1
|
Sanchez-Martinez J, Solis-Urra P, Olivares-Arancibia J, Plaza-Diaz J. Physical Exercise and Mechanism Related to Alzheimer's Disease: Is Gut-Brain Axis Involved? Brain Sci 2024; 14:974. [PMID: 39451988 PMCID: PMC11506766 DOI: 10.3390/brainsci14100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease is a progressive neurodegenerative disease characterized by structural changes in the brain, including hippocampal atrophy, cortical thinning, amyloid plaques, and tau tangles. Due to the aging of the global population, the burden of Alzheimer's disease is expected to increase, making the exploration of non-pharmacological interventions, such as physical exercise, an urgent priority. RESULTS There is emerging evidence that regular physical exercise may mitigate the structural and functional declines associated with Alzheimer's disease. The underlying mechanisms, however, remain poorly understood. Gut-brain axis research is a promising area for further investigation. This system involves bidirectional communication between the gut microbiome and the brain. According to recent studies, the gut microbiome may influence brain health through modulating neuroinflammation, producing neuroactive compounds, and altering metabolic processes. Exercise has been shown to alter the composition of the gut microbiome, potentially impacting brain structure and function. In this review, we aim to synthesize current research on the relationship between physical exercise, structural brain changes in Alzheimer's disease, and the gut-brain axis. CONCLUSIONS In this study, we will investigate whether changes in the gut microbiome induced by physical exercise can mediate its neuroprotective effects, offering new insights into the prevention and treatment of Alzheimer's disease. By integrating findings from neuroimaging studies, clinical trials, and microbiome research, this review will highlight potential mechanisms. It will also identify key gaps in the literature. This will pave the way for future research directions.
Collapse
Affiliation(s)
- Javier Sanchez-Martinez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
| | - Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 8370134, Chile
| | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
2
|
Li TS, Wang R, Su X, Wang XQ. Effect and mechanisms of exercise for complex regional pain syndrome. Front Mol Neurosci 2023; 16:1167166. [PMID: 37206984 PMCID: PMC10188984 DOI: 10.3389/fnmol.2023.1167166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Complex regional pain syndrome characterized by severe pain and dysfunction seriously affects patients' quality of life. Exercise therapy is gaining attention because it can effectively relieve pain and improve physical function. Based on the previous studies, this article summarized the effectiveness and underlying mechanisms of exercise interventions for complex regional pain syndrome, and described the gradual multistage exercise program. Exercises suitable for patients with complex regional pain syndrome mainly include graded motor imagery, mirror therapy, progressive stress loading training, and progressive aerobic training. In general, exercise training for patients with complex regional pain syndrome not only alleviates pain but also improves physical function and positive mental status. The underlying mechanisms of exercise interventions for complex regional pain syndrome include the remodeling of abnormal central and peripheral nervous system, the regulation of vasodilation and adrenaline levels, the release of endogenous opioids, and the increased anti-inflammatory cytokines. This article provided a clear explanation and summary of the research on exercise for complex regional pain syndrome. In the future, more high-quality studies with sufficient sample sizes may provide more exercise regimens and better evidence of efficacy.
Collapse
Affiliation(s)
- Tian-Shu Li
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Rui Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xuan Su
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Xuan Su,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Shanghai Shangti Orthopaedic Hospital, Department of Rehabilitation Medicine, Shanghai, China
- *Correspondence: Xue-Qiang Wang,
| |
Collapse
|
3
|
Hortobágyi T, Vetrovsky T, Balbim GM, Sorte Silva NCB, Manca A, Deriu F, Kolmos M, Kruuse C, Liu-Ambrose T, Radák Z, Váczi M, Johansson H, Dos Santos PCR, Franzén E, Granacher U. The impact of aerobic and resistance training intensity on markers of neuroplasticity in health and disease. Ageing Res Rev 2022; 80:101698. [PMID: 35853549 DOI: 10.1016/j.arr.2022.101698] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine the effects of low- vs. high-intensity aerobic and resistance training on motor and cognitive function, brain activation, brain structure, and neurochemical markers of neuroplasticity and the association thereof in healthy young and older adults and in patients with multiple sclerosis, Parkinson's disease, and stroke. DESIGN Systematic review and robust variance estimation meta-analysis with meta-regression. DATA SOURCES Systematic search of MEDLINE, Web of Science, and CINAHL databases. RESULTS Fifty studies with 60 intervention arms and 2283 in-analyses participants were included. Due to the low number of studies, the three patient groups were combined and analyzed as a single group. Overall, low- (g=0.19, p = 0.024) and high-intensity exercise (g=0.40, p = 0.001) improved neuroplasticity. Exercise intensity scaled with neuroplasticity only in healthy young adults but not in healthy older adults or patient groups. Exercise-induced improvements in neuroplasticity were associated with changes in motor but not cognitive outcomes. CONCLUSION Exercise intensity is an important variable to dose and individualize the exercise stimulus for healthy young individuals but not necessarily for healthy older adults and neurological patients. This conclusion warrants caution because studies are needed that directly compare the effects of low- vs. high-intensity exercise on neuroplasticity to determine if such changes are mechanistically and incrementally linked to improved cognition and motor function.
