1
|
Chen Y, Wang J, Gu L, Chen H, Gai Z, Hu R, Qing B, Yuan Y, Xia Z. lncRNA NR_146969 promotes the progression of lung adenocarcinoma. Exp Cell Res 2025; 447:114535. [PMID: 40147711 DOI: 10.1016/j.yexcr.2025.114535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Emerging research suggests that dysregulation of long non-coding RNAs (lncRNAs) is closely linked to the onset and progression of cancer. In this study, we used lncRNA array technology to identify differentially expressed lncRNAs in lung adenocarcinoma patients and normal lung tissues. The study further explored the clinical significance and function of candidate lncRNAs in lung adenocarcinoma (LUAD). The results showed that lncRNA NR_146969 was upregulated in LAUD specimens and was associated with lymph node metastasis and clinical staging in LUAD patients. METHODS The biological functions of lncRNA NR_146969 were observed using CCK-8, colony formation, transwell assay and xenograft tumor model. Explore the potential mechanism of action of lncRNA NR_146969 by FISH, dual luciferase reporter assay and recovery assay. RESULTS Overall, lncRNA NR_146969 plays an oncogenic role in LUAD. Mechanically, lncRNA NR_146969 targets SLC6A14 via miR-26a-1-3p, leading to phosphorylation of the AKT/mTOR pathway, which promotes LUAD growth and metastasis. CONCLUSION Therefore, targeting lncRNA NR_146969 may provide a new therapeutic strategy for LUAD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Juan Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Linguo Gu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hongzuo Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengling Gai
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Rui Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Bei Qing
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yunchang Yuan
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Zou Z, Li H, Xu G, Hu Y, Zhang W, Tian K. Current Knowledge and Future Perspectives of Exosomes as Nanocarriers in Diagnosis and Treatment of Diseases. Int J Nanomedicine 2023; 18:4751-4778. [PMID: 37635911 PMCID: PMC10454833 DOI: 10.2147/ijn.s417422] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023] Open
Abstract
Exosomes, as natural nanocarriers, characterized with low immunogenicity, non-cytotoxicity and targeted delivery capability, which have advantages over synthetic nanocarriers. Recently, exosomes have shown great potential as diagnostic markers for diseases and are also considered as a promising cell-free therapy. Engineered exosomes have significantly enhanced the efficacy and precision of delivering therapeutic agents, and are currently being extensively employed in targeted therapeutic investigations for various ailments, including oncology, inflammatory disorders, and degenerative conditions. Particularly, engineered exosomes enable therapeutic agent loading, targeted modification, evasion of MPS phagocytosis, intelligent control, and bioimaging, and have been developed as multifunctional nano-delivery platforms in recent years. The utilization of bioactive scaffolds that are loaded with exosome delivery has been shown to substantially augment retention, extend exosome release, and enhance efficacy. This approach has advanced from conventional hydrogels to nanocomposite hydrogels, nanofiber hydrogels, and 3D printing, resulting in superior physical and biological properties that effectively address the limitations of natural scaffolds. Additionally, plant-derived exosomes, which can participate in gut flora remodeling via oral administration, are considered as an ideal delivery platform for the treatment of intestinal diseases. Consequently, there is great interest in exosomes and exosomes as nanocarriers for therapeutic and diagnostic applications. This comprehensive review provides an overview of the biogenesis, composition, and isolation methods of exosomes. Additionally, it examines the pathological and diagnostic mechanisms of exosomes in various diseases, including tumors, degenerative disorders, and inflammatory conditions. Furthermore, this review highlights the significance of gut microbial-derived exosomes. Strategies and specific applications of engineered exosomes and bioactive scaffold-loaded exosome delivery are further summarized, especially some new techniques such as large-scale loading technique, macromolecular loading technique, development of multifunctional nano-delivery platforms and nano-scaffold-loaded exosome delivery. The potential benefits of using plant-derived exosomes for the treatment of gut-related diseases are also discussed. Additionally, the challenges, opportunities, and prospects of exosome-based nanocarriers for disease diagnosis and treatment are summarized from both preclinical and clinical viewpoints.
Collapse
Affiliation(s)
- Zaijun Zou
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Han Li
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Gang Xu
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Yunxiang Hu
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Weiguo Zhang
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Kang Tian
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| |
Collapse
|
3
|
Lee BB, Kim D, Kim Y, Han J, Shim YM, Kim DH. Metformin regulates expression of DNA methyltransferases through the miR-148/-152 family in non-small lung cancer cells. Clin Epigenetics 2023; 15:48. [PMID: 36959680 PMCID: PMC10037810 DOI: 10.1186/s13148-023-01466-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/15/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND To understand the molecular mechanisms involved in regulation of DNA methyltransferases (DNMTs) by metformin in non-small cell lung cancer (NSCLC) cells. METHODS Expression levels of DNMTs in response to metformin were analyzed in NSCLC cells. MicroRNAs regulating expression of DNMTs at the post-transcriptional level were searched using miRNA-target databases (miRDB and miRTarBase), TCGA RNASeqV2 lung cancer data, and miRNA-seq. RESULTS Metformin dose-dependently downregulated expression of DNMT1 and DNMT3a at the post-transcriptional level and expression of DNMT3b at the transcriptional level in A549 lung cancer cells. Activity of DNMTs was reduced by about 2.6-fold in A549 cells treated with 10 mM metformin for 72 h. miR-148/-152 family members (miR-148a, miR-148b, and miR-152) targeting the 3'UTR of DNMTs were associated with post-transcriptional regulation of DNMTs by metformin. Metformin upregulated expression of miR-148a, miR-148b, and miR-152 in A549 and H1650 cells. Transfection with an miR-148b plasmid or a mimic suppressed expression of DNMT1 and DNMT3b in A549 cells. Transfection with the miR-148a mimic in A549 and H1650 cells decreased the luciferase activity of DNMT1 3'UTR. A combination of metformin and cisplatin synergistically increased expression levels of miR-148/-152 family members but decreased expression of DNMTs in A549 cells. Low expression of miR-148b was associated with poor overall survival (HR = 2.56, 95% CI 1.09-6.47; P = 0.04) but not with recurrence-free survival. CONCLUSIONS The present study suggests that metformin inhibits expression of DNMTs by upregulating miR-148/-152 family members in NSCLC cells.
Collapse
Affiliation(s)
- Bo Bin Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Dongho Kim
- Yonsei New I1 Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, 03772, Korea
| | - Yujin Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Joungho Han
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Young Mog Shim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
- Samsung Comprehensive Cancer CenterResearch Institute for Future Medicine S139-7, #50 Ilwon-dong, Gangnam-gu, Seoul, 06351, Korea.
| |
Collapse
|
4
|
Seif S, Afra N, Dadgar E, Enteghad S, Argani P, Aghdasi N, Masouleh SS, Barati G. The expression of salivary microRNAs in oral lichen planus: Searching for a prognostic biomarker. Pathol Res Pract 2022; 234:153923. [PMID: 35526303 DOI: 10.1016/j.prp.2022.153923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022]
Abstract
Oral lichen planus (OLP) is a premalignant disease with unknown etiology. It has been demonstrated that inflammation and immune activation play a central role in the pathogenesis of OLP. Various cellular and molecular mechanisms are involved in the pathogenesis of OLP. Studies have shown that 2-7% of OLP patients develop oral squamous cell carcinoma (OSCC). As a result, determining the prognosis of the disease will be promising in preventing oral carcinoma. MicroRNAs are involved in the regulation of cytokine expression and cytokines have a central role in the pathogenesis of OLP. As a result, their evaluation in body fluids may be helpful in assessing the disease's status and progression, and facilitating the treatment process. In this regard, much attention has been paid to the saliva of OLP patients as the sampling is cost-effective and non-invasive. Here, we discuss the potential of miRNAs in predicting the disease severity and progression.
