1
|
Yang YZ, Liu XY, Gao S, Zhang SG, Tan BC. PPR21 is involved in the splicing of nad2 introns via interacting with PPR-SMR1 and SPR2 and is essential to maize seed development. J Genet Genomics 2025; 52:379-387. [PMID: 39241862 DOI: 10.1016/j.jgg.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Pentatricopeptide repeat (PPR) proteins are a large group of eukaryote-specific RNA-binding proteins that play pivotal roles in plant organelle gene expression. Here, we report the function of PPR21 in mitochondrial intron splicing and its role in maize kernel development. PPR21 is a typical P-type PPR protein targeted to mitochondria. The ppr21 mutants are arrested in embryogenesis and endosperm development, leading to embryo lethality. Null mutations of PPR21 reduce the splicing efficiency of nad2 intron 1, 2, and 4 and impair the assembly and activity of mitochondrial complex I. Previous studies show that the P-type PPR protein EMP12 is required for the splicing of identical introns. However, our protein interaction analyses reveal that PPR21 does not interact with EMP12. Instead, both PPR21 and EMP12 interact with the small MutS-related (SMR) domain-containing PPR protein 1 (PPR-SMR1) and the short P-type PPR protein 2 (SPR2). PPR-SMR1 interacts with SPR2, and both proteins are required for the splicing of many introns in mitochondria, including nad2 intron 1, 2, and 4. These results suggest that a PPR21-(PPR-SMR1/SPR2)-EMP12 complex is involved in the splicing of nad2 introns in maize mitochondria.
Collapse
Affiliation(s)
- Yan-Zhuo Yang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| | - Xin-Yuan Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Song Gao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Shu-Guang Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Bao-Cai Tan
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Zhu W, Miao X, Qian J, Chen S, Jin Q, Li M, Han L, Zhong W, Xie D, Shang X, Li L. A translatome-transcriptome multi-omics gene regulatory network reveals the complicated functional landscape of maize. Genome Biol 2023; 24:60. [PMID: 36991439 PMCID: PMC10053466 DOI: 10.1186/s13059-023-02890-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/04/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Maize (Zea mays L.) is one of the most important crops worldwide. Although sophisticated maize gene regulatory networks (GRNs) have been constructed for functional genomics and phenotypic dissection, a multi-omics GRN connecting the translatome and transcriptome is lacking, hampering our understanding and exploration of the maize regulatome. RESULTS We collect spatio-temporal translatome and transcriptome data and systematically explore the landscape of gene transcription and translation across 33 tissues or developmental stages of maize. Using this comprehensive transcriptome and translatome atlas, we construct a multi-omics GRN integrating mRNAs and translated mRNAs, demonstrating that translatome-related GRNs outperform GRNs solely using transcriptomic data and inter-omics GRNs outperform intra-omics GRNs in most cases. With the aid of the multi-omics GRN, we reconcile some known regulatory networks. We identify a novel transcription factor, ZmGRF6, which is associated with growth. Furthermore, we characterize a function related to drought response for the classic transcription factor ZmMYB31. CONCLUSIONS Our findings provide insights into spatio-temporal changes across maize development at both the transcriptome and translatome levels. Multi-omics GRNs represent a useful resource for dissection of the regulatory mechanisms underlying phenotypic variation.
