1
|
Abdelrahman KA, Hashem YA, Szubin R, Monk JM, Kashef MT, Aziz RK. Sequencing and genome-scale virulome reconstruction of Enterococcus faecalis clinical isolates delineate genes involved in gelatinase activity and biofilm formation. Microb Pathog 2025; 206:107721. [PMID: 40398639 DOI: 10.1016/j.micpath.2025.107721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/07/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
INTRODUCTION Enterococci are a leading cause of nosocomial infections with a wide array of virulence factors. Clinically isolated enterococci vary in gelatinase activity and biofilm-forming ability, yet the genetic basis for this variation is not fully understood. AIM This study aimed to identify genetic factors associated with the discrepancy in biofilm formation and gelatinase activity. METHODS Biofilm formation was quantified by the crystal violet assay and the gelatinase activity was determined on gelatin agar plates. The genomes of 33 clinical Enterococcus faecalis isolates were sequenced by Illumina HiSeq and annotated by the Rapid Annotations using Subsystems Technology tool kit (RASTtk) and tools within the Bacterial Viral Bioinfromatic Resource Center (BV-BRC). Virulence factors and prophages were predicted, and genotype-phenotype associations were statistically assessed. RESULTS All isolates formed biofilms with different intensities, with the majority (65 %) forming moderate to strong biofilms. Gelatinase activity was detected in 39 % of isolates. The hyaluronic acid precursor gene (EF0818), adhesion protein gene (prgB/asc10), manganese uptake gene (psaA), enterococcal surface protein gene (esp), and the complete capsule locus (cps) were significantly positively correlated with biofilm intensity (p < 0.05), while the quorum sensing genes, fsrA and fsrB, collagen adhesion gene (ace), and capsule gene, cpsF, were significantly positively correlated with gelatinase activity (p < 0.05). Prophage content was positively associated with biofilm formation. CONCLUSION Whole-genome sequencing identified genes and prophages linked to biofilm formation and gelatinase activity in E. faecalis. Future studies will experimentally confirm the role of identified genes in virulence and their possible anti-virulence intervention potential.
Collapse
Affiliation(s)
- Khaled A Abdelrahman
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Yomna A Hashem
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Richard Szubin
- Bioengineering Department, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan M Monk
- Bioengineering Department, University of California San Diego, La Jolla, CA 92093, USA
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Jannati E, Khademi F, Manouchehrifar M, Maleki D, Amirmozaffari N, Sadat Nikbin V, Arzanlou M. Antibiotic resistance and virulence potentials of E. faecalis and E. faecium in hospital wastewater: a case study in Ardabil, Iran. JOURNAL OF WATER AND HEALTH 2023; 21:1277-1290. [PMID: 37756195 PMCID: wh_2023_147 DOI: 10.2166/wh.2023.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Hospital wastewater can contaminate the environment with antibiotic-resistant and virulent bacteria. We analyzed wastewater samples from four hospitals in Ardabil province, Iran for Enterococcus faecium and Enterococcus faecalis using culture and molecular methods. We also performed antimicrobial susceptibility testing and polymerase chain reaction testing for resistance and virulence genes. Out of 141 enterococci isolates, 68.8% were E. faecium and 23.4% were E. faecalis. Ciprofloxacin and rifampicin showed the highest level of resistance against E. faecalis and E. faecium isolates at 65%. High-level gentamicin resistance (HLGR), high-level streptomycin resistance (HLSR), ampicillin, and vancomycin resistance were observed in 25, 5, 10, and 5.15% of E. faecium, and 15, 6, 15, and 3.03% of E. faecalis isolates, respectively. The ant(6')-Ia and ant(3')-Ia genes that were responsible for streptomycin resistance were observed in HLSR isolates and aph(3')-IIIa and aac(6') Ie-aph(2″)-Ia genes accounting for gentamicin resistance were detected in HLGR isolates. vanA was the predominant gene detected in vancomycin-resistant isolates. The majority of isolates were positive for gelE, asa1, esp, cylA, and hyl virulence genes. We found that drug-resistant and virulent E. faecalis and E. faecium isolates were prevalent in hospital wastewater. Proper treatment strategies are required to prevent their dissemination into the environment.
