1
|
Yang L, Wu Y, Jin J, Zheng J, Yu J, Ye X, Zhang L, Tong S, Li C. An atypical bHLH transcription factor NtPRE4.1 negatively regulates tobacco glandular trichome density. Gene 2025:149575. [PMID: 40381969 DOI: 10.1016/j.gene.2025.149575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
As the world's largest producer and consumer of tobacco, it holds significant socio-economic value in China. Trichomes, specialized hair-like structures on the epidermal cells of tobacco, play a crucial role in the synthesis and secretion of defense-related secondary metabolites, such as terpenoids and alkaloids, which directly influence leaf quality. However, the molecular mechanisms underlying trichome development remain poorly understood. In this study, we identified and characterized the previously unknown TF NtPRE4.1 from tobacco (Nicotiana tabacum). Phylogenetic tree analysis revealed that the protein encoded by NtPRE4.1 belongs to the atypical bHLH TF family. NtPRE4.1 was found to localize in both the nucleus and cytoplasm. In Nicotiana tabacum, overexpression of NtPRE4.1 resulted in a 40-48 % reduction in trichome density, while VIGS-treated lines exhibited a 44-69 % increase in trichome density compared to non-transgenic controls. Additionally, Y2H and Co-IP experiments confirmed that NtPRE4.1 interacts with the R2R3-MYB TF NtMYB330, which is highly expressed in trichomes, suggesting that NtMYB330 may play a role in regulating glandular trichome development. Finally, our results demonstrated that NtPRE4.1 significantly modulated the expression of marker genes (NtGA20ox1 and NtGA3ox1) involved in GA biosynthesis, as well as two trichome development-related genes (NtGIS and NtCycB2). Overexpression of NtPRE4.1 significantly decreased the GA3 content in tobacco leaves, while the expression of NtPRE4.1 was significantly suppressed in tobacco plants treated with GA3.These findings provide new insights into the role of atypical bHLH TFs in regulating tobacco trichome formation through GA signaling.
Collapse
Affiliation(s)
- Longhuan Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agrobioengineering, Guizhou University, Guiyang 550025 Guizhou Province, China
| | - Yongjun Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agrobioengineering, Guizhou University, Guiyang 550025 Guizhou Province, China; Guizhou University, Industrial Technology Institute of Pepper, Guiyang, Guizhou Province 550025, China.
| | - Jing Jin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agrobioengineering, Guizhou University, Guiyang 550025 Guizhou Province, China; Guizhou University, Industrial Technology Institute of Pepper, Guiyang, Guizhou Province 550025, China
| | - Jiahua Zheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agrobioengineering, Guizhou University, Guiyang 550025 Guizhou Province, China
| | - Jing Yu
- Guizhou Academy of Tobacco Science, Molecular Genetics Key Laboratory of China Tobacco, Guiyang, China
| | - Xinyue Ye
- College of Agriculture, Guizhou University, Guiyang 550000, China
| | - Lincheng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agrobioengineering, Guizhou University, Guiyang 550025 Guizhou Province, China; Guizhou University, Industrial Technology Institute of Pepper, Guiyang, Guizhou Province 550025, China
| | - Shuoqiu Tong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agrobioengineering, Guizhou University, Guiyang 550025 Guizhou Province, China; Guizhou University, Industrial Technology Institute of Pepper, Guiyang, Guizhou Province 550025, China
| | - Cen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agrobioengineering, Guizhou University, Guiyang 550025 Guizhou Province, China; Guizhou University, Industrial Technology Institute of Pepper, Guiyang, Guizhou Province 550025, China
| |
Collapse
|
2
|
Pan K, Qu Y, Liu J, Yu X, Jia Y, Gao B, Liu S, Zheng X, Yang T. Integrated analysis of transcriptome and metabolome reveals the molecular basis of quality differences in Alpinia oxyphylla Miq. From geo-authentic and non-authentic areas. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109755. [PMID: 40073739 DOI: 10.1016/j.plaphy.2025.109755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Alpinia oxyphylla Miq., a well-accepted medicinal and edible plant in south China. The primary ingredients of this medicine vary significantly depending on their origin, which profoundly impacts its quality. In this study, a principal component analysis was performed on 17 different planting areas of A. oxyphylla, with nootkatone and kaempferol identified as representative sesquiterpenoids and flavonoids, respectively. To investigate the genes involved in nootkatone and kaempferol biosynthesis, a combined transcriptome and metabolome profiling was carried out on materials sourced from geo-authentic and non-authentic areas. The transcriptome analysis of these two types of accessions identified 96,691 unigenes, with 13,589 genes showing differential expression in both regions. Metabolome analysis revealed 2859 differentially accumulated metabolites across the four pairwise comparisons. Correlation analysis uncovered a number of genes, that associated with the differential biosynthesis of nootkatone and kaempferol in A. oxyphylla fruits from geo-authentic and non-authentic areas. Further investigation highlighted the candidate gene AoFMO1's ability to heterologously biosynthesize nootkatone in Arabidopsis thaliana leaves. This research lays the groundwork for a deeper understanding of the molecular mechanisms behind the authentication of A. oxyphylla's quality synthesis, and presents a comprehensive list of candidate genes for future functional studies to enhance the development of high-quality A. oxyphylla varieties rich in medicinal ingredients.