Collapse
Affiliation(s)
- Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands; Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary; Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Hungary; Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany; Hungarian University of Sports Science, Department of Kinesiology, Budapest, Hungary.
| | - Tomas Vetrovsky
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Guilherme Moraes Balbim
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Nárlon Cássio Boa Sorte Silva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU Sassari, Sassari, Italy
| | - Mia Kolmos
- Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christina Kruuse
- Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Zsolt Radák
- Research Center of Molecular Exercise Science, Hungarian University of Sport Science, Budapest, Hungary
| | - Márk Váczi
- Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Hungary
| | - Hanna Johansson
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | | | - Erika Franzén
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
4
|
Mechanisms of Social Interaction and Virtual Connections as Strong Predictors of Wellbeing of Older Adults. Healthcare (Basel) 2022; 10:healthcare10030553. [PMID: 35327031 PMCID: PMC8953298 DOI: 10.3390/healthcare10030553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
Socially engaged older adults are less likely to decline in health and happiness and have a higher quality of life. Building upon this premise, examination was conducted on the domains of social determinants of health, specifically the social and community context per Healthy People 2030 objectives. These mechanisms of social interaction, in the form of group activities, community engagement, and virtual interactions via email or text message, were assessed using hierarchical regression analysis to find out their association with wellbeing, depression symptoms, and cognition of older adults. The data included a total of 4623 sample of older adults from the National Health and Aging Trend Study (NHATS) Round 8. The results showed that social support explained a 40.3% unique variance on wellbeing. The use of text message and email had a moderating effect on community engagement and self-reported depression level in older adults. Findings suggest that community programs, shared group activities, or technology training workshops can improve social interaction and support cognition and reduce depression in older adults. Directions for future research include examining human behaviors and perceptions and increasing technology training sessions to promote independence of older adults and increase their social connections. In addition, participant involvement in interventions would enhance the possibility of success of such endeavors.
Collapse
|
5
|
Hvid LG, Harwood DL, Eskildsen SF, Dalgas U. A Critical Systematic Review of Current Evidence on the Effects of Physical Exercise on Whole/Regional Grey Matter Brain Volume in Populations at Risk of Neurodegeneration. Sports Med 2021; 51:1651-1671. [PMID: 33861414 DOI: 10.1007/s40279-021-01453-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the intriguing potential of physical exercise being able to preserve or even restore brain volume (grey matter volume in particular)-a tissue essential for both cognitive and physical function-no reviews have so far synthesized the existing knowledge from randomized controlled trials investigating exercise-induced changes of the brain's grey matter volume in populations at risk of neurodegeneration. Our objective was to critically review the existing evidence regarding this topic. METHODS A systematic search was carried out in MEDLINE and EMBASE databases primo April 2020, to identify randomized controlled trials evaluating the effects of aerobic training, resistance training or concurrent training on brain grey volume changes (by MRI) in adult clinical or healthy elderly populations. RESULTS A total of 20 articles (from 19 RCTs) evaluating 3-12 months of aerobic, resistance, or concurrent training were identified and included, involving a total of 1662 participants (populations: healthy older adults, older adults with mild cognitive impairment or Alzheimer's disease, adults with schizophrenia or multiple sclerosis or major depression). While few studies indicated a positive effect-although modest-of physical exercise on certain regions of brain grey matter volume, the majority of study findings were neutral (i.e., no effects/small effect sizes) and quite divergent across populations. Meta-analyses showed that different exercise modalities failed to elicit any substantial effects on whole brain grey volume and hippocampus volume, although with rather large confidence interval width (i.e., variability). CONCLUSION Altogether, the current evidence on the effects of physical exercise on whole/regional grey matter brain volume appear sparse and inconclusive, and does not support that physical exercise is as potent as previously proposed when it comes to affecting brain grey matter volume.