Collapse
Affiliation(s)
- Sepideh Seif
- Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Afra
- Faculty of Dentistry, Hormozgan University of Medical Sciences, Bandarabbas, Iran
| | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Enteghad
- Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pendar Argani
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noura Aghdasi
- Faculty of Dentistry, Inonu University, Malatya, Turkey
| | | | | |
Collapse
|
5
|
Mirzajani E, Vahidi S, Norollahi SE, Samadani AA. Novel biomarkers of microRNAs in gastric cancer; an overview from diagnosis to treatment. Microrna 2022; 11:12-24. [PMID: 35319404 DOI: 10.2174/2211536611666220322160242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
The fourth frequent disease in the world and the second cause of cancer-related death is gastric cancer (GC). In this way, over 80% of diagnoses are made in the middle to advanced degrees of the disease, underscoring the requirement for innovative biomarkers that can be identified quickly. Meaningly, biomarkers that can complement endoscopic diagnosis and be used to detect patients with a high risk of GC are desperately needed. These biomarkers will allow for the accurate prediction of therapy response and prognosis in GC patients, as well as the development of an optimal treatment strategy for each individual. Conspicoiusly, microRNAs (miRNAs) and small noncoding RNA regulates the expression of target mRNA and thereby modifies critical biological mechanisms. According to the data, abnormally miRNAs expression in GC is linked to tumor growth, carcinogenesis, aggression and distant metastasis. Importantly, miRNA expression patterns and next-generation sequencing (NGS) can also be applied to analyze kinds of tissues and cancers. Given the high death rates and poor prognosis of GC, and the absence of a clinical diagnostic factor that is adequately sensitive to GC, research into novel sensitive and specific markers for GC diagnosis is critical. In this review,we evaluate the latest research findings that suggest the feasibility and clinical utility of miRNAs in GC.
Collapse
Affiliation(s)
- Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sogand Vahidi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Gomes LC, Resende RR, Parreira RC, Ferreira CN, Reis EA, Duarte RCF, Alves LCV, Araújo SSDS, Carvalho MDG, Sabino ADP. Chronic Lymphocytic Leukemia (CLL): evaluation of AKT protein kinase and microRNA gene expression related to disease pathogenesis. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Monastirioti A, Papadaki C, Rounis K, Kalapanida D, Mavroudis D, Agelaki S. A Prognostic Role for Circulating microRNAs Involved in Macrophage Polarization in Advanced Non-Small Cell Lung Cancer. Cells 2021; 10:cells10081988. [PMID: 34440757 PMCID: PMC8391493 DOI: 10.3390/cells10081988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Circulating microRNAs (miRNAs) are key regulators of the crosstalk between tumor cells and immune response. In the present study, miRNAs (let-7c, miR-26a, miR-30d, miR-98, miR-195, miR-202) reported to be involved in the polarization of macrophages were examined for associations with the outcomes of non-small cell lung cancer (NSCLC) patients (N = 125) treated with first-line platinum-based chemotherapy. RT-qPCR was used to analyze miRNA expression levels in the plasma of patients prior to treatment. In our results, disease progression was correlated with high miR-202 expression (HR: 2.335; p = 0.040). Additionally, high miR-202 expression was characterized as an independent prognostic factor for shorter progression-free survival (PFS, HR: 1.564; p = 0.021) and overall survival (OS, HR: 1.558; p = 0.024). Moreover, high miR-202 independently predicted shorter OS (HR: 1.989; p = 0.008) in the non-squamous (non-SqCC) subgroup, and high miR-26a was correlated with shorter OS in the squamous (SqCC) subgroup (10.07 vs. 13.53 months, p = 0.033). The results of the present study propose that the expression levels of circulating miRNAs involved in macrophage polarization are correlated with survival measures in NSCLC patients, and their role as potential biomarkers merits further investigation.
Collapse
Affiliation(s)
- Alexia Monastirioti
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
| | - Chara Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
| | - Konstantinos Rounis
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
| | - Despoina Kalapanida
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
- Correspondence: ; Tel.: +30-281-0392438
| |
Collapse
|
8
|
Grixti JM, Ayers D, Day PJR. An Analysis of Mechanisms for Cellular Uptake of miRNAs to Enhance Drug Delivery and Efficacy in Cancer Chemoresistance. Noncoding RNA 2021; 7:27. [PMID: 33923485 PMCID: PMC8167612 DOI: 10.3390/ncrna7020027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Up until recently, it was believed that pharmaceutical drugs and their metabolites enter into the cell to gain access to their targets via simple diffusion across the hydrophobic lipid cellular membrane, at a rate which is based on their lipophilicity. An increasing amount of evidence indicates that the phospholipid bilayer-mediated drug diffusion is in fact negligible, and that drugs pass through cell membranes via proteinaceous membrane transporters or carriers which are normally used for the transportation of nutrients and intermediate metabolites. Drugs can be targeted to specific cells and tissues which express the relevant transporters, leading to the design of safe and efficacious treatments. Furthermore, transporter expression levels can be manipulated, systematically and in a high-throughput manner, allowing for considerable progress in determining which transporters are used by specific drugs. The ever-expanding field of miRNA therapeutics is not without its challenges, with the most notable one being the safe and effective delivery of the miRNA mimic/antagonist safely to the target cell cytoplasm for attaining the desired clinical outcome, particularly in miRNA-based cancer therapeutics, due to the poor efficiency of neo-vascular systems revolting around the tumour site, brought about by tumour-induced angiogenesis. This acquisition of resistance to several types of anticancer drugs can be as a result of an upregulation of efflux transporters expression, which eject drugs from cells, hence lowering drug efficacy, resulting in multidrug resistance. In this article, the latest available data on human microRNAs has been reviewed, together with the most recently described mechanisms for miRNA uptake in cells, for future therapeutic enhancements against cancer chemoresistance.
Collapse
Affiliation(s)
- Justine M. Grixti
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool L69 7ZB, UK;
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD 2080, Malta
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK;
| | - Philip J. R. Day
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK;
| |
Collapse
|
9
|
Wu Y, Li Q, Zhang R, Dai X, Chen W, Xing D. Circulating microRNAs: Biomarkers of disease. Clin Chim Acta 2021; 516:46-54. [PMID: 33485903 DOI: 10.1016/j.cca.2021.01.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs are a class of endogenous noncoding single-stranded RNA molecules with approximately 20-24 nucleotides and are associated with a broad range of biological processes. Researchers found that microRNAs are abundant in tissues, and more importantly, there are also trace circulating microRNAs that exist in biological fluids. In recent years, circulating microRNAs had emerged as promising diagnostic and prognostic biomarkers for the noninvasive detection of diseases with high specificity and sensitivity. More importantly, specific microRNA expression signatures reflect not only the existence of early-stage diseases but also the dynamic development of advanced-stage diseases, disease prognosis prediction, and drug resistance. To date, an increasing number of potential miRNA biomarkers have been reported, but their practical application prospects are still unclear. Therefore, microRNAs, as potential diagnostic and prognostic biomarkers in a variety of diseases, need to be updated, as they are of great importance in the diagnosis, prognosis and prediction of therapeutic responses. In this review, we summary our current understanding of microRNAs as potential biomarkers in the major diseases (e.g., cancers and cardio-cerebrovascular diseases), which provide the basis for the design of diagnosis and treatment plan and the improvement of the cure rate.
