOI: 10.1038/s41416-020-01230-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Arginine depletion interferes with pyrimidine metabolism and DNA damage-repair pathways, and pairing arginine deiminase pegylated with 20,000-molecular-weight polyethylene glycol (ADI-PEG20) with platinum enhances cytotoxicity in vitro and in vivo in arginine auxotrophs. METHODS This single-centre, Phase 1 trial was conducted using a 3 + 3 dose escalation designed to assess safety, tolerability and determine the recommended Phase 2 dose (RP2D) of ADI-PEG20. RESULTS We enrolled 99 patients with metastatic argininosuccinate synthetase 1 (ASS1) deficient malignancies. We observed no dose-limiting toxic effects or treatment-related mortality. Three percent of patients discontinued treatment because of toxicity. After treatment, 5% (5/99) of patients had partial responses, and 41% had stable disease. The median progression-free and overall survival durations were 3.62 and 8.06 months, respectively. Substantial arginine depletion and citrulline escalation persisted in most patients through weeks 24 and 8, respectively. Tumour responses were associated with anti-ADI-PEG20 antibody levels at weeks 8 and 16 (p = 0.031 and p = 0.0357, respectively). CONCLUSION Concurrently administered ADI-PEG20 and cisplatin had an acceptable safety profile and had shown antitumour activity against metastatic ASS1-deficient solid tumours. Further evaluation of this treatment combination is warranted.
Collapse
|
10
|
Wang W, Li Q, Huang G, Lin BY, Lin D, Ma Y, Zhang Z, Chen T, Zhou J. Tandem Mass Tag-Based Proteomic Analysis of Potential Biomarkers for Hepatocellular Carcinoma Differentiation. Onco Targets Ther 2021; 14:1007-1020. [PMID: 33603407 PMCID: PMC7886252 DOI: 10.2147/ott.s273823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/28/2021] [Indexed: 01/27/2023] Open
Abstract
Purpose The poor prognosis of hepatocellular carcinoma (HCC) urgent us to discover early and effective biomarkers. In this study, we applied tandem mass tag (TMT)-based proteomic analysis to discover potential protein markers for HCC identification and differentiation. Patients and Methods Fifteen patients, well-differentiated (G1, N = 5), moderate-differentiated (G2, N = 5), and poorly differentiated (G3, N = 5), with 30 matched pair tissues (both tumor and adjacent non-tumor tissues derived from the same patient) were enrolled. All samples were subjected to TMT labeling and LC−MS/MS analysis. The identified proteins were subsequently assigned to GO and KEGG for predicting function. The identified protein candidates were validated using immunohistochemistry (IHC). Results A total of 1010 proteins were identified. Of these, 154 differentially expressed proteins (DEPs), 100 up-regulated and 54 down-regulated, were found between tumor and adjacent non-tumor tissues; 12 DEPs, 9 up-regulated and 3 down-regulated, were found between G1 and G3 tissues; 8 DEPs, 5 up-regulated and 3 down-regulated, were found between G1 and G2 tissues; 11 DEPs, 8 up-regulated and 3 down-regulated, were found between G2 and G3 tissues. Among them, ASS1 and CPS1 were significantly up-regulated while UROD and HBB were significantly down-regulated in G3 compared with G1 and G2 tumors. Three proteins, CYB5A, FKBP11 and YBX1, were significantly up-regulated in G1 compared with both G2 and G3 tumors. The 7 biomarker candidates were further verified by IHC. Conclusion A variety of DEPs related to the histological differentiation of HCC were identified, among which ASS1, CPS1, URPD and HBB proteins were potential biomarkers for distinguishing poorly differentiated HCC, while CYB5A, FKBP11 and YBX1 were potential biomarkers for distinguishing well-differentiated HCC. Our findings may further provide a new insight facilitating the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Laboratory, Foshan Fourth People's Hospital, Foshan, 528000, People's Republic of China
| | - Qiang Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, People's Republic of China
| | - Ge Huang
- Intensive Care Unit, Foshan Fourth People's Hospital, Foshan, 528000, People's Republic of China
| | - Bing-Yao Lin
- Department of Laboratory, Foshan Fourth People's Hospital, Foshan, 528000, People's Republic of China
| | - Dongzi Lin
- Department of Laboratory, Foshan Fourth People's Hospital, Foshan, 528000, People's Republic of China
| | - Yan Ma
- Department of Laboratory, Foshan Fourth People's Hospital, Foshan, 528000, People's Republic of China
| | - Zhao Zhang
- Research and Development Centre, South China Institute of Biomedicine, Guangdonglongsee Biomedical Co., Ltd, Guangzhou, 510000, People's Republic of China
| | - Tao Chen
- Department of Laboratory, Foshan Fourth People's Hospital, Foshan, 528000, People's Republic of China
| | - Jie Zhou
- Department of Laboratory, Foshan Fourth People's Hospital, Foshan, 528000, People's Republic of China
| |
Collapse
|
11
|
Cao LL, Han Y, Wang Y, Pei L, Yue Z, Qin L, Liu B, Cui J, Jia M, Wang H. Metabolic Profiling Identified a Novel Biomarker Panel for Metabolic Syndrome-Positive Hepatocellular Cancer. Front Endocrinol (Lausanne) 2021; 12:816748. [PMID: 35154012 PMCID: PMC8826723 DOI: 10.3389/fendo.2021.816748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic syndrome (MetS) is an independent risk factor for hepatocellular cancer (HCC). Currently, there is no highly sensitive and specific biomarkers for HCC surveillance in MetS population. Metabolomics has been reported as a powerful technology for biomarker discovery. In the present study, we aimed to explore novel biomarkers with high sensitivity and specificity for MetS-positive [MetS(+)] HCC by metabolomic analysis. At first, many serum metabolites were found dysregulated in MetS(+) HCC individuals. Validation of the dysregulated metabolites by targeted metabolite analyses revealed that serum L-glutamic acid (L-glu), pipecolic acid (PA) and 7-methylguanine (7-mG) were increased in MetS(+) HCC compared to MetS group. Then a biomarker panel including L-glu, PA and alpha-fetoprotein (AFP) was identified as a novel biomarker for the diagnosis of MetS(+) HCC. Receiver operating characteristic (ROC) curve was drawn and the area under the ROC curve (AUC) was 0.87 for discriminating MetS(+) HCC from MetS group. The biomarker panel was capable of detecting small (AUC = 0.82) and early-stage (AUC = 0.78) tumors as well. Moreover, it exhibited great diagnostic performance (AUC = 0.93) for discriminating MetS(+) HCC from other MetS-associated cancers, including colorectal cancer and gastric cancer. Collectively, our study establishes a novel diagnostic tool for MetS(+) HCC.