Collapse
Affiliation(s)
- Kun Pan
- School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China; Hainan Provincial Traditional Chinese Medicine Raw Materials Monitoring and Technical Service Center, Haikou, 571199, China
| | - Yunping Qu
- School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China
| | - Jiaqi Liu
- School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China
| | - Xiaodan Yu
- School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China
| | - Yuping Jia
- School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China
| | - Bingmiao Gao
- School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China
| | - Shoubai Liu
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China.
| | - Xilong Zheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Tao Yang
- School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
3
|
Ni F, Zhao Y, Gao M, Chen Y, Wang Y. LcMYB43 enhances monoterpene biosynthesis by activating 1-deoxy-D-xylulose-5-phosphate synthase gene expression in Litsea cubeba. Int J Biol Macromol 2025; 304:140860. [PMID: 39938834 DOI: 10.1016/j.ijbiomac.2025.140860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
MYB transcription factors are crucial regulators involved in various metabolic processes in plants, including terpene biosynthesis. Litsea cubeba, a member of the Lauraceae family, is rich in monoterpenes and regulates their biosynthesis via the key enzyme DXS in the MEP pathway. Seven DXS genes have been identified in this species, but the role of the MYB family in terpene biosynthesis remains unclear. This study conducted a genome-wide characterization of the R2R3-MYB gene family in L. cubeba, analyzing its phylogenetics, expression, and regulatory functions. A total of 129 R2R3-MYB members were identified, with expansion mechanisms involving tandem and segmental duplications. Expression analysis revealed that LcMYB43 activates LcDXS5, a key enzyme in monoterpene biosynthesis. Overexpression of LcMYB43 significantly increased monoterpene accumulation. Y1H, EMSA, and dual-luciferase assays showed that LcMYB43 directly binds to the CAACAG motif in the LcDXS5 promoter, activating its expression. These findings suggest that LcMYB43 enhances monoterpene biosynthesis by promoting LcDXS5 expression, providing new insights into the regulatory mechanisms of monoterpene biosynthesis.
Collapse
Affiliation(s)
- Feifei Ni
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Nanjing Forestry University, Nanjing 210037, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| |
Collapse
|
4
|
Wang Z, Ye X, Huang L, Yuan Y. Modulation of morphogenesis and metabolism by plant cell biomechanics: from model plants to traditional herbs. HORTICULTURE RESEARCH 2025; 12:uhaf011. [PMID: 40093376 PMCID: PMC11908831 DOI: 10.1093/hr/uhaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/05/2025] [Indexed: 03/19/2025]
Abstract
The quality of traditional herbs depends on organ morphogenesis and the accumulation of active pharmaceutical ingredients. While recent research highlights the significance of cell mechanobiology in model plant morphogenesis, our understanding of mechanical signal initiation and transduction in traditional herbs remains incomplete. Recent studies reveal a close correlation between cell wall (CW) biosynthesis and active ingredient production, yet the role of cell mechanics in balancing morphogenesis and secondary metabolism is often overlooked. This review explores how the cell wall, plasma membrane, cytoskeleton, and vacuole collaborate to regulate cell mechanics and respond to mechanical changes. We propose CW biosynthesis as a hub in connecting cell mechanics with secondary metabolism and emphasize that understanding the relationship between mechanical remodeling and secondary metabolism could provide new insights into plant cell mechanobiology and the breeding of high-quality herbs.