Collapse
Affiliation(s)
- Wanchao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Jia Qian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Sijia Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qixiao Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Mingzhu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Dan Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- HuBei HongShan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
3
|
Hong Y, Zhang M, Xu R. Genetic Localization and Homologous Genes Mining for Barley Grain Size. Int J Mol Sci 2023; 24:ijms24054932. [PMID: 36902360 PMCID: PMC10003025 DOI: 10.3390/ijms24054932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Grain size is an important agronomic trait determining barley yield and quality. An increasing number of QTLs (quantitative trait loci) for grain size have been reported due to the improvement in genome sequencing and mapping. Elucidating the molecular mechanisms underpinning barley grain size is vital for producing elite cultivars and accelerating breeding processes. In this review, we summarize the achievements in the molecular mapping of barley grain size over the past two decades, highlighting the results of QTL linkage analysis and genome-wide association studies. We discuss the QTL hotspots and predict candidate genes in detail. Moreover, reported homologs that determine the seed size clustered into several signaling pathways in model plants are also listed, providing the theoretical basis for mining genetic resources and regulatory networks of barley grain size.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
4
|
Wang C, Li H, Long Y, Dong Z, Wang J, Liu C, Wei X, Wan X. A Systemic Investigation of Genetic Architecture and Gene Resources Controlling Kernel Size-Related Traits in Maize. Int J Mol Sci 2023; 24:1025. [PMID: 36674545 PMCID: PMC9865405 DOI: 10.3390/ijms24021025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Grain yield is the most critical and complex quantitative trait in maize. Kernel length (KL), kernel width (KW), kernel thickness (KT) and hundred-kernel weight (HKW) associated with kernel size are essential components of yield-related traits in maize. With the extensive use of quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) analyses, thousands of QTLs and quantitative trait nucleotides (QTNs) have been discovered for controlling these traits. However, only some of them have been cloned and successfully utilized in breeding programs. In this study, we exhaustively collected reported genes, QTLs and QTNs associated with the four traits, performed cluster identification of QTLs and QTNs, then combined QTL and QTN clusters to detect consensus hotspot regions. In total, 31 hotspots were identified for kernel size-related traits. Their candidate genes were predicted to be related to well-known pathways regulating the kernel developmental process. The identified hotspots can be further explored for fine mapping and candidate gene validation. Finally, we provided a strategy for high yield and quality maize. This study will not only facilitate causal genes cloning, but also guide the breeding practice for maize.
Collapse
Affiliation(s)
- Cheng Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yan Long
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Jianhui Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| |
Collapse
|
5
|
Wang L, Zhang W, Liu S, Tian Y, Liu X, Yan H, Cai Y, Teng X, Dong H, Chen R, Jiang X, Wang Y, Wan J. Rice FLOURY SHRUNKEN ENDOSPERM 5 Encodes a Putative Plant Organelle RNA Recognition Protein that Is Required for cis-Splicing of Mitochondrial nad4 Intron 1. RICE (NEW YORK, N.Y.) 2021; 14:29. [PMID: 33689034 PMCID: PMC7947098 DOI: 10.1186/s12284-021-00463-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The sequences of several important mitochondrion-encoded genes involved in respiration in higher plants are interrupted by introns. Many nuclear-encoded factors are involved in splicing these introns, but the mechanisms underlying this splicing remain unknown. RESULTS We isolated and characterized a rice mutant named floury shrunken endosperm 5 (fse5). In addition to having floury shrunken endosperm, the fse5 seeds either failed to germinate or produced seedlings which grew slowly and died ultimately. Fse5 encodes a putative plant organelle RNA recognition (PORR) protein targeted to mitochondria. Mutation of Fse5 hindered the splicing of the first intron of nad4, which encodes an essential subunit of mitochondrial NADH dehydrogenase complex I. The assembly and NADH dehydrogenase activity of complex I were subsequently disrupted by this mutation, and the structure of the mitochondria was abnormal in the fse5 mutant. The FSE5 protein was shown to interact with mitochondrial intron splicing factor 68 (MISF68), which is also a splicing factor for nad4 intron 1 identified previously via yeast two-hybrid (Y2H) assays. CONCLUSION Fse5 which encodes a PORR domain-containing protein, is essential for the splicing of nad4 intron 1, and loss of Fse5 function affects seed development and seedling growth.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongbo Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaokang Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Chen W, Cui Y, Wang Z, Chen R, He C, Liu Y, Du X, Liu Y, Fu J, Wang G, Wang J, Gu R. Nuclear-Encoded Maturase Protein 3 Is Required for the Splicing of Various Group II Introns in Mitochondria during Maize (Zea mays L.) Seed Development. ACTA ACUST UNITED AC 2021; 62:293-305. [DOI: 10.1093/pcp/pcaa161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/05/2020] [Indexed: 11/12/2022]
Abstract
Abstract
Splicing of plant organellar group II introns from precursor-RNA transcripts requires the assistance of nuclear-encoded splicing factors. Maturase (nMAT) is one such factor, as its three homologs (nMAT1, 2 and 4) have been identified as being required for the splicing of various mitochondrial introns in Arabidopsis. However, the function of nMAT in maize (Zea mays L.) is unknown. In this study, we identified a seed development mutant, empty pericarp 2441 (emp2441) from maize, which showed severely arrested embryogenesis and endosperm development. Positional cloning and transgenic complementation assays revealed that Emp2441 encodes a maturase-related protein, ZmnMAT3. ZmnMAT3 is highly expressed during seed development and its protein locates to the mitochondria. The loss of function of ZmnMAT3 resulted in the reduced splicing efficiency of various mitochondrial group II introns, particularly of the trans-splicing of nad1 introns 1, 3 and 4, which consequently abolished the transcript of nad1 and severely impaired the assembly and activity of mitochondrial complex I. Moreover, the Zmnmat3 mutant showed defective mitochondrial structure and exhibited expression and activity of alternative oxidases. These results indicate that ZmnMAT3 is essential for mitochondrial complex I assembly during kernel development in maize.