Collapse
Affiliation(s)
- Lin-Lin Cao
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- *Correspondence: Lin-Lin Cao,
| | - Yi Han
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yuanxiao Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Lin Pei
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Zhihong Yue
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Li Qin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Boyu Liu
- Department of Pharmacy, Peking University People’s Hospital, Beijing, China
| | - Jingwen Cui
- SCIEX Analytical Instrument Trading Co., Shanghai, China
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
12
|
Oliveira GL, Coelho AR, Marques R, Oliveira PJ. Cancer cell metabolism: Rewiring the mitochondrial hub. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166016. [PMID: 33246010 DOI: 10.1016/j.bbadis.2020.166016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
To adapt to tumoral environment conditions or even to escape chemotherapy, cells rapidly reprogram their metabolism to handle adversities and survive. Given the rapid rise of studies uncovering novel insights and therapeutic opportunities based on the role of mitochondria in tumor metabolic programing and therapeutics, this review summarizes most significant developments in the field. Taking in mind the key role of mitochondria on carcinogenesis and tumor progression due to their involvement on tumor plasticity, metabolic remodeling, and signaling re-wiring, those organelles are also potential therapeutic targets. Among other topics, we address the recent data intersecting mitochondria as of prognostic value and staging in cancer, by mitochondrial DNA (mtDNA) determination, and current inhibitors developments targeting mtDNA, OXPHOS machinery and metabolic pathways. We contribute for a holistic view of the role of mitochondria metabolism and directed therapeutics to understand tumor metabolism, to circumvent therapy resistance, and to control tumor development.
Collapse
Affiliation(s)
- Gabriela L Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ana R Coelho
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ricardo Marques
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal.
| |
Collapse
|
13
|
Keshet R, Lee JS, Adler L, Iraqi M, Ariav Y, Lim LQJ, Lerner S, Rabinovich S, Oren R, Katzir R, Weiss Tishler H, Stettner N, Goldman O, Landesman H, Galai S, Kuperman Y, Kuznetsov Y, Brandis A, Mehlman T, Malitsky S, Itkin M, Koehler SE, Zhao Y, Talsania K, Shen TW, Peled N, Ulitsky I, Porgador A, Ruppin E, Erez A. Targeting purine synthesis in ASS1-expressing tumors enhances the response to immune checkpoint inhibitors. NATURE CANCER 2020; 1:894-908. [PMID: 35121952 DOI: 10.1038/s43018-020-0106-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 07/21/2020] [Indexed: 06/14/2023]
Abstract
Argininosuccinate synthase (ASS1) downregulation in different tumors has been shown to support cell proliferation and yet, in several common cancer subsets ASS1 expression associates with poor patient prognosis. Here we demonstrate that ASS1 expression under glucose deprivation is induced by c-MYC, providing survival benefit by increasing nitric oxide synthesis and activating the gluconeogenic enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase by S-nitrosylation. The resulting increased flux through gluconeogenesis enhances serine, glycine and subsequently purine synthesis. Notably, high ASS1-expressing breast cancer mice do not respond to immune checkpoint inhibitors and patients with breast cancer with high ASS1 have more metastases. We further find that inhibiting purine synthesis increases pyrimidine to purine ratio, elevates expression of the immunoproteasome and significantly enhances the response of autologous primary CD8+ T cells to anti-PD-1. These results suggest that treating patients with high-ASS1 cancers with purine synthesis inhibition is beneficial and may also sensitize them to immune checkpoint inhibition therapy.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Joo Sang Lee
- Cancer Data Science Lab, National Cancer Institutes of Health, Bethesda, MD, USA
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Lital Adler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Muhammed Iraqi
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yarden Ariav
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lisha Qiu Jin Lim
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shaul Lerner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shiran Rabinovich
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Katzir
- Cancer Data Science Lab, National Cancer Institutes of Health, Bethesda, MD, USA
| | - Hila Weiss Tishler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Goldman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Landesman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Galai
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tevi Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - S Eleonore Koehler
- Department Anatomy & Embryology, Maastricht University, Maastricht, the Netherlands
| | - Yongmei Zhao
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Keyur Talsania
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tsai-Wei Shen
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nir Peled
- The Legacy Heritage Oncology Center and Dr. Larry Norton Institute, Soroka Medical Center and Ben-Gurion University, Beer-Sheva, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Angel Porgador
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institutes of Health, Bethesda, MD, USA.