Collapse
Affiliation(s)
- Zhengpeng Wang
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing 100700, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaoming Ye
- Peking University Health Science Center, Peking University, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Yuan
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing 100700, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| |
Collapse
|
5
|
Gong Z, Wu X, Luo Y, Zhou T, Yang Z, Wu Y. Genome-Wide Identification and Analysis of the JAZ Gene Family in Artemisia argyi. Curr Issues Mol Biol 2025; 47:100. [PMID: 39996821 PMCID: PMC11854332 DOI: 10.3390/cimb47020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Artemisia argyi H. Lév. & Vaniot (A. argyi) is a perennial herb belonging to the Asteraceae family and is a medicinal plant widely used in traditional medicine. In the field of plant physiology, JAZ proteins play a central role in the jasmonic acid (JA) signaling pathway, significantly affecting plant growth and development as well as responses to biotic and abiotic stresses. This study aims to identify and analyze the JAZ gene family of A. argyi. Through a genome-wide analysis of A. argyi. 18 JAZ genes were identified and classified into three subfamilies, based on phylogenetic relationships. Additionally, for this study, we comprehensively analyzed the physical and chemical properties, gene structure, chromosomal locations, conserved domains, cis-acting elements, and evolutionary relationships of these genes. The tissue-specific expression patterns of JAZ genes were obtained from transcriptome data, revealing distinct expression profiles across different tissues in A. argyi. Finally, this research identified a candidate JAZ gene, AarJAZ18, which is involved in the development of glandular trichomes in the leaves of A. argyi. Subsequently, the relative expression levels of AarJAZ18 in different tissues were validated using quantitative real-time PCR (qRT-PCR). In summary, this study provides a foundation for further investigation into the functions of A. argyi JAZ genes and offers valuable gene resources for breeding superior varieties and enhancing germplasm innovation.
Collapse
Affiliation(s)
- Zhanbin Gong
- College of Life Sciences, Northwest A & F University, Yangling 712000, China; (Z.G.); (X.W.); (Y.L.); (T.Z.)
| | - Xueshuang Wu
- College of Life Sciences, Northwest A & F University, Yangling 712000, China; (Z.G.); (X.W.); (Y.L.); (T.Z.)
| | - Yilin Luo
- College of Life Sciences, Northwest A & F University, Yangling 712000, China; (Z.G.); (X.W.); (Y.L.); (T.Z.)
| | - Tianhong Zhou
- College of Life Sciences, Northwest A & F University, Yangling 712000, China; (Z.G.); (X.W.); (Y.L.); (T.Z.)
| | - Zhenchao Yang
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, College of Horticulture, Northwest A & F University, Yangling 712000, China
| | - Yongjun Wu
- College of Life Sciences, Northwest A & F University, Yangling 712000, China; (Z.G.); (X.W.); (Y.L.); (T.Z.)
| |
Collapse
|
6
|
Jiang R, Chen W, Li Q, Guo J, Lv Z, Chen W. Genome-wide identification of the WD40 protein family and functional characterization of AaTTG1 in Artemisia annua. Int J Biol Macromol 2025; 289:138834. [PMID: 39689807 DOI: 10.1016/j.ijbiomac.2024.138834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/19/2024]
Abstract
Sweet wormwood (Artemisia annua), an annual herb belonging to the Compositae family, is the main source of the potent anti-malarial drug artemisinin, which is mainly produced in glandular trichomes of A. annua leaves. The WD40 protein family is one of the largest protein families in eukaryotes and plays crucial roles in regulating plant growth and development, stress responses, and secondary metabolite biosynthesis. However, WD40 proteins have not been comprehensively identified in A. annua. In this study, we identified 236 WD40 proteins in the A. annua genome and examined their conserved domains, motifs, and cis-regulatory elements, gene structures, chromosomal distribution, duplication events of their encoding genes. Furthermore, we isolated and characterized TRANSPARENT TESTA GLABROUS 1 (AaTTG1), a homolog of Arabidopsis TTG1, and confirmed that AaTTG1 was localized to the nucleus and cytoplasm. Indeed, AaTTG1 can rescue the glabrous phenotype of the Arabidopsis ttg1 mutant and enhanced trichome production when heterologously expressed in wild-type Arabidopsis plants. Transgenic A. annua lines overexpressing AaTTG1 displayed a significantly higher density of glandular trichomes and higher artemisinin contents. Transgenic A. annua lines with inhibited AaTTG1 function had fewer glandular trichomes and lower artemisinin levels. Moreover, we demonstrated that AaTTG1 positively regulates glandular trichome development in A. annua through interactions with AaSPL9. This study thus provides fundamental insights into the role of WD40 proteins in A. annua and introduces a promising approach to enhance artemisinin production by manipulating glandular trichome development in this valuable medicinal plant.