Collapse
Affiliation(s)
- Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Qian Li
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Renshuai Zhang
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Xiaoli Dai
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Wujun Chen
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Li C, Li Y, Lu Y, Niu Z, Zhao H, Peng Y, Li M. miR-26 family and its target genes in tumorigenesis and development. Crit Rev Oncol Hematol 2021; 157:103124. [PMID: 33254041 DOI: 10.1016/j.critrevonc.2020.103124] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 08/27/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The microRNA-26 family, including miR-26a, miR-26b, miR-1297 and miR-4465, is a group of broadly conserved small RNAs with identical sequences at the seed region. The expression of miR-26 could be induced by hypoxia via a HIF-dependent mechanism, and up-regulated during multiple cell differentiation. Accumulating studies have demonstrated that miR-26 family members could be detected in many different kinds of tumors, and their validated target genes are involved in cell metabolism, proliferation, differentiation, apoptosis, invasion and metastasis. The expression of miR-26 might be a potentially valuable biomarker and a new target for cancer therapy. In this review, miR-26 family and its target genes in tumorigenesis and development will be summarized as follows.
Collapse
Affiliation(s)
- Chuangang Li
- The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China.
| | - Yongyi Li
- University of Virginia, Charlottesville, VA 22903, USA
| | - Yufeng Lu
- Dalian Medical University, Dalian 116044, China
| | - Zhaorui Niu
- Dalian Medical University, Dalian 116044, China
| | - Henan Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yan Peng
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Molin Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
11
|
Hu YY, Jiang GB, Song YF, Zhan AL, Deng C, Niu YM, Zhou L, Duan QW. Association between the pri-miR-26a-1 rs7372209 C>T polymorphism and cancer susceptibility: multivariate analysis and trial sequential analysis. Aging (Albany NY) 2020; 12:19060-19072. [PMID: 33052138 PMCID: PMC7732283 DOI: 10.18632/aging.103696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
MiR-26 has been suggested to play a tumor-suppressive role in cancer development, which could be influenced by the mutate pri-miR-26ª-1. Molecular epidemiological studies have demonstrated some inconsistent associations between pri-miR-26ª-1 rs7372209 C>T polymorphism and cancer risk. We therefore performed this meta-analysis with multivariate statistic method to comprehensively evaluate the associations between rs7372209 C>T polymorphism and cancer risk. Eleven publications involving 6,709 patients and 6,514 controls were identified. Multivariate analysis indicated that the over-dominant genetic model was most likely. Pooled results indicated no significant association in the overall population (CC+TT vs. CT: OR=1.08, 95%CI=0.96-1.22, P=0.20, I2=54.4%), as well as the subgroup analysis according to ethnicity, control source, tumor locations, and HWE status of controls. In addition, heterogeneity, accumulative, sensitivity analysis, publication bias and trial sequential analysis (TSA) were conducted to test the statistical power. Overall, our results indicated that the pri-miR-26a-1 rs7372209 C>T polymorphism may not be a potential risk for cancer development.
Collapse
Affiliation(s)
- Yuan-Yuan Hu
- Department of Stomatology, Department of Clinical Oncology, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Guang-Bin Jiang
- Department of Radiology, Suizhou Hospital, Hubei University of Medicine, Suizhou Central Hospital, Suizhou 441300, China
| | - Ya-Feng Song
- The Personnel Section, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China,Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Ai-Ling Zhan
- Department of Anesthesiology, Central Hospital of Shanghai Songjiang District, Shanghai 201600, China
| | - Cai Deng
- Department of Stomatology, Department of Clinical Oncology, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yu-Ming Niu
- Department of Stomatology, Department of Clinical Oncology, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Lan Zhou
- Department of Stomatology, Department of Clinical Oncology, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China,Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Qi-Wen Duan
- Department of Stomatology, Department of Clinical Oncology, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
12
|
Yao X, Ajani JA, Song S. Molecular biology and immunology of gastric cancer peritoneal metastasis. Transl Gastroenterol Hepatol 2020; 5:57. [PMID: 33073052 DOI: 10.21037/tgh.2020.02.08] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
Peritoneal metastases occur in 55-60% of patients with gastric cancer (GC) and are associated with a 2% 5-year overall survival rate. There are limited treatment options for these patients, and no targeted therapy or immunotherapy is available. Rational therapeutic targets remain to be found. In this review, we present the published literature and our own recent experience in molecular biology to identify important molecules and signaling pathways as well as cellular immunity involved in the peritoneal metastasis of GC. We also suggest potential novel strategies for improving the outcomes of GC patients with peritoneal metastasis.
Collapse
Affiliation(s)
- Xiaodan Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
MicroRNA-1297 inhibits proliferation and promotes apoptosis in gastric cancer cells by downregulating CDC6 expression. Anticancer Drugs 2020; 30:803-811. [PMID: 31419217 DOI: 10.1097/cad.0000000000000776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gastric cancer (GC), one of the most common malignant tumors and the second most common leading cause of cancer-related death worldwide, is a biologically heterogeneous disease accompanied by various genetic and epigenetic alterations. However, the molecular mechanisms underlying this disease are complex and not completely understood. Increasing studies have shown that aberrant microRNA (miRNA) expression is associated with GC tumorigenesis and growth. MiR-1297 has been confirmed to be a cancer suppressor in diverse tumors in humans. However, to date, the function and mechanism of miR-1297 in GC have not been determined. Here, we found that the expression of miR-1297 was significantly reduced in GC tissues or GC cell lines compared with paracarcinoma normal tissue or normal cell lines. Exogenic overexpression of miR-1297 in GC cell lines can inhibit cell proliferation and colony formation and induce apoptosis, and inhibition of miR-1297 in GC cell lines can promote cell proliferation and colony formation, and reduce apoptosis in vitro. We further confirmed that miR-1297 acted as a tumor suppressor through targeting cell division control protein 6 (CDC6) in GC. Moreover, the inverse relationship between miR-1297 and CDC6 was verified in GC cell lines. Our results indicated that miR-1297 is a potent tumor suppressor in GC, and its antiproliferative and gene-regulatory effects are, in part, mediated through its downstream target gene, CDC6. These findings implied that miR-1297 might be used as a novel therapeutic target of GC.
Collapse
|
14
|
Liu Y, Li J, Wang S, Song H, Yu T. STAT4-mediated down-regulation of miR-3619-5p facilitates stomach adenocarcinoma by modulating TBC1D10B. Cancer Biol Ther 2020; 21:656-664. [PMID: 32397798 DOI: 10.1080/15384047.2020.1754690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) as the subtype of non-coding RNAs are revealed to be crucial players in cellular activities. It has been reported that miR-3619-5p functions as a tumor inhibitor in several cancers. However, the connection between miR-3619-5p and stomach adenocarcinoma (STAD) remains to be discovered. AIM OF THE STUDY The purpose of the study is to figure out the role and molecular regulation mechanism of miR-3619-5p in STAD. METHODS The expression of miR-3619-5p was evaluated via qRT-PCR analysis. Gain-of-function experiments demonstrated the effects of miR-3619-5p on cellular functions. The upper-stream transcription factor STAT4 and downstream target gene TBC1D10B of miR-3619-5p were identified by bioinformatic analysis. The binding and interaction between the indicated molecules were verified by RNA pull-down and luciferase reporter assays. RESULTS The expression of miR-3619-5p was prominently down-regulated in STAD cells and tissues. MiR-3619-5p suppresses cell proliferation, migration, invasion and tumor growth in STAD. Further, STAT4 bound with miR-3619-5p promoter and inhibited its transcription. MiR-3619-5p was also recognized to modulate STAD progression through the regulation of downstream target gene TBC1D10B. CONCLUSION STAT4-mediated miR-3619-5p controls STAD carcinogenesis and progression through modulating TBC1D10B expression, which may provide a novel insight for researching the STAD-related molecular mechanism.