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Molecular modeling and LC-MS-based metabolomics of a glutamine-valproic acid (Gln-VPA) derivative on HeLa cells. Mol Divers 2020; 25:1077-1089. [PMID: 32328963 DOI: 10.1007/s11030-020-10089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
Glutaminase plays an important role in carcinogenesis and cancer cell growth. This biological target is interesting against cancer cells. Therefore, in this work, in silico [docking and molecular dynamics (MD) simulations] and in vitro methods (antiproliferative and LC-MS metabolomics) were employed to assay a hybrid compound derived from glutamine and valproic acid (Gln-VPA), which was compared with 6-diazo-5-oxo-L-norleucine (DON, a glutaminase inhibitor) and VPA (contained in Gln-VPA structure). Docking results from some snapshots retrieved from MD simulations show that glutaminase recognized Gln-VPA and DON. Additionally, Gln-VPA showed antiproliferative effects in HeLa cells and inhibited glutaminase activity. Finally, the LC-MS-based metabolomics studies on HeLa cells treated with either Gln-VPA (IC60 = 8 mM) or DON (IC50 = 3.5 mM) show different metabolomics behaviors, suggesting that they modulate different biological targets of the cell death mechanism. In conclusion, Gln-VPA is capable of interfering with more than one pharmacological target of cancer, making it an interesting drug that can be used to avoid multitherapy of classic anticancer drugs.
Collapse
|
15
|
Liu Z, Tu MJ, Zhang C, Jilek JL, Zhang QY, Yu AM. A reliable LC-MS/MS method for the quantification of natural amino acids in mouse plasma: Method validation and application to a study on amino acid dynamics during hepatocellular carcinoma progression. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:72-81. [PMID: 31177050 DOI: 10.1016/j.jchromb.2019.05.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/17/2019] [Accepted: 05/31/2019] [Indexed: 01/15/2023]
Abstract
A simple and fast LC-MS/MS method was developed and validated for simultaneous quantification of 20 proteinogenic l-amino acids (AAs) in a small volume (5 μL) of mouse plasma. Chromatographic separation was achieved on an Intrada Amino Acid column within 13 min via gradient elution with an aqueous solution containing 100 mM ammonium formate and an organic mobile phase containing acetonitrile, water and formic acid (v:v:v = 95:5:0.3), at the flow rate of 0.6 mL/min. Individual AAs and corresponding stable-isotope-labeled AAs internal standards were analyzed by multiple reaction monitoring (MRM) in positive ion mode under optimized conditions. Method validation consisted of linearity, sensitivity, accuracy and precision, recovery, matrix effect, and stability, and the results demonstrated this LC-MS/MS method as a specific, accurate, and reliable assay. This LC-MS/MS method was thus utilized to compare the dynamics of individual plasma AAs between healthy and orthotopic hepatocellular carcinoma (HCC) xenograft mice housed under identical conditions. Our results revealed that, 5 weeks after HCC tumor progression, plasma l-arginine concentrations were significantly decreased in HCC mice while l-alanine and l-threonine levels were sharply increased. These findings support the utilities of this LC-MS/MS method and the promise of specific AAs as possible biomarkers for HCC.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Medical Function, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, China; Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Chao Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Joseph L Jilek
- Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Qian-Yu Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
16
|
Pokrovsky VS, Chepikova OE, Davydov DZ, Zamyatnin AA, Lukashev AN, Lukasheva EV. Amino Acid Degrading Enzymes and their Application in Cancer Therapy. Curr Med Chem 2019; 26:446-464. [PMID: 28990519 DOI: 10.2174/0929867324666171006132729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Amino acids are essential components in various biochemical pathways. The deprivation of certain amino acids is an antimetabolite strategy for the treatment of amino acid-dependent cancers which exploits the compromised metabolism of malignant cells. Several studies have focused on the development and preclinical and clinical evaluation of amino acid degrading enzymes, namely L-asparaginase, L-methionine γ-lyase, L-arginine deiminase, L-lysine α-oxidase. Further research into cancer cell metabolism may therefore define possible targets for controlling tumor growth. OBJECTIVE The purpose of this review was to summarize recent progress in the relationship between amino acids metabolism and cancer therapy, with a particular focus on Lasparagine, L-methionine, L-arginine and L-lysine degrading enzymes and their formulations, which have been successfully used in the treatment of several types of cancer. METHODS We carried out a structured search among literature regarding to amino acid degrading enzymes. The main aspects of search were in vitro and in vivo studies, clinical trials concerning application of these enzymes in oncology. RESULTS Most published research are on the subject of L-asparaginase properties and it's use for cancer treatment. L-arginine deiminase has shown promising results in a phase II trial in advanced melanoma and hepatocellular carcinoma. Other enzymes, in particular Lmethionine γ-lyase and L-lysine α-oxidase, were effective in vitro and in vivo. CONCLUSION The findings of this review revealed that therapy based on amino acid depletion may have the potential application for cancer treatment but further clinical investigations are required to provide the efficacy and safety of these agents.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- Blokhin Cancer Research Center, Moscow, Russian Federation.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russian Federation.,People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| | - Olga E Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Belozersky Institute of Physico- Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander N Lukashev
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Elena V Lukasheva
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| |
Collapse
|
17
|
The Diverse Functions of Non-Essential Amino Acids in Cancer. Cancers (Basel) 2019; 11:cancers11050675. [PMID: 31096630 PMCID: PMC6562791 DOI: 10.3390/cancers11050675] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 01/31/2023] Open
Abstract
Far beyond simply being 11 of the 20 amino acids needed for protein synthesis, non-essential amino acids play numerous important roles in tumor metabolism. These diverse functions include providing precursors for the biosynthesis of macromolecules, controlling redox status and antioxidant systems, and serving as substrates for post-translational and epigenetic modifications. This functional diversity has sparked great interest in targeting non-essential amino acid metabolism for cancer therapy and has motivated the development of several therapies that are either already used in the clinic or are currently in clinical trials. In this review, we will discuss the important roles that each of the 11 non-essential amino acids play in cancer, how their metabolic pathways are linked, and how researchers are working to overcome the unique challenges of targeting non-essential amino acid metabolism for cancer therapy.