Collapse
Affiliation(s)
- Weiwei Chen
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheyuan Wang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Rongrong Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuemei Du
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianhua Wang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Riliang Gu
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
8
|
Yang YZ, Ding S, Liu XY, Tang JJ, Wang Y, Sun F, Xu C, Tan BC. EMP32 is required for the cis-splicing of nad7 intron 2 and seed development in maize. RNA Biol 2020; 18:499-509. [PMID: 32936708 DOI: 10.1080/15476286.2020.1817267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins play an important role in post-transcriptional regulation of mitochondrial gene expression. Functions of many PPR proteins and their roles in plant growth and development remain unknown. Through characterization of an empty pericarp32 (emp32) mutant, we identified the function of Emp32 in mitochondrial intron splicing and seed development in maize. The loss-of-function mutant emp32 shows embryo lethality with severely arrested embryo and endosperm development, and over-expression of Emp32 rescues the embryo-lethality. EMP32 is a P-type PPR protein targeted to mitochondria. Loss of function in Emp32 dramatically decreases the splicing efficiency of nad7 intron 2, while complementation of Emp32 restores the splicing efficiency. Although nad7 intron 2 is partially spliced in the wild type, over-expression of Emp32 does not increase the splicing efficiency. The splicing deficiency of nad7 intron 2 blocks the assembly of mitochondrial complex I and dramatically reduces its activity, which may explain the embryo-lethality in emp32. In addition to the one copy of nad7 in the maize mitochondrial genome, we identified one to six copies of nad7 in the nuclear genomes in different maize inbred lines. These copies appear not to be expressed. Together, our results revealed that the P-type PPR protein EMP32 is required for the cis-splicing of nad7 intron 2 and seed development in maize.
Collapse
Affiliation(s)
- Yan-Zhuo Yang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Shuo Ding
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xin-Yuan Liu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jiao-Jiao Tang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yong Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chunhui Xu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
9
|
Ren RC, Wang LL, Zhang L, Zhao YJ, Wu JW, Wei YM, Zhang XS, Zhao XY. DEK43 is a P-type pentatricopeptide repeat (PPR) protein responsible for the Cis-splicing of nad4 in maize mitochondria. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:299-313. [PMID: 31119902 DOI: 10.1111/jipb.12843] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/20/2019] [Indexed: 05/23/2023]
Abstract
Mitochondria, the main energy transducers in plant cells, require the proper assembly of respiratory chain complexes I-V for their function. The NADH dehydrogenase 4 (nad4) gene encodes mitochondrial respiratory chain complex I subunit IV, but the mechanism underlying nad4 transcript splicing is unclear. Here, we report that the P-type pentatricopeptide repeat (PPR) protein DEFECTIVE KERNEL 43 (DEK43) is responsible for cis-splicing of the nad4 transcript in maize. We demonstrate that DEK43 localizes to both the nucleus and mitochondria. The mutation of Dek43 resulted in embryo-lethal and light-colored defective kernels. Among the 22 mitochondrial group II introns, the splicing efficiency of nad4 introns 1 and 3 was reduced by up to 50% compared to the wild type. The levels of complex I and supercomplex I+III2 were also reduced in dek43. Furthermore, in-gel NADH dehydrogenase assays indicated that the activities of these complexes were significantly reduced in dek43. Further, the mitochondrial ultrastructure was altered in the mutant. Together, our findings indicate that DEK43, a dual-localized PPR protein, plays an important role in maintaining mitochondrial function and maize kernel development.