Collapse
Affiliation(s)
- Yinhua Liu
- Department of Pathology, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| | - Jiaping Li
- Department of Cardiothoracic Surgery, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| | - Sufeng Wang
- Department of Pathology, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| | - Hong Song
- Department of Pathology, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| | - Tao Yu
- Department of Neurosurgical Intensive Care Unit, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China.,Research Center for Functional Maintenance and Reconstruction of Viscera, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| |
Collapse
|
15
|
Kim B, Jang J, Heo YJ, Kang SY, Yoo H, Sohn I, Min BH, Kim KM. Dysregulated miRNA in a cancer-prone environment: A study of gastric non-neoplastic mucosa. Sci Rep 2020; 10:6600. [PMID: 32313120 PMCID: PMC7171080 DOI: 10.1038/s41598-020-63230-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/16/2020] [Indexed: 11/09/2022] Open
Abstract
Understanding cancer-prone environments is important to efficiently detect and prevent cancers. The associations between miRNA and cancer-prone environments are still largely unknown in gastric cancer (GC). Six miRNAs that are differentially expressed during gastric carcinogenesis were selected, and quantitative real-time PCR was performed in an independent training set (fresh non-tumor and tumor samples from 18 GC patients) and validation sets (set 1 with formalin-fixed paraffin-embedded non-tumor and tumor samples from 19 solitary GC and set 2 with 37 multiple GC patients). The results were compared with those of 37 gastric mucosa from 20 healthy volunteers. The expression levels of miR-26a, miR-375, and miR-1260 in gastric mucosa from healthy volunteers were statistically higher than that of non-tumorous gastric mucosa located 3 cm apart from the GC in the training set (miR-26a, P < 0.0001; miR-375, P = 0.0049; miR-1260, P = 0.0172), validation set 1 (miR-26a and miR-375, P < 0.0001; miR-1260, P = 0.0008), and validation set 2 (miR-26a, miR-375, and miR-1260, P < 0.0001). And a combination of miR-26a and miR-1260 showed the highest area under the curve value of 0.89. miRNAs are differentially expressed in non-neoplastic gastric mucosa and can be used as a biomarker to predict cancer-prone environments.
Collapse
Affiliation(s)
- Binnari Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Jiryeon Jang
- The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - You Jeong Heo
- The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heejin Yoo
- Statistics and Data Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Insuk Sohn
- Statistics and Data Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byung-Hoon Min
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. .,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Du J, Gao R, Wang Y, Nguyen T, Yang F, Shi Y, Liu T, Liao W, Li R, Zhang F, Ge X, Zhao B. MicroRNA-26a/b have protective roles in oral lichen planus. Cell Death Dis 2020; 11:15. [PMID: 31907356 PMCID: PMC6944705 DOI: 10.1038/s41419-019-2207-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
Oral lichen planus (OLP) is a kind of oral epithelial disorder featured with keratinocyte apoptosis and inflammatory reaction. The pathogenesis of OLP remains an enigma. Herein, we showed that the levels of miR-26a/b were robustly down-regulated in oral mucosal biopsies, serum and saliva in OLP patients compared with healthy control. Moreover, we found the binding sites of vitamin D receptor (VDR) in the promoter regions of miR-26a/b genes and proved that the induction of miR-26a/b was VDR dependent. The reduction of miR-26a/b expression was also detected in the oral epithelium of vitamin D deficient or VDR knockout mice. miR-26a/b inhibitors enhanced apoptosis and Type 1T helper (Th1) cells-related cytokines production in oral keratinocytes, whereas miR-26a/b mimics were protective. Mechanistically, we analyzed miRNA target genes and confirmed that miR-26a/b blocked apoptosis by directly targeting Protein Kinase C δ (PKCδ) which promotes cellular apoptotic processes. Meanwhile, miR-26a/b suppressed Th1-related cytokines secretion through targeting cluster of the differentiation 38 (CD38). In accordant with miR-26a/b decreases, PKCδ and CD38 levels were highly elevated in OLP patients’ samples. Taken together, our present investigations suggest that vitamin D/VDR-induced miR-26a/b take protective functions in OLP via both inhibiting apoptosis and impeding inflammatory response in oral keratinocytes.
Collapse
Affiliation(s)
- Jie Du
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China. .,Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Ruifang Gao
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yimei Wang
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Tivoli Nguyen
- Division of Biological Sciences, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Fang Yang
- Department of Periodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianjing Liu
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wang Liao
- Department of Cardiology, Hainan General Hospital, Hainan Clinical Medicine Research Institution, Haikou, China
| | - Ran Li
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Fang Zhang
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Xuejun Ge
- Department of Periodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Bin Zhao
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China. .,Department of prosthodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.
| |
Collapse
|
17
|
Verma HK, Ratre YK, Mazzone P, Laurino S, Bhaskar LVKS. Micro RNA facilitated chemoresistance in gastric cancer: a novel biomarkers and potential therapeutics. ALEXANDRIA JOURNAL OF MEDICINE 2020; 56:81-92. [DOI: 10.1080/20905068.2020.1779992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Henu Kumar Verma
- Developmental and Stem Cell Biology Laboratory, Institute of Experimental Endocrinology and Oncology CNR, Naples, Italy
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche “Gaetano Salvatore” Biogem, Ariano Irpino, Italy
| | | | - Pellegrino Mazzone
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche “Gaetano Salvatore” Biogem, Ariano Irpino, Italy
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture, Italy
| | | |
Collapse
|
18
|
Shimizu T, Sohn Y, Choi E, Petersen CP, Prasad N, Goldenring JR. Decrease in MiR-148a Expression During Initiation of Chief Cell Transdifferentiation. Cell Mol Gastroenterol Hepatol 2019; 9:61-78. [PMID: 31473306 PMCID: PMC6881610 DOI: 10.1016/j.jcmgh.2019.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
Abstract
Gastric chief cells differentiate from mucous neck cells and develop their mature state at the base of oxyntic glands with expression of secretory zymogen granules. After parietal cell loss, chief cells transdifferentiate into mucous cell metaplasia, designated spasmolytic polypeptide-expressing metaplasia (SPEM), which is considered a candidate precursor of gastric cancer. We examined the range of microRNA (miRNA) expression in chief cells and identified miRNAs involved in chief cell transdifferentiation into SPEM. Among them, miR-148a was strongly and specifically expressed in chief cells and significantly decreased during the process of chief cell transdifferentiation. Interestingly, suppression of miR-148a in a conditionally immortalized chief cell line induced up-regulation of CD44 variant 9 (CD44v9), one of the transcripts expressed at an early stage of SPEM development, and DNA methyltransferase 1 (Dnmt1), an established target of miR-148a. Immunostaining analyses showed that Dnmt1 was up-regulated in SPEM cells as well as in chief cells before the emergence of SPEM in mouse models of acute oxyntic atrophy using either DMP-777 or L635. In the cascade of events that leads to transdifferentiation, miR-148a was down-regulated after acute oxyntic atrophy either in xCT knockout mice or after sulfasalazine inhibition of xCT. These findings suggest that the alteration of miR-148a expression is an early event in the process of chief cell transdifferentiation into SPEM.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoojin Sohn
- Department of Cell and Developmental Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eunyoung Choi