Collapse
|
18
|
Tao X, Zuo Q, Ruan H, Wang H, Jin H, Cheng Z, Lv Y, Qin W, Wang C. Argininosuccinate synthase 1 suppresses cancer cell invasion by inhibiting STAT3 pathway in hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2019; 51:263-276. [PMID: 30883650 DOI: 10.1093/abbs/gmz005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/06/2019] [Indexed: 12/16/2022] Open
Abstract
Metastasis is the main reason for high recurrence and poor survival of hepatocellular carcinoma (HCC). The molecular mechanism underlying HCC metastasis remains unclear. In this study, we found that argininosuccinate synthase 1 (ASS1) expression was significantly decreased and down-regulation of ASS1 was closely correlated with poor prognosis in HCC patients. DNA methylation led to the down-regulation of ASS1 in HCC. Stable silencing of ASS1 promoted migration and invasion of HCC cells, whereas overexpression of ASS1-inhibited metastasis of HCC cells in vivo and in vitro. We also revealed that ASS1-knockdown increased the phosphorylation level of S727STAT3, which contributed to HCC metastasis by up-regulation of inhibitor of differentiation 1 (ID1). These findings indicate that ASS1 inhibits HCC metastasis and may serve as a target for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Xuemei Tao
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaozhu Zuo
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Ruan
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoan Cheng
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Lv
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Akkoç Y, Gözüaçık D. Autophagy and liver cancer. TURKISH JOURNAL OF GASTROENTEROLOGY 2018; 29:270-282. [PMID: 29755011 DOI: 10.5152/tjg.2018.150318] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autophagy is a key biological phenomenon conserved from yeast to mammals. Under basal conditions, activation of autophagy leads to the protein degradation as well as damaged organelles for maintaining cellular homeostasis. Deregulation of autophagy has been identified as a key mechanism contributing to the pathogenesis and progression of several liver diseases, including hepatocellular carcinoma (HCC), one of the most common and mortal types of cancer. Currently used treatment strategies in patients with HCC result in variable success rates. Therefore, novel early diagnosis and treatment techniques should be developed. Manipulation of autophagy may improve responses of cancer cell to treatments and provide novel targeted therapy options for HCC. In this review, we summarized how our understanding of autophagy-cell death connection may have an impact on HCC therapy.
Collapse
Affiliation(s)
- Yunus Akkoç
- Department of Molecular Biology, Genetics and Bioengineering, Sabancı University School of Engineering and Natural Sciences, İstanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, İstanbul, Turkey
| | - Devrim Gözüaçık
- Department of Molecular Biology, Genetics and Bioengineering, Sabancı University School of Engineering and Natural Sciences, İstanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, İstanbul, Turkey
| |
Collapse
|
20
|
Abstract
Cancer cells reprogramme metabolism to maximize the use of nitrogen and carbon for the anabolic synthesis of macromolecules that are required during tumour proliferation and growth. To achieve this aim, one strategy is to reduce catabolism and nitrogen disposal. The urea cycle (UC) in the liver is the main metabolic pathway to convert excess nitrogen into disposable urea. Outside the liver, UC enzymes are differentially expressed, enabling the use of nitrogen for the synthesis of UC intermediates that are required to accommodate cellular needs. Interestingly, the expression of UC enzymes is altered in cancer, revealing a revolutionary mechanism to maximize nitrogen incorporation into biomass. In this Review, we discuss the metabolic benefits underlying UC deregulation in cancer and the relevance of these alterations for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Peter Szlosarek
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
- Barts Health NHS Trust, St Bartholomew's Hospital, London, UK
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Keshet R, Erez A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Dis Model Mech 2018; 11:11/8/dmm033332. [PMID: 30082427 PMCID: PMC6124554 DOI: 10.1242/dmm.033332] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is a signaling molecule that plays important roles in diverse biological processes and thus its dysregulation is involved in the pathogenesis of various disorders. In cancer, NO has broad and sometimes dichotomous roles; it is involved in cancer initiation and progression, but also restricts cancer proliferation and invasion, and contributes to the anti-tumor immune response. The importance of NO in a range of cellular processes is exemplified by its tight spatial and dosage control at multiple levels, including via its transcriptional, post-translational and metabolic regulation. In this Review, we focus on the regulation of NO via the synthesis and availability of its precursor, arginine, and discuss the implications of this metabolic regulation for cancer biology and therapy. Despite the established contribution of NO to cancer pathogenesis, the implementation of NO-related cancer therapeutics remains limited, likely due to the challenge of targeting and inducing its protective functions in a cell- and dosage-specific manner. A better understanding of how arginine regulates the production of NO in cancer might thus support the development of anti-cancer drugs that target this key metabolic pathway, and other metabolic pathways involved in NO production.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