Collapse
Affiliation(s)
- Rui Jiang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhua Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Li
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 610075, China.
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China.
| |
Collapse
|
7
|
Bhatt PA, Gurav TP, Kondhare KR, Giri AP. MYB proteins: Versatile regulators of plant development, stress responses, and secondary metabolite biosynthetic pathways. Int J Biol Macromol 2025; 288:138588. [PMID: 39672414 DOI: 10.1016/j.ijbiomac.2024.138588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
MYB proteins are ubiquitous in nature, regulating key aspects of plant growth and development. Although MYB proteins are known for regulating genes involved in secondary metabolite biosynthesis, particularly phenylpropanoids, their roles in terpenoid, glucosinolate, and alkaloid biosynthesis remain less understood. This review explores the structural and functional differences between activator and repressor MYB proteins along with their roles in plant growth, development, stress responses, and secondary metabolite production. MYB proteins serve as central hubs in protein-protein interaction networks that regulate expression of numerous genes involved in the adaptation of plants to varying environmental conditions. Thus, we also highlight key interacting partners of MYB proteins and their roles in these adaptation mechanisms. We further discuss the mechanisms regulating MYB proteins, including autoregulation, epigenetics, and post-transcriptional and post-translational modifications. Overall, we propose MYB proteins as versatile regulators for improving plant traits, stress responses, and secondary metabolite production.
Collapse
Affiliation(s)
- Preshita A Bhatt
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Tanuja P Gurav
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
8
|
Guan Y, Jiang L, Wang Y, Liu G, Wu J, Luo H, Chen S, Chen F, Niinemets Ü, Chen F, Jiang Y. CmMYC2-CmMYBML1 module orchestrates the resistance to herbivory by synchronously regulating the trichome development and constitutive terpene biosynthesis in Chrysanthemum. THE NEW PHYTOLOGIST 2024; 244:914-933. [PMID: 39223898 DOI: 10.1111/nph.20081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Trichomes are specialized epidermal outgrowths covering the aerial parts of most terrestrial plants. There is a large species variability in occurrence of different types of trichomes such that the molecular regulatory mechanism underlying the formation and the biological function of trichomes in most plant species remain unexplored. Here, we used Chrysanthemum morifolium as a model plant to explore the regulatory network in trichome formation and terpenoid synthesis and unravel the physical and chemical roles of trichomes in constitutive defense against herbivore feeding. By analyzing the trichome-related genes from transcriptome database of the trichomes-removed leaves and intact leaves, we identified CmMYC2 to positively regulate both development of T-shaped and glandular trichomes as well as the content of terpenoids stored in glandular trichomes. Furthermore, we found that the role of CmMYC2 in trichome formation and terpene synthesis was mediated by interaction with CmMYBML1. Our results reveal a sophisticated molecular mechanism wherein the CmMYC2-CmMYBML1 feedback inhibition loop regulates the formation of trichomes (non-glandular and glandular) and terpene biosynthesis, collectively contributing to the enhanced resistance to Spodoptera litura larvae feeding. Our findings provide new insights into the novel regulatory network by which the plant synchronously regulates trichome density for the physical and chemical defense against herbivory.