Collapse
Affiliation(s)
- Lars G Hvid
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark.
| | - Dylan L Harwood
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Simon F Eskildsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Gogniat MA, Robinson TL, Miller LS. Exercise interventions do not impact brain volume change in older adults: a systematic review and meta-analysis. Neurobiol Aging 2021; 101:230-246. [PMID: 33640675 DOI: 10.1016/j.neurobiolaging.2021.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 01/20/2023]
Abstract
Exercise interventions have been shown to positively impact cognitive function in older adults, but the mechanisms underlying the neuroprotective effects of exercise on the brain are not well understood. Here, we aimed to synthesize and quantitatively analyze the current literature on exercise interventions and brain volume change in older adults and to examine the impact of key demographic and intervention features as well as study quality. This study was pre-registered with PROSPERO (CRD42018091866). EBSCOhost, Cochrane Library, Embase, and reference lists were searched to identify randomized-controlled trials (RCTs) of exercise interventions for healthy older adults and older adults (60+) with mild cognitive impairment (MCI). A total of 69 effects from 14 studies were pooled and expressed as Hedge's g using a random-effects model. Results indicated that there was no significant difference in brain volume outcomes for older adults that completed an exercise intervention compared to older adults in control groups (g = 0.012, p = 0.728, 95% CI = -0.055, .078). These results were confirmed using multilevel analysis to account for nesting of effects within studies (g = 0.009, p = 0.826, 95% CI = -0.072, 0.090) and using conservative post-hoc models to address possible non-independence of multiple outcome domains and sample nonindependence. No significant heterogeneity was detected, limiting moderator analyses. The implications for future research are discussed.
Collapse
Affiliation(s)
| | - Talia L Robinson
- University of Georgia, Department of Psychology, Athens, Georgia
| | - L Stephen Miller
- University of Georgia, Department of Psychology, Athens, Georgia
| |
Collapse
|
7
|
Perkins KM, Munguia N, Angulo A, Anaya C, Rios R, Velazquez L. Evaluation of aquafitness exercise on the physical and mental health of older women: a pilot study. J Women Aging 2020; 33:569-582. [PMID: 32070239 DOI: 10.1080/08952841.2020.1730681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Physical activity is a priority to improve health. However, a sedentary lifestyle is increasingly becoming the norm. For example, in Mexico, sedentarism has increased, especially among older women. This study evaluated the effects of aquafitness on the health of older women in Mexico. Healthy older women performed aquafitness exercise and were compared to a control group of comparable women. Outcome assessments performed at baseline and after 17-weeks included psychological and physical/anthropometric measures. Participants in aquafitness became more optimistic, lost more weight, body fat, and a subsequent decrease in BMI, compared to controls. The results suggest important avenues for future research.
Collapse
Affiliation(s)
- Krystal M Perkins
- School of Natural and Social Sciences, Purchase College, SUNY, Purchase, New York, USA
| | - Nora Munguia
- Sustainability Graduate Program/Industrial Engineering, University of Sonora, Hermosillo, Mexico
| | - Aracely Angulo
- Chemical Biological Sciences, University of Sonora, Hermosillo, Mexico
| | - Carlos Anaya
- Industrial Engineering, University of Sonora, Hermosillo, Mexico
| | - Rafael Rios
- Industrial Engineering, University of Sonora, Hermosillo, Mexico
| | - Luis Velazquez
- Sustainability Graduate Program/Industrial Engineering, University of Sonora, Hermosillo, Mexico
| |
Collapse
|
8
|
Explaining Individual Differences in Fine Motor Performance and Learning in Older Adults: The Contribution of Muscle Strength and Cardiovascular Fitness. J Aging Phys Act 2019; 27:725-738. [PMID: 30747569 DOI: 10.1123/japa.2018-0289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It remains controversial whether aging influences motor learning and whether physiological factors, such as local strength or fitness, are associated with fine motor performance and learning in older adults (OA). OA (n = 51) and young adults (YA, n = 31) performed a short-term motor learning session using a precision grip force modulation task. The rate of improvement of OA compared with YA was steeper with respect to performance variability and temporal precision. Both age groups showed positive transfer during an unpracticed variant of the force modulation task. Local muscle strength (pinch and grip strength) and high cardiovascular fitness positively predicted fine motor performance, whereas initial performance, muscle strength, and motor fitness (heterogeneous motor test battery) negatively predicted rate of improvement. Analyses indicated potentials, but also limits of plasticity for OA.