22
|
Reduced argininosuccinate synthetase expression in refractory sarcomas: Impacts on therapeutic potential and drug resistance. Oncotarget 2018; 7:70832-70844. [PMID: 27683125 PMCID: PMC5342592 DOI: 10.18632/oncotarget.12225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/15/2016] [Indexed: 01/23/2023] Open
Abstract
Background Treating drug-resistant sarcomas remains a major challenge. The present study aimed to identify a novel therapy for drug-resistant sarcomas based on metabolic errors involving argininosuccinate synthetase1 (ASS1). Results ASS1 expression was reduced in Dox-resistant sarcoma cells. Immunohistochemistry and real-time PCR showed an inverse correlation between ASS1 and P-gp expressions. The inhibition of cellular proliferation with G1-arrest was shown to lead to autophagy with arginine deprivation. In addition, the combination of an autophagy inhibitor plus arginine deprivation was more effective than arginine deprivation alone. In cells with suppressed ASS1 expression, P-gp expression was upregulated as compared to that in negative controls. Discussion These results indicate that the reduced ASS1 expression in Dox-resistant sarcomas may contribute to drug resistance in association with the expression of P-gp. ASS1 deficiency is a potential target for novel drug therapies. The combination of arginine-deprivation therapy and an autophagy inhibitor may have anti-tumor effects in refractory sarcomas. Methods We assessed the expressions of ASS1 and P-glycoprotein (P-gp) in clinical specimens and cell lines of osteosarcoma (KHOS), doxorubicin (Dox)-resistant osteosarcoma (KHOSR2), epithelioid sarcomas (ES-X and VAESBJ) and alveolar soft part sarcoma (ASPS-KY). Each cell line was cultured in arginine-containing and arginine-free media. Cell growth was assessed using an XTT assay and flow cytometry. We analyzed the induction of autophagy in arginine-free medium. Moreover, we assessed the expression of P-gp after suppressing ASS1 in Dox-sensitive cells (MCF-7 and KHOS) and after transfecting ASS1 into Dox-resistant cells (ES-X, VAESBJ, ASPS-KY and KHOSR2).
Collapse
|
23
|
Maletzki C, Rosche Y, Riess C, Scholz A, William D, Classen CF, Kreikemeyer B, Linnebacher M, Fiedler T. Deciphering molecular mechanisms of arginine deiminase-based therapy - Comparative response analysis in paired human primary and recurrent glioblastomas. Chem Biol Interact 2017; 278:179-188. [PMID: 28989041 DOI: 10.1016/j.cbi.2017.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/23/2022]
Abstract
Arginine auxotrophy constitutes the Achilles' heel for several tumors, among them glioblastoma multiforme (GBM). Hence, arginine-depleting enzymes such as arginine deiminase (ADI) from Streptococcus pyogenes are promising for treatment of primary and maybe even refractory GBM. Based on our previous study in which ADI-susceptibility was shown on a panel of patient-derived GBM cell lines, we here aimed at deciphering underlying molecular mechanisms of ADI-mediated growth inhibition. We found that ADI (35 mU/mL) initially induces a cellular stress-response that is characterized by upregulation of genes primarily belonging to the heat-shock protein family. In addition to autophagocytosis, we show for the first time that senescence constitutes another cellular response mechanism upon ADI-treatment and that this bacterial enzyme is able to act as radiosensitizer (¼ cases). Long-term treatment schedules revealed no resistance development, with treated cells showing morphological signs of cell stress. Next, several combination strategies were employed to optimize ADI-based treatment. Simultaneous and sequential S. pyogenes ADI-based combinations included substances acting at different molecular pathways (curcumin, resveratrol, quinacrine, and sorafenib, 2 × 72 h treatment). Adding drugs to GBM cell lines (n = 4, including a matched pair of primary and recurrent GBM in one case) accelerated and potentiated ADI-mediated cytotoxicity. Autophagy was identified as the main cause of tumor growth inhibition. Of note, residual cells again showed classical signs of senescence in most combinations. Our results suggest an alternative treatment regimen for this fatal cancer type which circumvents many of the traditional barriers. Using the metabolic defect in GBM thus warrants further (pre-) clinical evaluation.
Collapse
Affiliation(s)
- Claudia Maletzki
- Molecular Oncology and Immunotherapy, Department of General Surgery, 18057 Rostock, Germany.