Collapse
Affiliation(s)
- Yaqin Guan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - You Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanhua Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiayi Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Luo
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Yifan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
9
|
Khan RA, Kumar A, Abbas N. A bHLH transcription factor AaMYC2-type positively regulates glandular trichome density and artemisinin biosynthesis in Artemisia annua. PHYSIOLOGIA PLANTARUM 2024; 176:e14581. [PMID: 39440419 DOI: 10.1111/ppl.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
Artemisinin-based combinational therapies (ACTs) constitute the first line of malaria treatment. However, due to its trichome-specific biosynthesis, low concentration, and poor understanding of regulatory mechanisms involved in artemisinin biosynthesis and trichome development, it becomes very difficult to meet the increased demand for ACTs. Here, we have reported that a bHLH transcription factor, AaMYC2-type, plays an important role in regulating GST development and artemisinin biosynthesis in Artemisia annua. AaMYC2-type encodes a protein that is transcriptionally active and localised to the nucleus. It is prominently expressed in aerial parts like leaves, stems, inflorescence and least expressed in roots. AaMYC2-type expression is significantly increased under different hormonal treatments. In transgenic overexpression lines, AaMYC2-type OE, a significant increase in the expression of trichome development and artemisinin biosynthesis genes was observed. While in knockdown lines, Aamyc2-type, expression of trichome development and artemisinin biosynthesis genes were significantly reduced. Yeast one-hybrid assay clearly shows that the AaMYC2-type directly binds to the E-boxes in the promoter regions of ADS and CYP71AVI. The SEM microscopy depicted the number of trichomes elevated from 11 mm-2 in AaMYC2-type OE lines to 6.1 mm-2 in Aamyc2-type. The final effect of the alteration in biosynthetic and trichome developmental genes was observed in the accumulation of artemisinin. In the AaMYC2-type OE, the artemisinin content was 12 mg g-1DW, which was reduced to 3.2 mg g-1DW in the Aamyc2-type. Altogether, the above findings suggest that the AaMYC2-type play a dual regulating role in controlling both trichome developmental and artemisinin biosynthetic genes.
Collapse
Affiliation(s)
- Rameez Ahmad Khan
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Amit Kumar
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Nazia Abbas
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
10
|
Yang Y, Li Y, Jin L, Li P, Zhou Q, Sheng M, Ma X, Shoji T, Hao X, Kai G. A transcription factor of SHI family AaSHI1 activates artemisinin biosynthesis genes in Artemisia annua. BMC Genomics 2024; 25:776. [PMID: 39123103 PMCID: PMC11312704 DOI: 10.1186/s12864-024-10683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Transcription factors (TFs) of plant-specific SHORT INTERNODES (SHI) family play a significant role in regulating development and metabolism in plants. In Artemisia annua, various TFs from different families have been discovered to regulate the accumulation of artemisinin. However, specific members of the SHI family in A. annua (AaSHIs) have not been identified to regulate the biosynthesis of artemisinin. RESULTS We found five AaSHI genes (AaSHI1 to AaSHI5) in the A. annua genome. The expression levels of AaSHI1, AaSHI2, AaSHI3 and AaSHI4 genes were higher in trichomes and young leaves, also induced by light and decreased when the plants were subjected to dark treatment. The expression pattern of these four AaSHI genes was consistent with the expression pattern of four structural genes of artemisinin biosynthesis and their specific regulatory factors. Dual-luciferase reporter assays, yeast one-hybrid assays, and transient transformation in A. annua provided the evidence that AaSHI1 could directly bind to the promoters of structural genes AaADS and AaCYP71AV1, and positively regulate their expressions. This study has presented candidate genes, with AaSHI1 in particular, that can be considered for the metabolic engineering of artemisinin biosynthesis in A. annua. CONCLUSIONS Overall, a genome-wide analysis of the AaSHI TF family of A. annua was conducted. Five AaSHIs were identified in A. annua genome. Among the identified AaSHIs, AaSHI1 was found to be localized to the nucleus and activate the expression of structural genes of artemisinin biosynthesis including AaADS and AaCYP71AV1. These results indicated that AaSHI1 had positive roles in modulating artemisinin biosynthesis, providing candidate genes for obtaining high-quality new A. annua germplasms.
Collapse
Affiliation(s)
- Yinkai Yang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongpeng Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Li Jin
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Pengyang Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qin Zhou
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Miaomiao Sheng
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaojing Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tsubasa Shoji
- Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Xiaolong Hao
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
11
|
Zhang S, Chen H, Guo S, Wang C, Jiang K, Cui J, Wang B. Artemisia annua ZFP8L regulates glandular trichome development. PHYSIOLOGIA PLANTARUM 2024; 176:e14461. [PMID: 39105262 DOI: 10.1111/ppl.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Trichomes are known to be important biofactories that contribute to the production of secondary metabolites, such as terpenoids. C2H2-zinc finger proteins (C2H2-ZFPs) are vital transcription factors of plants' trichome development. However, little is known about the function of Artemisia annua C2H2-ZFPs in trichome development. To explore the roles of this gene family in trichome development, two C2H2-ZFP transcription factors, named AaZFP8L and AaGIS3, were identified; both are hormonally regulated in A. annua. Overexpression of AaZFP8L in tobacco led to a significant increase in the density and length of glandular trichomes, and improved terpenoid content. In contrast, AaGIS3 was found to positively regulate non-glandular trichome initiation and elongation, which reduces terpenoid accumulation. In addition, ABA contents significantly increased in AaZFP8L-overexpressing tobacco lines and AaZFP8L also can directly bind the promoter of the ABA biosynthesis genes. This study lays the foundation for further investigating A. annua C2H2-ZFPs in trichome development and terpenoid accumulation.