Collapse
Affiliation(s)
- Elham Jannati
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Microbiology, School of Sciences, Islamic Azad University, Ardabil Branch, Ardabil, Iran E-mail: ;
| | - Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Dadras Maleki
- Microbiology Laboratory, Imam Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nour Amirmozaffari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Arzanlou
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
3
|
Genetic Diversity, Antimicrobial Resistance, and Virulence Factors of Enterococcus Faecalis Isolates Obtained from Stool Samples of Hospitalized Patients. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Enterococcus faecalis rapidly develops resistance to different antibiotics, thereby resulting in serious nosocomial infections associated with high mortality rates and different problems in the healthcare systems. Objectives: This study aimed to analyze the genetic diversity, antimicrobial resistance, and virulence factors of E. faecalis isolates obtained from the stool samples of patients in a hospital in the center of Iran. Methods: In this cross-sectional descriptive-analytical study, 108 stool samples were collected from September 2019 to February 2020 from 108 patients hospitalized in a hospital in the center of Iran. Enterococcus faecalis isolates were detected using the ddlE gene detection technique, and antimicrobial resistance testing was performed using the disc agar diffusion method. Moreover, polymerase chain reaction (PCR) was used to detect antimicrobial resistance genes and virulence factors. Genetic diversity was also analyzed by enterobacterial repetitive intergenic consensus using PCR (ERIC-PCR). The BioNumerics software was used to construct a dendrogram. Results: Of 108 isolates, 50 samples were E. faecalis (46.2%). The prevalence of multidrug resistance among E. faecalis isolates was 62%, and most isolates were resistant to antibiotics tetracycline (70%), erythromycin (68%), and rifampin (60%). Among the E. faecalis isolates, the most prevalent antimicrobial resistance genes were ermB (96%), aph (2′′) Ia (66%), aac(6′)-Ie (40%), and ermC (30%), and the most prevalent virulence genes were gelE (78%), asa1 (74%), and esp (74%). The genetic diversity analysis showed 25 ERIC types in two major clusters (ie, clusters H and J) and eight minor clusters (ie, clusters A-G and I). There was no significant difference between clusters H and J in terms of antimicrobial resistance and resistance genes (P > 0.05). In contrast, the prevalence of the asa1 gene was significantly higher in cluster J than in cluster H (P < 0.05). Conclusions: This study showed the high prevalence of multidrug resistance, and high heterogeneity among the E. faecalis isolates obtained from the stool samples of hospitalized patients.
Collapse
|
4
|
|
5
|
Holder MJ, Wright HJ, Couve E, Milward MR, Cooper PR. Neutrophil Extracellular Traps Exert Potential Cytotoxic and Proinflammatory Effects in the Dental Pulp. J Endod 2019; 45:513-520.e3. [PMID: 30930016 DOI: 10.1016/j.joen.2019.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/14/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neutrophil extracellular traps (NETs) are an important innate immune mechanism aimed at limiting the dissemination of bacteria within tissues and localizing antibacterial killing mechanisms. There is significant interest in the role of NETs in a range of infectious and inflammatory diseases; however, their role in diseased pulp has yet to be explored. Our aim was to determine their relevance to infected pulp and how their components affect human dental pulp cell (HDPC) responses. METHODS Diseased pulp tissue was stained for the presence of extracellular DNA and elastase to detect the presence of NETs. Bacteria known to infect pulp were also assayed to determine their ability to stimulate NETs. Coculture studies and NET component challenge were used to determine the effect of extracellular NET release on HDPC viability and inflammatory response. NET-stimulated HDPC secretomes were assessed for their chemotactic activity for lymphocytes and macrophages. RESULTS Data indicate that NETs are present in infected pulp tissue and whole NETs, and their histone components, particularly H2A, decreased HDPC viability and stimulated chemokine release, resulting in an attraction of lymphocyte populations. CONCLUSIONS NETs are likely important in pulpal pathogenesis with injurious and chronic inflammatory effects on HDPCs, which may contribute to disease progression. Macrophages are chemoattracted to NET-induced apoptotic HDPCs, facilitating cellular debris removal. NETs and histones may provide novel prognostic markers and/or therapeutic targets for pulpal diseases.