- Nashville VA Medical Center, Nashville, Tennessee; Department of Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Christine P Petersen
- Department of Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - James R Goldenring
- Nashville VA Medical Center, Nashville, Tennessee; Department of Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
19
|
Shi D, Wang H, Ding M, Yang M, Li C, Yang W, Chen L. MicroRNA-26a-5p inhibits proliferation, invasion and metastasis by repressing the expression of Wnt5a in papillary thyroid carcinoma. Onco Targets Ther 2019; 12:6605-6616. [PMID: 31496749 PMCID: PMC6701645 DOI: 10.2147/ott.s205994] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023] Open
Abstract
Background Thyroid cancer (TC) is considered as the fastest growing malignancy in the human endocrine system, particularly papillary thyroid cancer (PTC). MicroRNAs (miRs) serve as a role in promoting or suppressing tumors in various types of malignant tumor including PTC. This study aims to explore whether microRNA-26a-5p (miR-26a-5p) could affect the proliferation, invasion and metastasis ability of PTC cells by regulating Wnt5a. Materials and methods The expression of miR-26a-5p was examined by qRT-PCR in PTC tissue samples (58 cases, mean age 53 years old) and PTC cell lines (K1 and BCPAP). Cell proliferation, invasion and migration were tested with CCK8 assay, colony formation assay, transwell invasion assay and wound healing assay, respectively. Luciferase reporting experiment was used to verify that Wnt5a is a molecular target of miR-26a-5p. The relationship between miR-26a-5p and Wnt5a was analyzed by qRT-PCR and Western blot and was further proved by Pearson's correlation analysis. Animal (24 nude mice) experiments were used to demonstrate that miR-26a-5p inhibits tumor growth by targeting Wnt5a. Results The expression of miR-26a-5p declined in PTC tissues (P<0.01). The expression of miR-26a-5 was also significantly down-regulated in PTC tissues with advanced TNM stages (P<0.01) and lymph node metastasis (P<0.01) compared with normal thyroid tissues. Compared with normal human thyroid cell line Nthy-ori 3-1, the expression of miR-26a-5p in K1 cells and BCPAP cells were nearly 4.02-fold (P<0.01) and 2.51-fold (P<0.01) reduced. Up regulation of miR-26a-5p inhibited proliferation, colony formation, invasion and migration of PTC cells. MiR-26a-5p negatively regulated Wnt5a expression (r=-0.887, P<0.01), yet Wnt5a overexpression reversed the tumor-suppressive effect of miR-26a-5p in PTC. Animal experiments further verified that miR-26a-5p inhibited PTC growth by targeting Wnt5a. Conclusion Overexpression of miR-26a-5p depresses proliferation, invasion, metastasis of PTC via Wnt5a. Therefore, miR-26a-5p may represent a potentially effective target gene for PTC.
Collapse
Affiliation(s)
- Dongliang Shi
- Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou City, Hebei Province 061000, People's Republic of China
| | - Haiyan Wang
- Department of Radiation Oncology, Cangzhou Central Hospital, Cangzhou City, Hebei Province 061000, People's Republic of China
| | - Mingjian Ding
- Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou City, Hebei Province 061000, People's Republic of China
| | - Meng Yang
- Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou City, Hebei Province 061000, People's Republic of China
| | - Chenhao Li
- Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou City, Hebei Province 061000, People's Republic of China
| | - Wenhua Yang
- Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou City, Hebei Province 061000, People's Republic of China
| | - Liang Chen
- Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou City, Hebei Province 061000, People's Republic of China
| |
Collapse
|
20
|
Wang CJ, Zhu CC, Xu J, Wang M, Zhao WY, Liu Q, Zhao G, Zhang ZZ. The lncRNA UCA1 promotes proliferation, migration, immune escape and inhibits apoptosis in gastric cancer by sponging anti-tumor miRNAs. Mol Cancer 2019; 18:115. [PMID: 31272462 PMCID: PMC6609402 DOI: 10.1186/s12943-019-1032-0] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background UCA1 is a long non-coding RNA which was found overexpressed in various human cancers including gastric cancer (GC). It is identified that UCA1 promotes GC cells proliferation, migration and invasion, however, the role of UCA1 during the processes of immune escape is still not unclear. Methods We collected 40 paired GC and non-tumor tissue samples. The level of UCA1 in GC and control tissue samples were determined by in situ hybridization and qRT-PCR. Cell viability was determined by MTT assay. GC cells’ migration capacities were examined by transwell assay. To understand the roles of UCA1 during immune escape, wildtype or UCA1 KO GC cells co-cultured with peripheral blood mononuclear cells or cytokine-induced killer cells in vitro. Mouse model was used to examine the function of UCA1 in vivo. Results UCA1 promoted GC cells proliferation and migration, and inhibit apoptosis. UCA1 repressed miR-26a/b, miR-193a and miR-214 expression through direct interaction and then up-regulated the expression of PDL1. UCA1-KO GC cells could induce a higher IFNγ expression when co-cultured with peripheral blood mononuclear cells (PBMCs), and have a lower survival rate when co-cultured with cytokine-induced killer (CIK) cells in vitro. UCA1-KO GC cells formed smaller tumors, had higher miR-26a, −26b, −193a and − 214 level, reduced cell proliferation and increased apoptosis in xenograft mouse model. Conclusions UCA1 overexpression protected PDL1 expression from the repression of miRNAs and contributed to the GC cells immune escape. UCA1 could serve as a potential novel therapeutic target for GC treatment. Electronic supplementary material The online version of this article (10.1186/s12943-019-1032-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao-Jie Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pu Jian Road, Shanghai, 200127, China
| | - Chun-Chao Zhu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pu Jian Road, Shanghai, 200127, China
| | - Jia Xu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pu Jian Road, Shanghai, 200127, China
| | - Ming Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pu Jian Road, Shanghai, 200127, China
| | - Wen-Yi Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pu Jian Road, Shanghai, 200127, China
| | - Qiang Liu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pu Jian Road, Shanghai, 200127, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pu Jian Road, Shanghai, 200127, China
| | - Zi-Zhen Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pu Jian Road, Shanghai, 200127, China.
| |
Collapse
|
21
|
Hou RG, Fan L, Liu JJ, Cheng Y, Chang ZP, Wu B, Shao YY. Bile acid malabsorption is associated with diarrhea in acute phase of colitis. Can J Physiol Pharmacol 2018; 96:1328-1336. [PMID: 30383974 DOI: 10.1139/cjpp-2018-0017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The enterohepatic circulation of bile acids (BAs) critically depends on BA transporters and enzymes, which can be affected by inflammatory bowel disease. Diarrhea in colitis is believed to result in part from BA malabsorption. The work aimed to investigate whether diarrhea in colitis was associated with the expression of BA transporters, enzymes, and nuclear receptors. RT-qPCR and Western blot techniques were used to evaluate the gene and protein levels of Cyp7a1, Asbt, SHP, FXR, Ostβ in a 2,4,6-trinitrobenzenesulfonic-acid-induced rat model of colitis. The total BAs (TBAs) levels were assayed using ELISA kits, and the individual BAs were measured by LC-MS/MS. Results showed that the fecal excretions of TBAs were significantly increased by 1.6-fold in acute stage of colitis. In ileum, Asbt was significantly decreased; however, there was a compensatory increase in Cyp7a1 level in liver. Moreover, FXR has a decreased tendency and the downstream target gene SHP was downregulated. Contrary to acute stage, molecular changes were completely reversible during the remission phase. Our results indicated that the expression of Asbt and Cyp7a1 were altered in acute colitis, which performed vital roles in maintaining BA homeostasis. Early medical manipulation of BA transporters and enzymes may help prevent diarrhea.