Collapse
Affiliation(s)
- Shiyang Zhang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Haixia Chen
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Sheng Guo
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Chen Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Kerui Jiang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiangyuan Cui
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Bo Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Chen M, Li Z, He X, Zhang Z, Wang D, Cui L, Xie M, Zhao Z, Sun Q, Wang D, Dai J, Gong D. Comparative transcriptome analysis reveals genes involved in trichome development and metabolism in tobacco. BMC PLANT BIOLOGY 2024; 24:541. [PMID: 38872084 DOI: 10.1186/s12870-024-05265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The glandular trichomes of tobacco (Nicotiana tabacum) can efficiently produce secondary metabolites. They act as natural bioreactors, and their natural products function to protect plants against insect-pests and pathogens and are also components of industrial chemicals. To clarify the molecular mechanisms of tobacco glandular trichome development and secondary metabolic regulation, glandular trichomes and glandless trichomes, as well as other different developmental tissues, were used for RNA sequencing and analysis. RESULTS By comparing glandless and glandular trichomes with other tissues, we obtained differentially expressed genes. They were obviously enriched in KEGG pathways, such as cutin, suberine, and wax biosynthesis, flavonoid and isoflavonoid biosynthesis, terpenoid biosynthesis, and plant-pathogen interaction. In particular, the expression levels of genes related to the terpenoid, flavonoid, and wax biosynthesis pathway mainly showed down-regulation in glandless trichomes, implying that they lack the capability to synthesize certain exudate compounds. Among the differentially expressed genes, 234 transcription factors were found, including AP2-ERFs, MYBs, bHLHs, WRKYs, Homeoboxes (HD-ZIP), and C2H2-ZFs. These transcription factor and genes that highly expressed in trichomes or specially expressed in GT or GLT. Following the overexpression of R2R3-MYB transcription factor Nitab4.5_0011760g0030.1 in tobacco, an increase in the number of branched glandular trichomes was observed. CONCLUSIONS Our data provide comprehensive gene expression information at the transcriptional level and an understanding of the regulatory pathways involved in glandular trichome development and secondary metabolism.
Collapse
Affiliation(s)
- Mingli Chen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhiyuan Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xinxi He
- China Tobacco Hunan Industry Co., Ltd, Changsha, China
| | - Zhe Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Wang
- China Tobacco Hunan Industry Co., Ltd, Changsha, China
| | - Luying Cui
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Minmin Xie
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zeyu Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Quan Sun
- College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dahai Wang
- Shandong Weifang Tobacco Co., Ltd, Weifang, China
| | - Jiameng Dai
- Yunnan Key Laboratory of Tobacco Chemistry, China , Tobacco Yunnan Industrial Co., Ltd, Kunming, China.
| | - Daping Gong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
13
|
Dong B, Xu Z, Wang X, Li J, Xiao Y, Huang D, Lv Z, Chen W. TrichomeLess Regulator 3 is required for trichome initial and cuticle biosynthesis in Artemisia annua. MOLECULAR HORTICULTURE 2024; 4:10. [PMID: 38500223 PMCID: PMC10949617 DOI: 10.1186/s43897-024-00085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
Artemisinin is primarily synthesized and stored in the subepidermal space of the glandular trichomes of Artemisia annua. The augmentation of trichome density has been demonstrated to enhance artemisinin yield. However, existing literature lacks insights into the correlation between the stratum corneum and trichomes. This study aims to unravel the involvement of TrichomeLess Regulator 3 (TLR3), which encodes the transcription factor, in artemisinin biosynthesis and its potential association with the stratum corneum. TLR3 was identified as a candidate gene through transcriptome analysis. The role of TLR3 in trichome development and morphology was investigated using yeast two-hybrid, pull-down analysis, and RNA electrophoresis mobility assay. Our research revealed that TLR3 negatively regulates trichome development. It modulates the morphology of Arabidopsis thaliana trichomes by inhibiting branching and inducing the formation of abnormal trichomes in Artemisia annua. Overexpression of the TLR3 gene disrupts the arrangement of the stratum corneum and reduces artemisinin content. Simultaneously, TLR3 possesses the capacity to regulate stratum corneum development and trichome follicle morphology by interacting with TRICHOME AND ARTEMISININ REGULATOR 1, and CycTL. Consequently, our findings underscore the pivotal role of TLR3 in the development of glandular trichomes and stratum corneum biosynthesis, thereby influencing the morphology of Artemisia annua trichomes.