Collapse
Affiliation(s)
- Michelle J Holder
- Oral Biology, Birmingham Dental School and Hospital, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Helen J Wright
- Oral Biology, Birmingham Dental School and Hospital, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Eduardo Couve
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Instituto de Biología, Laboratorio de Microscopía Electrónica, Universidad de Valparaíso, Valparaíso, Chile
| | - Michael R Milward
- Oral Biology, Birmingham Dental School and Hospital, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Paul R Cooper
- Oral Biology, Birmingham Dental School and Hospital, College of Medical and Dental Sciences, Birmingham, United Kingdom.
| |
Collapse
|
6
|
Cooper PR, Chicca IJ, Holder MJ, Milward MR. Inflammation and Regeneration in the Dentin-pulp Complex: Net Gain or Net Loss? J Endod 2018; 43:S87-S94. [PMID: 28844308 DOI: 10.1016/j.joen.2017.06.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The balance between the immune/inflammatory and regenerative responses in the diseased pulp is central to the clinical outcome, and this response is unique within the body because of its tissue site. Cariogenic bacteria invade the dentin and pulp tissues, triggering molecular and cellular events dependent on the disease stage. At the early onset, odontoblasts respond to bacterial components in an attempt to protect the tooth's hard and soft tissues and limit disease progression. However, as disease advances, the odontoblasts die, and cells central to the pulp core, including resident immune cells, pulpal fibroblasts, endothelial cells, and stem cells, respond to the bacterial challenge via their expression of a range of pattern recognition receptors that identify pathogen-associated molecular patterns. Subsequently, recruitment and activation occurs of a range of immune cell types, including neutrophils, macrophages, and T and B cells, which are attracted to the diseased site by cytokine/chemokine chemotactic gradients initially generated by resident pulpal cells. Although these cells aim to disinfect the tooth, their extravasation, migration, and antibacterial activity (eg, release of reactive oxygen species [ROS]) along with the bacterial toxins cause pulp damage and impede tissue regeneration processes. Recently, a novel bacterial killing mechanism termed neutrophil extracellular traps (NETs) has also been described that uses ROS signaling and results in cellular DNA extrusion. The NETs are decorated with antimicrobial peptides (AMPs), and their interaction with bacteria results in microbial entrapment and death. Recent data show that NETs can be stimulated by bacteria associated with endodontic infections, and they may be present in inflamed pulp tissue. Interestingly, some bacteria associated with pulpal infections express deoxyribonuclease enzymes, which may enable their evasion of NETs. Furthermore, although NETs aim to localize and kill invading bacteria using AMPs and histones, limiting the spread of the infection, data also indicate that NETs can exacerbate inflammation and their components are cytotoxic. This review considers the potential role of NETs within pulpal infections and how these structures may influence the pulp's vitality and regenerative responses.
Collapse
Affiliation(s)
- Paul R Cooper
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK.
| | - Ilaria J Chicca
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| | - Michael J Holder
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| | - Michael R Milward
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| |
Collapse
|
7
|
Mubarak Z, Soraya C. The acid tolerance response and pH adaptation of Enterococcus faecalis in extract of lime Citrus aurantiifolia from Aceh Indonesia. F1000Res 2018; 7:287. [PMID: 29721312 PMCID: PMC5897787 DOI: 10.12688/f1000research.13990.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2018] [Indexed: 11/23/2022] Open
Abstract
Background: The objective of the present study was to evaluate the acid tolerance response and pH adaptation when
Enterococcusfaecalis interacted with extract of lime (
Citrus aurantiifolia). Methods: We used
E. faecalis ATCC 29212 and lime extract from Aceh, Indonesia. The microbe was analyzed for its pH adaptation, acid tolerance response, and adhesion assay using a light microscope with a magnification of x1000. Further, statistical tests were performed to analyze both correlation and significance of the acid tolerance and pH adaptation as well as the interaction activity. Results:E. faecalis was able to adapt to a very acidic environment (pH 2.9), which was characterized by an increase in its pH (reaching 4.2) at all concentrations of the lime extract (p < 0.05).