Collapse
Affiliation(s)
- Rui-Gang Hou
- a School of Pharmaceutical, Shanxi Medical University, Shanxi 030000 China.,b Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Lei Fan
- a School of Pharmaceutical, Shanxi Medical University, Shanxi 030000 China.,b Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Jun-Jin Liu
- a School of Pharmaceutical, Shanxi Medical University, Shanxi 030000 China.,b Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Yao Cheng
- a School of Pharmaceutical, Shanxi Medical University, Shanxi 030000 China.,b Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Zhuang-Peng Chang
- a School of Pharmaceutical, Shanxi Medical University, Shanxi 030000 China.,b Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Bei Wu
- a School of Pharmaceutical, Shanxi Medical University, Shanxi 030000 China.,b Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Yun-Yun Shao
- a School of Pharmaceutical, Shanxi Medical University, Shanxi 030000 China.,b Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| |
Collapse
|
22
|
Hofbauer SL, de Martino M, Lucca I, Haitel A, Susani M, Shariat SF, Klatte T. A urinary microRNA (miR) signature for diagnosis of bladder cancer. Urol Oncol 2018; 36:531.e1-531.e8. [PMID: 30322728 DOI: 10.1016/j.urolonc.2018.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Bladder cancer (BC) is diagnosed by cystoscopy, which is invasive, costly and causes considerable patient discomfort. MicroRNAs (miR) are dysregulated in BC and may serve as non-invasive urine markers for primary diagnostics and monitoring. The purpose of this study was to identify a urinary miR signature that predicts the presence of BC. METHODS For the detection of potential urinary miR markers, expression of 384 different miRs was analyzed in 16 urine samples from BC patients and controls using a Taqman™ Human MicroRNA Array (training set). The identified candidate gene signature was subsequently validated in an independent cohort of 202 urine samples of patients with BC and controls with microscopic hematuria. The final miR signature was developed from a multivariable logistic regression model. RESULTS Analysis of the training set identified 14 candidate miRs for further analysis within the validation set. Using backward stepwise elimination, we identified a subset of 6 miRs (let-7c, miR-135a, miR-135b, miR-148a, miR-204, miR-345) that distinguished BC from controls with an area under the curve of 88.3%. The signature was most accurate in diagnosing high-grade non-muscle invasive BC (area under the curve = 92.9%), but was capable to identify both low-grade and high-grade disease as well as non-muscle and muscle-invasive BC with high accuracies. CONCLUSIONS We identified a 6-gene miR signature that can accurately predict the presence of BC from urine samples, independent of stage and grade. This signature represents a simple urine assay that may help reducing costs and morbidity associated with invasive diagnostics.
Collapse
Affiliation(s)
- Sebastian L Hofbauer
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Michela de Martino
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Ilaria Lucca
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Andrea Haitel
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Martin Susani
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Tobias Klatte
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
23
|
Jones KR, Nabinger SC, Lee S, Sahu SS, Althouse S, Saxena R, Johnson MS, Chalasani N, Gawrieh S, Kota J. Lower expression of tumor microRNA-26a is associated with higher recurrence in patients with hepatocellular carcinoma undergoing surgical treatment. J Surg Oncol 2018; 118:431-439. [PMID: 30076741 DOI: 10.1002/jso.25156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Hepatocellular carcinoma (HCC) in patients with hepatitis B virus (HBV) exhibit lower tumor microRNA-26a (miR-26a) expression which is associated with worse outcomes. It is unknown if similar miR-26a loss occurs in HCC developed in other liver diseases. We examined tumor miR-26a expression and its impact on recurrence and mortality in a North American HCC cohort. METHODS MiR-26a levels from tumor and surrounding nontumor liver tissue in 186 subjects were collected. We defined lower tumor expression of miR-26a as <1-fold that of the adjacent nontumor liver tissue. RESULTS Viral hepatitis (42%; 40% hepatitis C and 2% HBV), alcohol (19%), and nonalcoholic fatty liver disease (NAFLD) (18%) were the most common causes of liver disease. The prevalence of lower tumor miR-26a expression was 68%, and it was evident in HCCs arising in all etiologies (viral hepatitis 60%, alcohol 61%, and NAFLD 76%). Subjects with lower tumor miR-26a expression had significantly higher tumor recurrence (hazard ratio [HR], 2.45; 95% confidence interval [CI], 1.18 to 5.1; P = 0.016) and higher mortality of borderline significance (HR, 1.51; 95% CI, 0.94 to 2.41; P = 0.086). CONCLUSION Reduced miR-26a expression is a common phenomenon in HCC arising in North American patients with different underlying liver diseases and may increase recurrence and mortality after surgery.
Collapse
Affiliation(s)
- Keaton R Jones
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sarah C Nabinger
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sangbin Lee
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Smiti Snigdha Sahu
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sandra Althouse
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mathew S Johnson
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Janaiah Kota
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
24
|
Yuan HL, Wang T, Zhang KH. MicroRNAs as potential biomarkers for diagnosis, therapy and prognosis of gastric cancer. Onco Targets Ther 2018; 11:3891-3900. [PMID: 30013369 PMCID: PMC6039071 DOI: 10.2147/ott.s156921] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the widespread use of endoscopy and conventional tumor biomarkers, gastric cancer (GC) remains one of the most frequent causes of cancer-related deaths worldwide due to its late diagnosis and poor response to treatment. Valuable and practical biomarkers are urgently needed to screen patients with a high risk of GC that can complement endoscopic diagnosis. Such biomarkers will enable the efficient prediction of therapeutic response and prognosis of GC patients and favor the establishment of an effective treatment strategy for each and every patient. MicroRNAs (miRNAs) are a class of small non-coding RNA sequences that play important roles in modulating key biological processes by regulating the expression of target genes. Expectedly, miRNAs are abnormally expressed within the tumor tissue and in associated biological fluids of GC patients including their blood, gastric juice, and urine. Accumulating evidence indicates that miRNAs are potential biomarkers with multiple diagnostic functions for GC. Here, we review recent advances and challenges in using miRNAs, particularly biofluid miRNAs, as GC biomarkers with potential clinical applications including diagnosing, clinically staging, and predicting malignant behaviors, therapy response, recurrence after surgery and survival time.