| | - Yvonne Rosche
- Molecular Oncology and Immunotherapy, Department of General Surgery, 18057 Rostock, Germany; Institute for Medical Microbiology, Virology, and Hygiene, 18057 Rostock, Germany
| | - Christin Riess
- Molecular Oncology and Immunotherapy, Department of General Surgery, 18057 Rostock, Germany; Institute for Medical Microbiology, Virology, and Hygiene, 18057 Rostock, Germany
| | - Aline Scholz
- Molecular Oncology and Immunotherapy, Department of General Surgery, 18057 Rostock, Germany; Institute for Medical Microbiology, Virology, and Hygiene, 18057 Rostock, Germany
| | - Doreen William
- Molecular Oncology and Immunotherapy, Department of General Surgery, 18057 Rostock, Germany; University Childrens' Hospital, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Carl Friedrich Classen
- University Childrens' Hospital, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology, and Hygiene, 18057 Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General Surgery, 18057 Rostock, Germany
| | - Tomas Fiedler
- Institute for Medical Microbiology, Virology, and Hygiene, 18057 Rostock, Germany
| |
Collapse
|
24
|
Thongkum A, Wu C, Li YY, Wangpaichitr M, Navasumrit P, Parnlob V, Sricharunrat T, Bhudhisawasdi V, Ruchirawat M, Savaraj N. The Combination of Arginine Deprivation and 5-Fluorouracil Improves Therapeutic Efficacy in Argininosuccinate Synthetase Negative Hepatocellular Carcinoma. Int J Mol Sci 2017; 18:ijms18061175. [PMID: 28587170 PMCID: PMC5485998 DOI: 10.3390/ijms18061175] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
Argininosuccinate synthetase (ASS), a key enzyme to synthesize arginine is down regulated in many tumors including hepatocellular carcinoma (HCC). Similar to previous reports, we have found the decrease in ASS expression in poorly differentiated HCC. These ASS(-) tumors are auxotrophic for arginine. Pegylated arginine deiminase (ADI-PEG20), which degrades arginine, has shown activity in these tumors, but the antitumor effect is not robust and hence combination treatment is needed. Herein, we have elucidated the effectiveness of ADI-PEG20 combined with 5-Fluorouracil (5-FU) in ASS(-)HCC by targeting urea cycle and pyrimidine metabolism using four HCC cell lines as model. SNU398 and SNU387 express very low levels of ASS or ASS(-) while Huh-1, and HepG2 express high ASS similar to normal cells. Our results showed that the augmented cytotoxic effect of combination treatment only occurs in SNU398 and SNU387, and not in HepG2 and Huh-1 (ASS(+)) cells, and is partly due to reduced anti-apoptotic proteins X-linked inhibitor of apoptosis protein (XIAP), myeloid leukemia cell differentiation protein (Mcl-1) and B-cell lymphoma-2 (Bcl-2). Importantly, lack of ASS also influences essential enzymes in pyrimidine synthesis (carbamoyl-phosphate synthetase2, aspartate transcarbamylase and dihydrooratase (CAD) and thymidylate synthase (TS)) and malate dehydrogenase-1 (MDH-1) in TCA cycle. ADI-PEG20 treatment decreased these enzymes and made them more vulnerable to 5-FU. Transfection of ASS restored these enzymes and abolished the sensitivity to ADI-PEG20 and combination treatment. Overall, our data suggest that ASS influences multiple enzymes involved in 5-FU sensitivity. Combining ADI-PEG20 and 5-FU may be effective to treat ASS(-)hepatoma and warrants further clinical investigation.
Collapse
Affiliation(s)
- Angkana Thongkum
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand.
- Chulabhorn Graduate Institute, Laksi, Bangkok 10210, Thailand.
| | - Chunjing Wu
- Division of Hematology/Oncology, Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA.
| | - Ying-Ying Li
- Division of Hematology/Oncology, Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Medhi Wangpaichitr
- Division of Hematology/Oncology, Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA.
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand.
- Chulabhorn Graduate Institute, Laksi, Bangkok 10210, Thailand.
- Center of Excellence on Environmental Health, Toxicology (EHT), Ministry of Education, Bangkok 10300, Thailand.
| | - Varabhorn Parnlob
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand.
| | - Thaniya Sricharunrat
- Laboratory Unit of Pathology, Chulabhorn Hospital, Laksi, Bangkok 10210, Thailand.
| | - Vajarabhongsa Bhudhisawasdi
- Department of Surgery, Faculty of Medicine, Khonkaen University, Khonkaen 40000, Thailand.
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand.
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand.
- Center of Excellence on Environmental Health, Toxicology (EHT), Ministry of Education, Bangkok 10300, Thailand.
| | - Niramol Savaraj
- Division of Hematology/Oncology, Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
25
|
Li YY, Wu C, Chen SM, Shah SS, Wangpaichitr M, Feun LG, Kuo MT, Suarez M, Prince J, Savaraj N. BRAF inhibitor resistance enhances vulnerability to arginine deprivation in melanoma. Oncotarget 2017; 7:17665-80. [PMID: 26771234 PMCID: PMC4951241 DOI: 10.18632/oncotarget.6882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/03/2016] [Indexed: 12/22/2022] Open
Abstract
BRAF inhibitor (BRAFi) has been used for treatment of melanomas harboring V600E mutation. Despite a high initial response rate, resistance to BRAFi is inevitable. Here, we demonstrate that BRAFi-resistant (BR) melanomas are susceptible to arginine deprivation due to inability to initiate re-expression of argininosuccinate synthetase (ASS1, a key enzyme for arginine synthesis) as well as ineffective autophagy. Autophagy and ASS1 re-expression are known to protect melanoma cells from cell death upon arginine deprivation. When melanoma cells become BR cells by long-term in vitro incubation with BRAFi, c-Myc-mediated ASS1 re-expression and the levels of autophagy-associated proteins (AMPK-α1 and Atg5) are attenuated. Furthermore, our study uncovers that downregulation of deubiquitinase USP28 which results in more active c-Myc degradation via ubiquitin-proteasome machinery is the primary mechanism for inability to re-express ASS1 upon arginine deprivation in BR cells. Overexpression of USP28 in BR cells enhances c-Myc expression and hence increases ASS1 transcription upon arginine deprivation, and consequently leads to cell survival. On the other hand, overexpression of Atg5 or AMPK-α1 in BR cells can redirect arginine deprivation-induced apoptosis toward autophagy. The xenograft models also confirm that BR tumors possess lower expression of ASS1 and are hypersensitive to arginine deprivation. These biochemical changes in BRAFi resistance which make them vulnerable to arginine deprivation can be exploited for the future treatment of BR melanoma patients.