Collapse
Affiliation(s)
- Ru Chang Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Li Li Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
10
|
Wang HC, Chen Z, Yang YZ, Sun F, Ding S, Li XL, Xu C, Tan BC. PPR14 Interacts With PPR-SMR1 and CRM Protein Zm-mCSF1 to Facilitate Mitochondrial Intron Splicing in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:814. [PMID: 32595685 PMCID: PMC7304344 DOI: 10.3389/fpls.2020.00814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/20/2020] [Indexed: 05/17/2023]
Abstract
In plants, splicing of organellar group II introns involves numerous nucleus-encoded trans-factors. But, how these trans-factors function and interact is not well understood. Here we report the function of a pentatricopeptide repeat (PPR) protein PPR14 and its physical relationship with other splicing factors in mitochondria. Null mutations of PPR14 severely arrest the embryo and endosperm development, causing an empty pericarp phenotype. PPR14 is required for the splicing of NADH dehydrogenase 2 (nad2) intron 3 and nad7 introns 1 and 2 in mitochondria. The absence of nad2 and nad7 transcripts leads to disruption of the mitochondrial complex I assembly and abolishes its NADH dehydrogenase activity. This is accompanied with increased levels of other mitochondrial complexes and elevated expression of the alternative oxidase proteins. As the function of PPR14 overlaps with PPR-SMR1 and the CRM-domain containing protein Zm-mCSF1, we tested their interactions. Protein-protein interaction analysis indicated that PPR14 interacts with PPR-SMR1 and Zm-mCSF1, suggesting that these three proteins may form a complex. As PPR proteins and CRM-domain containing proteins have many members in mitochondria and chloroplasts, we propose that organellar group II intron splicing is probably mediated by a dynamic complex that includes different PPR and CRM proteins in plants.
Collapse
|
11
|
Chen Z, Wang HC, Shen J, Sun F, Wang M, Xu C, Tan BC. PPR-SMR1 is required for the splicing of multiple mitochondrial introns, interacts with Zm-mCSF1, and is essential for seed development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5245-5258. [PMID: 31257441 PMCID: PMC6793435 DOI: 10.1093/jxb/erz305] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/19/2019] [Indexed: 05/18/2023]
Abstract
Group II introns are ribozymes that can excise themselves from precursor-RNA transcripts, but plant organellar group II introns have structural deviations that inhibit ribozyme activity. Therefore, splicing of these introns requires the assistance of nuclear- and/or organellar-encoded splicing factors; however, how these splicing factors function remains unclear. In this study, we report the functions and interactions of two splicing factors, PPR-SMR1 and Zm-mCSF1, in intron splicing in maize mitochondria. PPR-SMR1 is a SMR domain-containing pentatricopeptide repeat (PPR) protein and Zm-mCSF1 is a CRM domain-containing protein, and both are targeted to mitochondria. Loss-of-function mutations in each of them severely arrests embryogenesis and endosperm development in maize. Functional analyses indicate that PPR-SMR1 and Zm-mCSF1 are required for the splicing of most mitochondrial group II introns. Among them, nad2-intron 2 and 3, and nad5-intron 1 are PPR-SMR1/Zm-mCSF1-dependent introns. Protein interaction assays suggest that PPR-SMR1 can interact with Zm-mCSF1 through its N-terminus, and that Zm-mCSF1 is self-interacting. Our findings suggest that PPR-SMR1, a novel splicing factor, acts in the splicing of multiple group II introns in maize mitochondria, and the protein-protein interaction between it and Zm-mCSF1 might allow the formation of large macromolecular splicing complexes.