Collapse
Affiliation(s)
- Hai-Liang Yuan
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, People's Republic of China,
| | - Ting Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, People's Republic of China,
| | - Kun-He Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, People's Republic of China,
| |
Collapse
|
25
|
Miao C, Zhang J, Zhao K, Liang C, Xu A, Zhu J, Wang Y, Hua Y, Tian Y, Liu S, Zhang C, Qin C, Wang Z. The significance of microRNA-148/152 family as a prognostic factor in multiple human malignancies: a meta-analysis. Oncotarget 2018; 8:43344-43355. [PMID: 28574848 PMCID: PMC5522150 DOI: 10.18632/oncotarget.17949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/07/2017] [Indexed: 01/19/2023] Open
Abstract
Recent studies have demonstrated that microRNA-148/152 family emerges as a attractive biomarker for predicting tumor prognosis and progression. However, outcomes of different studies are controversial. Eligible Literature were searched through online databases: PubMed, EMBASE and Web of Science. A total of 24 eligible studies were ultimately enrolled in this meta-analysis. Results indicated that overexpression of miR-148/152 family was significantly correlated with enhanced overall/cause-specific survival (OS/CSS) (HR=0.63, 95% CI: 0.54-0.74). Stratified analysis indicated that high miR-148a and miR-148b expression predicted favorable OS/CSS (HR=0.76; 95% CI: 0.69-0.90) and (HR=0.49; 95% CI: 0.39-0.61), while miR-152 developed no significant impact (HR=0.40, 95% CI: 0.12-1.29). MiR-148/152 family was distinctly associated with superior OS/CSS in Asian (HR=0.53, 95% CI: 0.44-0.64), but not in Caucasian (HR=0.96, 95% CI: 0.82-1.13). Futhermore, miR-148/152 family expression also predicted longer disease/relapse/progression-free survival (DFS/RFS/PFS) (HR=0.37, 95% CI: 0.16-0.88). A significantly favorable DFS/RFS/PFS was observed in Asian (HR=0.21, 95% CI: 0.06-0.81) than that in Caucasian (HR=0.76, 95% CI: 0.31-1.87). miR-148/152 family overexpression also predicted longer DFS/RFS/PFS in tissues (HR=0.11, 95% CI: 0.01-0.98), but not in plasma/serum (HR=0.67, 95% CI: 0.38-1.18). Our meta-analysis demonstrated that overexpression of miR-148/152 predicted enhanced OS/CSS and DFS/RFS/PFS of cancer patients. MiR-148a/b family may serve as a potential prognostic factor in multiple human malignancies.
Collapse
Affiliation(s)
- Chenkui Miao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Zhang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiming Xu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jundong Zhu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuhao Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yibo Hua
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Tian
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shouyong Liu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Abstract
微小RNA(microRNAs, miRNAs)是一类由20个-22个核苷酸组成的小片段非编码RNA,通过靶向结合基因mRNA的3’非翻译区(3’-UTR)调控其表达。许多研究报道miRNAs参与肿瘤的发生发展。MiR-26a在不同的肿瘤中发挥不同的作用,在肿瘤增殖、转移侵袭、血管形成、生物代谢及诊断预后中都有作用。本文就miR-26a与肿瘤关系的研究进展进行综述。
Collapse
Affiliation(s)
- Qianqian Song
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
27
|
Jiang C, Cao Y, Lei T, Wang Y, Fu J, Wang Z, Lv Z. microRNA-363-3p inhibits cell growth and invasion of non‑small cell lung cancer by targeting HMGA2. Mol Med Rep 2017; 17:2712-2718. [PMID: 29207105 DOI: 10.3892/mmr.2017.8131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 05/17/2017] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is the second most common cancer and is the leading cause of cancer-related death worldwide. For decades, increasing evidence revealed that microRNAs may contribute to non‑small cell lung cancer (NSCLC) carcinogenesis and progression and could provide novel therapeutic targets for treatments of patients with NSCLC. Accumulated studies indicate that microRNA (miR)‑363‑3p serves important roles in tumorigenesis and tumor development; however, the role of miR‑363‑3p in NSCLC is still unclear. The current study reported that miR‑363‑3p exhibited reduced expression in NSCLC tissues and cell lines. Reduced miR‑363‑3p expression was correlated with tumor node metastasis classification and distant metastasis of NSCLC patients. Notably, miR‑363‑3p re‑expression significantly suppressed cell proliferation and invasion of NSCLC. Furthermore, bioinformatics analysis, luciferase reporter assay, reverse transcription‑quantitative polymerase chain reaction and western blotting indicated that (high mobility group AT-hook 2) HMGA2 was a direct target gene of miR‑363‑3p. HMGA2 was increased in NSCLC tissues and inversely associated with HMGA2 expression. Moreover, HMGA2 underexpression had similar effects to miR‑363‑3p overexpression in NSCLC cells. Thus, the current study suggested that miR‑363‑3p may act as a tumor suppressor in NSCLC and that the miR‑363‑3p could be investigated as a therapeutic target for the patients with this disease.
Collapse
Affiliation(s)
- Chuanfu Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116001, P.R. China
| | - Yang Cao
- Department of Oncology, 210 Hospital of PLA, Dalian, Liaoning 116000, P.R. China
| | - Ting Lei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yu Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Junfeng Fu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ze Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Zhenyang Lv
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
28
|
Duan F, Liu W, Fu X, Feng Y, Dai L, Cui S, Yang Z. Evaluating the prognostic value of miR-148/152 family in cancers: based on a systemic review of observational studies. Oncotarget 2017; 8:77999-78010. [PMID: 29100442 PMCID: PMC5652831 DOI: 10.18632/oncotarget.20830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/27/2017] [Indexed: 12/19/2022] Open
Abstract
Background The prognostic significance of MicroRNA-148/152 (miR-148/152) family expression in various cancers has been investigated by many studies with inconsistent results. To address this issue, we performed a meta-analysis to clarify this relationship. Materials and Methods Eligible studies were recruited by a systematic literature search and assessed the quality of included studies based on Quality In Prognosis Studies (QUIPS) and Newcastle-Ottawa Scale (NOS). Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for overall survival (OS) and disease free survival/progressive free survival/recurrence free survival (DFS/PFS/RFS) were calculated to estimate the effects of miR-148/152 family expression on prognosis. Results A final total of 23 articles (26 studies) were considered in evidence synthesis. A significant association was observed between low miR-148a level and poor OS in patients (HR = 1.59, 95% CI: 1.14 – 2.20, P = 0.00), especially with digestive tract cancer (DTC) (HR = 1.29, 95% CI: 1.03–1.63, P = 0.03), and another significant association was observed between low miR-148b level and poor OS in patients (HR=2.09, 95% CI: 1.70–2.56, P = 0.00), especially with (hepatocellular carcinoma) HCC (HR = 1.97, 95% Cl: 1.52–2.56, P = 0.00) and non-small cell lung cancer (NSCLC) (HR = 2.29, 95% Cl: 1.64–3.18, P = 0.00). The significant correlation between miR-152 and DFS/RFS was found in our research (HR = 3.49, 95% Cl: 1.13–10.08, P = 0.03). Conclusions Our findings suggest that low miR-148/152 family expression is significantly associated with poor prognosis and may be a feasible prognostic biomarker in some cancers, especially in HCC and NSCLC.
Collapse
Affiliation(s)
- Fujiao Duan
- Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, Henan, China
| | - Weigang Liu
- Medical Record Statistics Office, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Xiaoli Fu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yajing Feng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Dai
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, Henan, China
| | - Shuli Cui
- College of Professional Study, Northeastern University, Boston, Massachusetts, USA
| | - Zhenxing Yang
- Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
29
|
Jiang X, Wang W, Yang Y, Du L, Yang X, Wang L, Zheng G, Duan W, Wang R, Zhang X, Wang L, Chen X, Wang C. Identification of circulating microRNA signatures as potential noninvasive biomarkers for prediction and prognosis of lymph node metastasis in gastric cancer. Oncotarget 2017; 8:65132-65142. [PMID: 29029418 PMCID: PMC5630318 DOI: 10.18632/oncotarget.17789] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
Circulating microRNAs (miRNAs) are emerging as novel noninvasive biomarkers for prediction of lymph node metastasis (LNM) in cancer. The aim of this study was to identify serum miRNA signatures for prediction and prognosis of LNM in gastric cancer (GC). MiSeq sequencing was performed for an initial screening of serum miRNAs in 10 GC patients with LNM, 10 patients without LNM and 10 healthy controls. Reverse transcription quantitative real-time PCR was applied to confirm concentration of candidate miRNAs using a training cohort (n = 279) and a validation cohort (n = 180). We identified a four-miRNA panel (miR-501-3p, miR-143-3p, miR-451a, miR-146a) by multivariate logistic regression model that provided high predictive accuracy for LNM with an area under the receiver operating characteristic curve (AUC) of 0.891 (95% CI, 0.840 to 0.930) in training set. Prospective evaluation of this panel revealed an AUC of 0.822 (95% CI, 0.758 to 0.875, specificity = 87.78%, sensitivity = 63.33%) in validation set. Moreover, Kaplan-Meier analysis showed that LNM patients with low miR-451a and miR-146a levels had worse overall survival (OS) (p < 0.05). In Cox regression analysis, miR-451a was independently associated with OS of LNM (p = 0.028). Our results suggested that use of serum miRNAs seems promising in estimating the probability GC patients harbor LNM and providing prognostic information for LNM.