E. faecalis was also able to provide acid tolerance response to lime extract based on spectrophotometric data (595 nm) (p < 0.05). Also, the interaction activity of
E. faecalis in different concentrations of lime extract was relatively stable within 6 up to 12 hours (p < 0.05), but it became unstable within 24–72 hours (p > 0.05) based on the mass profiles of its interaction activity. Conclusions:E. faecalis can adapt to acidic environments (pH 2.9–4.2); it is also able to tolerate acid generated by
Citrus aurantiifolia extract, revealing a stable interaction in the first 6–12 hours.
Collapse
Affiliation(s)
- Zaki Mubarak
- Faculty of Dentistry, University of Syiah Kuala, Banda Aceh, Indonesia
| | - Cut Soraya
- Faculty of Dentistry, University of Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
8
|
Blanco AE, Barz M, Cavero D, Icken W, Sharifi AR, Voss M, Buxadé C, Preisinger R. Characterization of Enterococcus faecalis isolates by chicken embryo lethality assay and ERIC-PCR. Avian Pathol 2017; 47:23-32. [DOI: 10.1080/03079457.2017.1359404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ana E. Blanco
- Lohmann Tierzucht GmbH, Cuxhaven, Germany
- Departamento de Producción Animal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | | | | - A. Reza Sharifi
- Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August-University Goettingen, Goettingen, Germany
| | | | - Carlos Buxadé
- Departamento de Producción Animal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | |
Collapse
|
9
|
Bachtiar BM, Bachtiar EW. Proinflammatory MG-63 cells response infection with Enterococcus faecalis cps2 evaluated by the expression of TLR-2, IL-1β, and iNOS mRNA. BMC Res Notes 2017; 10:401. [PMID: 28800779 PMCID: PMC5553915 DOI: 10.1186/s13104-017-2740-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/08/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE We have previously demonstrated that unencapsulated Enterococcus faecalis cps2 inhibits biofilm formation of Candida albicans, a fungus commonly found with E. faecalis in periapical lesion. In this study, we compared encapsulated and unencapsulated E. faecalis cps2 strains relationship with osteoblastic (MG-63) cells, whereas E. faecalis ATCC 29212 were used as a reference strain. RESULTS The binding capacity of E. faecalis to MG-63 cells as shown by each tested strain was comparable, but the unencapsulated strain was less invasive compared to the encapsulated and the reference strains. Moreover, quantitative real time-PCR (qPCR) results showed that infecting unencapsulated E. faecalis cps2 is a stronger stimulator for toll like receptor 2 (TLR2) and interleukin-1β (IL-1β) mRNAs, but not for inducible nitric oxide synthase (iNOS) mRNA in osteoblastic cells. In conclusion, the performance of unencapsulated E. faecalis cps2 when the bacterium interacts with osteoblastic cells is quite different from that of encapsulated E. faecalis cps2 and reference strains. It appears that the unencapsulated strain might contribute to the persistence of the periapical inflammatory response, depending on down-regulation of iNOS mRNA expression.