Collapse
Affiliation(s)
- Zongliang Chen
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Hong-Chun Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jiayu Shen
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Miaodi Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chunhui Xu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- Correspondence:
| |
Collapse
|
12
|
Gabay-Laughnan S, Settles AM, Hannah LC, Porch TG, Becraft PW, McCarty DR, Koch KE, Zhao L, Kamps TL, Chamusco KC, Chase CD. Restorer-of-Fertility Mutations Recovered in Transposon-Active Lines of S Male-Sterile Maize. G3 (BETHESDA, MD.) 2018; 8:291-302. [PMID: 29167273 PMCID: PMC5765357 DOI: 10.1534/g3.117.300304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria execute key pathways of central metabolism and serve as cellular sensing and signaling entities, functions that depend upon interactions between mitochondrial and nuclear genetic systems. This is exemplified in cytoplasmic male sterility type S (CMS-S) of Zea mays, where novel mitochondrial open reading frames are associated with a pollen collapse phenotype, but nuclear restorer-of-fertility (restorer) mutations rescue pollen function. To better understand these genetic interactions, we screened Activator-Dissociation (Ac-Ds), Enhancer/Suppressor-mutator (En/Spm), and Mutator (Mu) transposon-active CMS-S stocks to recover new restorer mutants. The frequency of restorer mutations increased in transposon-active stocks compared to transposon-inactive stocks, but most mutants recovered from Ac-Ds and En/Spm stocks were unstable, reverting upon backcrossing to CMS-S inbred lines. However, 10 independent restorer mutations recovered from CMS-S Mu transposon stocks were stable upon backcrossing. Many restorer mutations condition seed-lethal phenotypes that provide a convenient test for allelism. Eight such mutants recovered in this study included one pair of allelic mutations that were also allelic to the previously described rfl2-1 mutant. Targeted analysis of mitochondrial proteins by immunoblot identified two features that consistently distinguished restored CMS-S pollen from comparably staged, normal-cytoplasm, nonmutant pollen: increased abundance of nuclear-encoded alternative oxidase relative to mitochondria-encoded cytochrome oxidase and decreased abundance of mitochondria-encoded ATP synthase subunit 1 compared to nuclear-encoded ATP synthase subunit 2. CMS-S restorer mutants thus revealed a metabolic plasticity in maize pollen, and further study of these mutants will provide new insights into mitochondrial functions that are critical to pollen and seed development.
Collapse
Affiliation(s)
| | - A Mark Settles
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - L Curtis Hannah
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Timothy G Porch
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
- Tropical Agriculture Research Station, The United States Department of Agriculture, Agriculture Research Service, Mayaguez, Puerto Rico 00680-5470
| | - Philip W Becraft
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Karen E Koch
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Liming Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
- Florida Medical Entomology Laboratory, Vero Beach, Florida 32962
| | - Terry L Kamps
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
- Biology Department, New Jersey City University, Jersey City, NJ 07305
| | - Karen C Chamusco
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Christine D Chase
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
13
|
Cai M, Li S, Sun F, Sun Q, Zhao H, Ren X, Zhao Y, Tan BC, Zhang Z, Qiu F. Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:132-144. [PMID: 28346745 DOI: 10.1111/tpj.13551] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 05/20/2023]
Abstract
In higher plants, many mitochondrial genes contain group II-type introns that are removed from RNAs by splicing to produce mature transcripts that are then translated into functional proteins. However, the factors involved in the splicing of mitochondrial introns and their biological functions are not well understood in maize. Here, we isolated an empty pericarp 10 (emp10) mutant and identified the underlying gene by map-based cloning. Emp10 encodes a P-type mitochondria-targeted pentatricopeptide repeat (PPR) protein with 10 PPR motifs. Loss of Emp10 function results in splicing defect of the first intron of nad2, a gene encoding subunit 2 of NADH dehydrogenase (also called complex I). The emp10 mutant has undetectable activity of complex I and has arrested development of embryo and endosperm, and thus defective seeds with empty pericarp. Additionally, the basal endosperm transfer layer cells were severely affected, indicating the deficiency of cell wall ingrowths in the emp10 kernels. Moreover, the alternative respiratory pathway involving alternative oxidase was significantly induced in the emp10 mutant. These results suggest that EMP10 is specifically required for the cis-splicing of mitochondrial nad2 intron 1, embryogenesis and endosperm development in maize.