Collapse
|
9
|
Haeger A, Costa AS, Schulz JB, Reetz K. Cerebral changes improved by physical activity during cognitive decline: A systematic review on MRI studies. Neuroimage Clin 2019; 23:101933. [PMID: 31491837 PMCID: PMC6699421 DOI: 10.1016/j.nicl.2019.101933] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/30/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022]
Abstract
Current treatment in late-life cognitive impairment and dementia is still limited, and there is no cure for brain tissue degeneration or reversal of cognitive decline. Physical activity represents a promising non-pharmacological interventional approach in many diseases causing cognitive impairment, but its effect on brain integrity is still largely unknown. Especially research of cerebral alterations in disease state that goes beyond observations of clinical improvement is crucial to understand disease processes and possible effective treatments. In this systematic review, we address the question how physical activity and fitness in mild cognitive impairment (MCI) and Alzheimer's disease (AD) influences brain architecture compared to cognitively healthy elderly. We review both interventional studies comprising aerobic, coordinative and resistance exercises and observational studies on fitness and physical activity combined with Magnetic Resonance imaging (MRI). Different MRI approaches were included such as volumetric and structural analyses, Diffusion Tensor Imaging (DTI), functional MRI and Cerebral Blood Flow (CBF). We evaluate MRI results for different exercise modalities and performed a methodological evaluation of interventional studies in cognitive decline compared to normal aging. According to our results, among 12 interventions in AD/MCI, aerobic exercise is most frequently applied (9 studies). Interventions in AD/MCI altogether reveal a higher methodological quality compared to interventions in healthy elderly (8.33 ± 2.19 vs. 6.25 ± 2.36 out of 13 points), with most frequent missing aspects related to descriptions of complications, lack of intention-to-treat and statistical power analyses. Effects of aerobic exercise and fitness seem to mainly impact brain structures sensitive to neurodegeneration, which especially comprise frontal, temporal and parietal regions, such as the hippocampal/parahippocampal region, precuneus, anterior cingulate and prefrontal cortex, which are reported by several studies. General fitness measured via an objective fitness assessment and questionnaires seems to have a more global cerebral effect, probably due to its long-term application, whereas distinct intervention effects of durations between 3 and 6 months seem to concentrate on more local brain regions as the hippocampus, which can also be influenced by region of interest analyses. There is still a lack of evidence on other or combined types of intervention modalities, such as resistance, coordinative as well as multicomponent exercise during cognitive decline, and complex interventions as dancing. Future research should examine their beneficial effect on brain integrity, since several non-MRI studies already point to their advantageous impact. As a further future prospect, combination and application of newly developed imaging methods such as metabolic imaging should be envisaged to understand physical activity and its cerebral influence under its many-sided facets.
Collapse
Affiliation(s)
- Alexa Haeger
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Ana S Costa
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
10
|
Hübner L, Voelcker-Rehage C. Does physical activity benefit motor performance and learning of upper extremity tasks in older adults? - A systematic review. Eur Rev Aging Phys Act 2017; 14:15. [PMID: 28919929 PMCID: PMC5596935 DOI: 10.1186/s11556-017-0181-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
Upper extremity motor performance declines with increasing age. However, older adults need to maintain, learn new and relearn known motor tasks. Research with young adults indicated that regular and acute physical activity might facilitate motor performance and motor learning processes. Therefore, this review aimed to examine the association between chronic physical activity and acute bouts of exercise on motor performance and motor learning in upper extremity motor tasks in older adults. Literature was searched via Cochrane library, PubMED, PsycINFO and Scopus and 27 studies met all inclusion criteria. All studies dealt with the influence of chronic physical activity on motor performance or motor learning, no appropriate study examining the influence of an acute bout of exercise in older adults was found. Results concerning the association of chronic physical activity and motor performance are mixed and seem to be influenced by the study design, kind of exercise, motor task, and exercise intensity. Regarding motor learning, a high physical activity or cardiovascular fitness level seems to boost the initial phase of motor learning; results differ with respect to motor retention. Overall, (motor-coordinative) intervention studies seem to be more promising than cross-sectional studies.