Collapse
Affiliation(s)
- Xiumei Jiang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong Province, China
| | - Wenfei Wang
- Humanistic Medicine Research Center, Shandong University, Jinan, 250012, Shandong Province, China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Lutao Du
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Xiaoyun Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Lili Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Weili Duan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong Province, China
| | - Rui Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Lishui Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Xiaoyang Chen
- Humanistic Medicine Research Center, Shandong University, Jinan, 250012, Shandong Province, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong Province, China
| |
Collapse
|
30
|
Hung PS, Chen CY, Chen WT, Kuo CY, Fang WL, Huang KH, Chiu PC, Lo SS. miR-376c promotes carcinogenesis and serves as a plasma marker for gastric carcinoma. PLoS One 2017; 12:e0177346. [PMID: 28486502 PMCID: PMC5423644 DOI: 10.1371/journal.pone.0177346] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric carcinoma is highly prevalent throughout the world. Understanding the pathogenesis of this disease will benefit diagnosis and resolution. Studies show that miRNAs are involved in the tumorigenesis of gastric carcinoma. An initial screening followed by subsequent validation identified that miR-376c is up-regulated in gastric carcinoma tissue and the plasma of patients with the disease. In addition, the urinary level of miR-376c is also significantly increased in gastric carcinoma patients. The plasma miR-376c level was validated as a biomarker for gastric carcinoma, including early stage tumors. The induction of miR-376c was found to enrich the proliferation, migration and anchorage-independent growth of carcinoma cells and, furthermore, the repression of the expression of endogenous miR-376c was able to reduce such oncogenic phenotypes. ARID4A gene is a direct target of miR-376c. Knockdown of endogenous ARID4A increased the oncogenicity of carcinoma cells, while ARID4A was found to be drastically down-regulated in tumor tissue. Thus, expression levels of miR-376c and ARID4A mRNA tended to be opposing in tumor tissue. Our results demonstrate that miR-376c functions by suppressing ARID4A expression, which in turn enhances the oncogenicity of gastric carcinoma cells. It seems likely that the level of miR-376c in plasma and urine could act as invaluable markers for the detection of gastric carcinoma.
Collapse
Affiliation(s)
- Pei-Shih Hung
- Department of Education and Medical Research, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Chin-Yau Chen
- Department of Surgery, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Wei-Ting Chen
- Department of Surgery, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Chen-Yu Kuo
- Department of Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Wen-Liang Fang
- Division of General Surgery, Veterans General Hospital–Taipei, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Kuo-Hung Huang
- Division of General Surgery, Veterans General Hospital–Taipei, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Peng-Chih Chiu
- Department of Dentistry, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Su-Shun Lo
- Department of Surgery, National Yang-Ming University Hospital, Yilan, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
31
|
He M, Xue Y. MicroRNA-148a suppresses proliferation and invasion potential of non-small cell lung carcinomas via regulation of STAT3. Onco Targets Ther 2017; 10:1353-1361. [PMID: 28280370 PMCID: PMC5338933 DOI: 10.2147/ott.s123518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung cancer has the highest morbidity and mortality in the world, and non-small cell lung carcinomas (NSCLC) account for 80% of cases of lung cancer. The mechanism of NSCLC is still largely unknown, and finding novel targets is of great importance for the treatment of NSCLC. The current study was designed to evaluate the role of miR-148a in NSCLC cell proliferation and invasion and to investigate the possible molecular mechanisms. We found that miR-148a expression was decreased in NSCLC tissues and cell lines. Upregulation of miR-148a significantly decreased A549 cell proliferation, and downregulation of miR-148a significantly increased A549 cell proliferation. Upregulation of miR-148a markedly increased apoptotic cell death and inhibited cell invasion potential. Upregulation of miR-148a significantly decreased signal transducer and activator of transcription 3 (STAT3) expression and 3′-untranslated region luciferase activity. Downregulation of miR-148a significantly increased STAT3 expression. Overexpression of STAT3 significantly inhibited the effect of miR-148a on cell viability and invasion potential. In conclusion, we found that miR-148a inhibited NSCLC cell proliferation and invasion potential through the inhibition of STAT3. Our findings highlight miR-148a/STAT3 axis as a novel therapeutic target for the inhibition of NSCLC growth.
Collapse
Affiliation(s)
- Mei He
- Department of Respiratory Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Yan Xue
- Department of Respiratory Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
32
|
Shen L, Zhao L, Tang J, Wang Z, Bai W, Zhang F, Wang S, Li W. Key Genes in Stomach Adenocarcinoma Identified via Network Analysis of RNA-Seq Data. Pathol Oncol Res 2017; 23:745-752. [PMID: 28058586 DOI: 10.1007/s12253-016-0178-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022]
Abstract
RNA-seq data of stomach adenocarcinoma (STAD) were analyzed to identify critical genes in STAD. Meanwhile, relevant small molecule drugs, transcription factors (TFs) and microRNAs (miRNAs) were also investigated. Gene expression data of STAD were downloaded from The Cancer Genome Atlas (TCGA). Differential analysis was performed with package edgeR. Relationships with correlation coefficient > 0.6 were retained in the gene co-expression network. Functional enrichment analysis was performed for the genes in the network with DAVID and KOBASS 2.0. Modules were identified using Cytoscape. Relevant small molecules drugs, transcription factors (TFs) and microRNAs (miRNAs) were revealed by using CMAP and WebGestalt databases. A total of 520 DEGs were identified between 285 STAD samples and 33 normal controls, including 244 up-regulated and 276 down-regulated genes. A gene co-expression network containing 53 DEGs and 338 edges was constructed, the genes of which were significantly enriched in focal adhesion, ECM-receptor interaction and vascular smooth muscle contraction pathways. Three modules were identified from the gene co-expression network and they were associated with skeletal system development, inflammatory response and positive regulation of cellular process, respectively. A total of 20 drugs, 9 TFs and 6 miRNAs were acquired that may regulate the DEGs. NFAT-COL1A1/ANXA1, HSF2-FOS, SREBP-IL1RN and miR-26-COL5A2 regulation axes may be important mechanisms for STAD.
Collapse
Affiliation(s)
- Li Shen
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Lizhi Zhao
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Jiquan Tang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Zhiwei Wang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Weisong Bai
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Feng Zhang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Shouli Wang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Weihua Li
- The People's Hospital in Gansu Province, Center Lab, No, 204 west Donggang Rood, Lanzhou City, Gansu Province, 730000, China.
| |
Collapse
|
33
|
|