Collapse
Affiliation(s)
- Ying-Ying Li
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Chunjing Wu
- Division of Hematology and Oncology, Miami Veterans Affairs Healthcare System, Miami, Florida, USA
| | - Shu-Mei Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Neurosurgery, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Sumedh S Shah
- Dauer Electron Microscopy Laboratory, Department of Biology, University of Miami, Miami, FL, USA
| | - Medhi Wangpaichitr
- Division of Hematology and Oncology, Miami Veterans Affairs Healthcare System, Miami, Florida, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lynn G Feun
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Macus T Kuo
- Department of Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Miguel Suarez
- Department of Laboratory Medicine, Miami Veterans Affairs Healthcare System, Miami, Florida, USA
| | - Jeffrey Prince
- Dauer Electron Microscopy Laboratory, Department of Biology, University of Miami, Miami, FL, USA
| | - Niramol Savaraj
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA.,Division of Hematology and Oncology, Miami Veterans Affairs Healthcare System, Miami, Florida, USA
| |
Collapse
|
26
|
Liu JB, Lei LL, Yang YH, Li W, Ma QY, Liu DC, Li SQ. Arginine deiminase inhibits pancreatic cancer cell invasion by blocking PI3K-AKT signaling pathway. Shijie Huaren Xiaohua Zazhi 2016; 24:3570-3579. [DOI: 10.11569/wcjd.v24.i24.3570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the impact of arginine deiminase (ADI) on the migration and invasion of human pancreatic cancer cells and the possible mechanism involved.
METHODS The pancreatic cancer cell lines PANC-1 expressing defective argininosuccinate synthase (ASS) and BxPC-3 expressing ASS protein were chosen for the ADI treatment experiments, and they were cultured in the medium containing ADI (experimental group) or the common medium without ADI (control group). The impact of ADI on the migration and invasion of the two pancreatic cancer cell lines was examined by scratch assay and transwell invasion assay. The mRNA and protein expression of invasion-related genes in pancreatic cancer cells treated with ADI was detected by real-time quantitative PCR and/or Western blot. The expression of signal transduction proteins and invasion-related proteins in PANC-1 cell treated with ADI in combination with PI3K signaling inhibitor LY294002 was also analyzed.
RESULTS ADI significantly inhibited cell migration and invasion (P < 0.05), down-regulated the mRNA and protein levels of urokinase plasminogen activator, matrix metalloproteinases (MMP)-2, as well as MMP-9, and elevated the levels of tissue inhibitor of metalloproteinase-2 and E-Cadherin (P < 0.05) in ASS deficient pancreatic cancer cell line PANC-1; while there were no obvious changes for ASS-positive pancreatic cancer cell line BxPC-3. ADI reduced the expression levels of p-AKT and p-p65, which are involved in the PI3K/AKT/nuclear factor-kappa B (NF-κB) signaling, in PANC-1 cells, and PI3K inhibitor LY294002 can synergize the effect of ADI on reducing the levels of phosphorylation of the signaling protein and MMP-2. Furthermore, in combination with ADI, LY294002 synergistically inhibited the invasion ability of pancreatic cancer PANC-1 cells (P < 0.05).
CONCLUSION ADI inhibits the invasion of pancreatic cancer cells by regulating the expression of invasion-related genes via blocking the PI3K-AKT signaling pathway.
Collapse
|
27
|
Wang Q, Shen L, Ma SY, Chen MW, Lin X, Hong YL, Feng Y. Determination of the levels of two types of neurotransmitter and the anti-migraine effects of different dose-ratios of Ligusticum chuanxiong and Gastrodia elata. J Food Drug Anal 2016; 24:189-198. [PMID: 28911403 PMCID: PMC9345439 DOI: 10.1016/j.jfda.2015.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/23/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Ligusticum chuanxiong (LC)–Gastrodia elata (GE) compatibility is widely used in the clinic for the treatment of migraine. It has been shown that the changes of neurotransmitters in the central nervous system are closely related to the pathogenesis of migraine; whether LC–GE compatibility might affect the neurotransmitters in migraine rats has not yet been studied. In this study, high performance liquid chromatography-fluorescence detector methods for quantification of serotonin (5-hydroxytryptamine, 5-HT) and excitatory amino acids (EAAs) in rat brain were developed. The 5-HT was measured directly, while EAAs were determined by using dansyl chloride as precolumn derivative reagent. The validation of the methods, including selectivity, linearity, sensitivity, precision, accuracy, recoveries, and stability were carried out and demonstrated to meet the requirements of quantitative analysis. Compared with the model group, the expression of 5-HT in migraine rat brain was enhanced from 30 minutes to 120 minutes and glutamate (L-Glu) was suppressed from 30 minutes to 60 minutes in an LC–GE (4:3) group compared with the model group (p < 0.05, p < 0.01, respectively). These findings showed that the analytical methods were simple, sensitive, selective, and low cost, and LC–GE 4:3 compatibility could have better efficacy for treating migraine through upregulating 5-HT levels and downregulating L-Glu levels.