Collapse
Affiliation(s)
- Lena Hübner
- Sports Psychology, Institute of Human Movement Science and Health, Faculty of Behavioural and Social Sciences, Chemnitz University of Technology, Thueringer Weg 11, 09126 Chemnitz, Germany
| | - Claudia Voelcker-Rehage
- Sports Psychology, Institute of Human Movement Science and Health, Faculty of Behavioural and Social Sciences, Chemnitz University of Technology, Thueringer Weg 11, 09126 Chemnitz, Germany
| |
Collapse
|
11
|
Fletcher MA, Low KA, Boyd R, Zimmerman B, Gordon BA, Tan CH, Schneider-Garces N, Sutton BP, Gratton G, Fabiani M. Comparing Aging and Fitness Effects on Brain Anatomy. Front Hum Neurosci 2016; 10:286. [PMID: 27445740 PMCID: PMC4923123 DOI: 10.3389/fnhum.2016.00286] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/27/2016] [Indexed: 11/16/2022] Open
Abstract
Recent studies suggest that cardiorespiratory fitness (CRF) mitigates the brain’s atrophy typically associated with aging, via a variety of beneficial mechanisms. One could argue that if CRF is generally counteracting the negative effects of aging, the same regions that display the greatest age-related volumetric loss should also show the largest beneficial effects of fitness. To test this hypothesis we examined structural MRI data from 54 healthy older adults (ages 55–87), to determine the overlap, across brain regions, of the profiles of age and fitness effects. Results showed that lower fitness and older age are associated with atrophy in several brain regions, replicating past studies. However, when the profiles of age and fitness effects were compared using a number of statistical approaches, the effects were not entirely overlapping. Interestingly, some of the regions that were most influenced by age were among those not influenced by fitness. Presumably, the age-related atrophy occurring in these regions is due to factors that are more impervious to the beneficial effects of fitness. Possible mechanisms supporting regional heterogeneity may include differential involvement in motor function, the presence of adult neurogenesis, and differential sensitivity to cerebrovascular, neurotrophic and metabolic factors.
Collapse
Affiliation(s)
- Mark A Fletcher
- Beckman Institute, University of Illinois, UrbanaIL, USA; Neuroscience Program, University of Illinois, UrbanaIllinois, USA
| | - Kathy A Low
- Beckman Institute, University of Illinois, Urbana IL, USA
| | - Rachel Boyd
- Beckman Institute, University of Illinois, UrbanaIL, USA; Department of Psychology, University of Illinois, UrbanaIL, USA
| | - Benjamin Zimmerman
- Beckman Institute, University of Illinois, UrbanaIL, USA; Neuroscience Program, University of Illinois, UrbanaIllinois, USA
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, Saint Louis MO, USA
| | - Chin H Tan
- Beckman Institute, University of Illinois, UrbanaIL, USA; Department of Psychology, University of Illinois, UrbanaIL, USA
| | - Nils Schneider-Garces
- Beckman Institute, University of Illinois, UrbanaIL, USA; Department of Psychology, University of Illinois, UrbanaIL, USA
| | - Bradley P Sutton
- Beckman Institute, University of Illinois, UrbanaIL, USA; Neuroscience Program, University of Illinois, UrbanaIllinois, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, UrbanaIL, USA
| | - Gabriele Gratton
- Beckman Institute, University of Illinois, UrbanaIL, USA; Neuroscience Program, University of Illinois, UrbanaIllinois, USA; Department of Psychology, University of Illinois, UrbanaIL, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, UrbanaIL, USA
| | - Monica Fabiani
- Beckman Institute, University of Illinois, UrbanaIL, USA; Neuroscience Program, University of Illinois, UrbanaIllinois, USA; Department of Psychology, University of Illinois, UrbanaIL, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, UrbanaIL, USA
| |
Collapse
|