Collapse
Affiliation(s)
- Boy M Bachtiar
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jl. Salemba Raya 4, Jakarta, 10430, Indonesia.
| | - Endang W Bachtiar
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jl. Salemba Raya 4, Jakarta, 10430, Indonesia
| |
Collapse
|
10
|
Bachtiar EW, Bachtiar BM, Soejoedono RD, Wibawan IW, Afdhal A. Biological and Immunogenicity Property of IgY Anti S. mutans ComD. Open Dent J 2016; 10:308-14. [PMID: 27386013 PMCID: PMC4911422 DOI: 10.2174/1874210601610010308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/01/2016] [Accepted: 05/09/2016] [Indexed: 11/29/2022] Open
Abstract
Objective: This study aims to elucidate the effect of IgY anti ComD on the biological properties of Streptococcus mutans. (S. mutans) ComD is an interspecies quorum-sensing signaling receptor that plays an important role in biofilm formation by S. mutans. Materials and Methodology: Egg yolk IgY was produced by the immunization of chickens with a DNA vaccine containing the ComD DNA coding region. We evaluated the effect of the antibody on biofilm formation by S. mutans isolated from subjects with or without dental caries. We also assessed the immunoreactivity of the antibody against all isolates, and analyzed the protein profile of S. mutans by SDS-PAGE. Results: The ComD antibody was successfully induced in the hens’ eggs. It inhibited biofilm formation by all S. mutans isolates. In addition, the expression of some protein bands was affected after exposure to the antibody. Conclusion: IgY anti-S. mutans ComD reduces biofilm formation by this bacterium and alters the protein profile of S. mutans.
Collapse
Affiliation(s)
- E W Bachtiar
- Department of of Oral Biology, Faculty of Dentistry, Oral Sciences Research Center, Universitas Indonesia, Jakarta, Indonesia
| | - B M Bachtiar
- Department of of Oral Biology, Faculty of Dentistry, Oral Sciences Research Center, Universitas Indonesia, Jakarta, Indonesia
| | - R D Soejoedono
- Faculty of Veterinary Bogor, Institute of Agriculture, Bogor, Indonesia
| | - I W Wibawan
- Faculty of Veterinary Bogor, Institute of Agriculture, Bogor, Indonesia
| | - A Afdhal
- Department of of Oral Biology, Faculty of Dentistry, Oral Sciences Research Center, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
11
|
Bachtiar EW, Dewiyani S, Surono Akbar SM, Bachtiar BM. Inhibition of Candida albicans biofilm development by unencapsulated Enterococcus faecalis cps2. J Dent Sci 2016; 11:323-330. [PMID: 30894991 PMCID: PMC6395282 DOI: 10.1016/j.jds.2016.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 03/16/2016] [Indexed: 12/28/2022] Open
Abstract
Background/purpose In the oral environment, Candida albicans interacts with many bacteria, including Enterococcus faecalis. We investigated the susceptibility of C. albicans biofilm development to the presence of unencapsulated E. faecalis cps2 in comparison with reference strains (E. faecalis ATCC 29212) or their respective spent medium (collected at 6 hours). Material and methods Crystal violet stain was used to measure the total biofilm mass, whereas quantitative real-time polymerase chain reaction was used to analyze the change in expression of the mRNA of hypha morphology (ALS1 and ALS3) and biofilm maturation (EFB1). Results At the intermediate stage, C. albicans resisted the presence of each E. faecalis strain tested and their spent medium. However, at the maturation stage, the unencapsulated strain was stronger in reducing C. albicans biofilms than the reference strain (P < 0.05). At this maturation stage, the transcription levels of each gene tested decreased in the presence of either E. faecalis strains or their respective spent medium. The unencapsulated strain was more pronounced in reducing ALS1/ALS3 expression, whereas the respective spent medium had a similar capability to restrict the expression of EFB1. Conclusion This study showed, the unencapsulated strain is more effective in inhibiting C. albicans biofilm development compared with the reference strains. In contrast, the secreted molecules produced by each strain tested are necessary in controlling the growths of C. albicans biofilm.
Collapse
Affiliation(s)
- Endang W Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Oral Sciences Research Center, Universitas Indonesia, Jakarta, Indonesia
| | - Sari Dewiyani
- Department of Oral Biology, Faculty of Dentistry, Oral Sciences Research Center, Universitas Indonesia, Jakarta, Indonesia.,Department of Conservative Dentistry, Faculty of Dentistry Universitas Prof. Dr. Mostoepo, Jakarta, Indonesia
| | - Siti M Surono Akbar
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Boy M Bachtiar
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|