Collapse
Affiliation(s)
- Qiang Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
| | - Lan Shen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
- Corresponding author. School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Room 10405, Number 1200 Cailun Road, Shanghai 201203, China. E-mail address: (L. Shen)
| | - Shi-Yu Ma
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao,
China
| | - Xiao Lin
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
| | - Yan-Long Hong
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
| |
Collapse
|
28
|
Shiue SC, Huang MZ, Tsai TF, Chang AC, Choo KB, Huang CJ, Su TS. Expression profile and down-regulation of argininosuccinate synthetase in hepatocellular carcinoma in a transgenic mouse model. J Biomed Sci 2015; 22:10. [PMID: 25616743 PMCID: PMC4308890 DOI: 10.1186/s12929-015-0114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/12/2015] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Argininosuccinate synthetase (ASS) participates in urea and nitric oxide production and is a rate-limiting enzyme in arginine biosynthesis. Regulation of ASS expression appears complex and dynamic. In addition to transcriptional regulation, a novel post-transcriptional regulation affecting nuclear precursor RNA stability has been reported. Moreover, many cancers, including hepatocellular carcinoma (HCC), have been found not to express ASS mRNA; therefore, they are auxotrophic for arginine. To study when and where ASS is expressed and whether post-transcriptional regulation is undermined in particular temporal and spatial expression and in pathological events such as HCC, we set up a transgenic mouse system with modified BAC (bacterial artificial chromosome) carrying the human ASS gene tagged with an EGFP reporter. RESULTS We established and characterized the transgenic mouse models based on the use of two BAC-based EGFP reporter cassettes: a transcription reporter and a transcription/post-transcription coupled reporter. Using such a transgenic mouse system, EGFP fluorescence pattern in E14.5 embryo was examined. Profiles of fluorescence and that of Ass RNA in in situ hybridization were found to be in good agreement in general, yet our system has the advantages of sensitivity and direct fluorescence visualization. By comparing expression patterns between mice carrying the transcription reporter and those carrying the transcription/post-transcription couple reporter, a post-transcriptional up-regulation of ASS was found around the ventricular zone/subventricular zone of E14.5 embryonic brain. In the EGFP fluorescence pattern and mRNA level in adult tissues, tissue-specific regulation was found to be mainly controlled at transcriptional initiation. Furthermore, strong EGFP expression was found in brain regions of olfactory bulb, septum, habenular nucleus and choroid plexus of the young transgenic mice. On the other hand, in crossing to hepatitis B virus X protein (HBx)-transgenic mice, the Tg (ASS-EGFP, HBx) double transgenic mice developed HCC in which ASS expression was down-regulated, as in clinical samples. CONCLUSIONS The BAC transgenic mouse model described is a valuable tool for studying ASS gene expression. Moreover, this mouse model is a close reproduction of clinical behavior of ASS in HCC and is useful in testing arginine-depleting agents and for studies of the role of ASS in tumorigenesis.
Collapse
Affiliation(s)
- Shih-Chang Shiue
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan.
| | - Miao-Zeng Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.
| | - Alice Chien Chang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.
| | - Kong Bung Choo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.
- Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia.
| | - Chiu-Jung Huang
- Department of Animal Science, Chinese Culture University, Taipei, Taiwan.
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan.
| | - Tsung-Sheng Su
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW There has been an increased and renewed interest in metabolic therapy for cancer, particularly Arg deprivation. The purpose of this review is to highlight recent studies that focus on Arg-dependent malignancies with Arginine (Arg)-degrading enzymes, including arginase and Arg deiminase. RECENT FINDINGS New developments in this area include understanding of the role of most significantly downregulated gene regulating amino acid metabolism, argininosuccinate synthetase and its expression and therapeutic relevance in different tumors. Recent studies have also shed light on the mechanism of tumor cell death with Arg deprivation, with arginase and pegylated Arg deiminase. Particularly important is understanding the mechanism of resistance that cancers develop after such drug exposure. Finally, recent clinical trials have been performed or are ongoing to use Arg deprivation as treatment for advanced malignancies. SUMMARY Arg deprivation is a promising approach for the treatment of various malignancies.
Collapse
Affiliation(s)
- Lynn G Feun
- aSylvester Comprehensive Cancer Center, University of Miami, Miami, Florida bDepartment of Translational Molecular Pathology, The University of Texas MD, Anderson Cancer Center, Houston, Texas cSylvester Comprehensive Cancer Center, University of Miami, VA Medical Center, Miami, Florida, USA
| | | | | |
Collapse
|
30
|
D’Apolito O, Garofalo D, Gelzo M, Paris D, Melck D, Calemma R, Izzo F, Palmieri G, Castello G, Motta A, Corso G. Basic amino acids and dimethylarginines targeted metabolomics discriminates primary hepatocarcinoma from hepatic colorectal metastases. Metabolomics 2014; 10:1026-1035. [DOI: 10.1007/s11306-014-0641-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Ahn KY, Lee B, Han KY, Song JA, Lee DS, Lee J. Synthesis of Mycoplasma arginine deiminase in E. coli using stress-responsive proteins. Enzyme Microb Technol 2014; 63:46-9. [DOI: 10.1016/j.enzmictec.2014.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 11/26/2022]
|
32
|
Anwar SL, Lehmann U. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma. World J Gastroenterol 2014; 20:7894-7913. [PMID: 24976726 PMCID: PMC4069317 DOI: 10.3748/wjg.v20.i24.7894] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/24/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC.
Collapse
|