Collapse
Affiliation(s)
- Manjun Cai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuzhen Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Sun
- School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemei Ren
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanxin Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bao-Cai Tan
- School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
14
|
Wang G, Zhong M, Shuai B, Song J, Zhang J, Han L, Ling H, Tang Y, Wang G, Song R. E+ subgroup PPR protein defective kernel 36 is required for multiple mitochondrial transcripts editing and seed development in maize and Arabidopsis. THE NEW PHYTOLOGIST 2017; 214:1563-1578. [PMID: 28277611 DOI: 10.1111/nph.14507] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/30/2017] [Indexed: 05/02/2023]
Abstract
Mitochondria are semi-autonomous organelles that are the powerhouse of the cells. Plant mitochondrial RNA editing guided by pentatricopeptide repeat (PPR) proteins is essential for energy production. We identify a maize defective kernel mutant dek36, which produces small and collapsed kernels, leading to embryos and/or seedlings lethality. Seed filling in dek36 is drastically impaired, in line with the defects observed in the organization of endosperm transfer tissue. Positional cloning reveals that DEK36, encoding a mitochondria-targeted E+ subgroup PPR protein, is required for mitochondrial RNA editing at atp4-59, nad7-383 and ccmFN -302, thus resulting in decreased activities of mitochondrial complex I, complex III and complex IV in dek36. Loss-of-function of its Arabidopsis ortholog At DEK36 causes arrested embryo and endosperm development, leading to embryo lethality. At_dek36 also has RNA editing defects in atp4, nad7, ccmFN1 and ccmFN2 , but at the nonconserved sites. Importantly, efficiency of all editing sites in ccmFN1 , ccmFN2 and rps12 is severely decreased in At_dek36, probably caused by the impairment of their RNA stabilization. These results suggest that the DEK36 orthologue pair are essential for embryo and endosperm development in both maize and Arabidopsis, but through divergent function in regulating RNA metabolism of their mitochondrial targets.
Collapse
Affiliation(s)
- Gang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Mingyu Zhong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Bilian Shuai
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiandong Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jie Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Liang Han
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Huiling Ling
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuanping Tang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Guifeng Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
15
|
Sangiorgio S, Carabelli L, Gabotti D, Manzotti PS, Persico M, Consonni G, Gavazzi G. A mutational approach for the detection of genetic factors affecting seed size in maize. PLANT REPRODUCTION 2016; 29:301-310. [PMID: 27858171 DOI: 10.1007/s00497-016-0294-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Genes influencing seed size. The designation emp (empty pericarp) refers to a group of defective kernel mutants that exhibit a drastic reduction in endosperm tissue production. They allow the isolation of genes controlling seed development and affecting seed size. Nine independently isolated emp mutants have been analyzed in this study and in all cases longitudinal sections of mature seeds revealed the absence of morphogenesis in the embryo proper, an observation that correlates with their failure to germinate. Complementation tests with the nine emp mutants, crossed inter se in all pairwise combinations, identified complementing and non-complementing pairs in the F1 progenies. Data were then validated in the F2/F3 generations. Mutant chromosomal location was also established. Overall our study has identified two novel emp genes and a novel allele at the previously identified emp4 gene. The introgression of single emp mutants in a different genetic background revealed the existence of a cryptic genetic variation (CGV) recognizable as a variable increase in the endosperm tissue. The unmasking of CGV by introducing single mutants in different genetic backgrounds is the result of the interaction of the emp mutants with a suppressor that has no obvious phenotype of its own and is present in the genetic background of the inbred lines into which the emp mutants were transferred. On the basis of these results, emp mutants could be used as tools for the detection of genetic factors that enhance the amount of endosperm tissue in the maize kernel and which could thus become valuable targets to exploit in future breeding programs.
Collapse
Affiliation(s)
- Stefano Sangiorgio
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Laura Carabelli
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Damiano Gabotti
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Priscilla Sofia Manzotti
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Martina Persico
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Gabriella Consonni
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy.
| | - Giuseppe Gavazzi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| |
Collapse
|