Collapse
Affiliation(s)
- Boran Dong
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zihan Xu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xingxing Wang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - JinXing Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Doudou Huang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
14
|
Shi M, Zhang S, Zheng Z, Maoz I, Zhang L, Kai G. Molecular regulation of the key specialized metabolism pathways in medicinal plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:510-531. [PMID: 38441295 DOI: 10.1111/jipb.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.
Collapse
Affiliation(s)
- Min Shi
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siwei Zhang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zizhen Zheng
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon, LeZion, 7505101, Israel
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
15
|
Li C, Jiang R, Wang X, Lv Z, Li W, Chen W. Feedback regulation of plant secondary metabolism: Applications and challenges. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111983. [PMID: 38211735 DOI: 10.1016/j.plantsci.2024.111983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/04/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Plant secondary metabolites offer resistance to invasion by herbivorous organisms, and are also useful in the chemical, pharmaceutical, cosmetic, and fragrance industries. There are numerous approaches to enhancing secondary metabolite yields. However, a growing number of studies has indicated that feedback regulation may be critical in regulating secondary metabolite biosynthesis. Here, we review examples of feedback regulation in secondary metabolite biosynthesis pathways, phytohormone signal transduction, and complex deposition sites associated with secondary metabolite biosynthesis. We propose a new strategy to enhance secondary metabolite production based on plant feedback regulation. We also discuss challenges in feedback regulation that must be overcome before its application to enhancing secondary metabolite yields. This review discusses recent advances in the field and highlights a strategy to overcome feedback regulation-related obstacles and obtain high secondary metabolite yields.
Collapse
Affiliation(s)
- Chuhan Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Jiang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xingxing Wang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wankui Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
16
|
Li Y, Yang Y, Li L, Tang K, Hao X, Kai G. Advanced metabolic engineering strategies for increasing artemisinin yield in Artemisia annua L. HORTICULTURE RESEARCH 2024; 11:uhad292. [PMID: 38414837 PMCID: PMC10898619 DOI: 10.1093/hr/uhad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 02/29/2024]
Abstract
Artemisinin, also known as 'Qinghaosu', is a chemically sesquiterpene lactone containing an endoperoxide bridge. Due to the high activity to kill Plasmodium parasites, artemisinin and its derivatives have continuously served as the foundation for antimalarial therapies. Natural artemisinin is unique to the traditional Chinese medicinal plant Artemisia annua L., and its content in this plant is low. This has motivated the synthesis of this bioactive compound using yeast, tobacco, and Physcomitrium patens systems. However, the artemisinin production in these heterologous hosts is low and cannot fulfil its increasing clinical demand. Therefore, A. annua plants remain the major source of this bioactive component. Recently, the transcriptional regulatory networks related to artemisinin biosynthesis and glandular trichome formation have been extensively studied in A. annua. Various strategies including (i) enhancing the metabolic flux in artemisinin biosynthetic pathway; (ii) blocking competition branch pathways; (iii) using transcription factors (TFs); (iv) increasing peltate glandular secretory trichome (GST) density; (v) applying exogenous factors; and (vi) phytohormones have been used to improve artemisinin yields. Here we summarize recent scientific advances and achievements in artemisinin metabolic engineering, and discuss prospects in the development of high-artemisinin yielding A. annua varieties. This review provides new insights into revealing the transcriptional regulatory networks of other high-value plant-derived natural compounds (e.g., taxol, vinblastine, and camptothecin), as well as glandular trichome formation. It is also helpful for the researchers who intend to promote natural compounds production in other plants species.
Collapse
Affiliation(s)
- Yongpeng Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yinkai Yang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolong Hao
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
17
|
Wang X, Sun W, Fang S, Dong B, Li J, Lv Z, Li W, Chen W. AaWRKY6 contributes to artemisinin accumulation during growth in Artemisia annua. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111789. [PMID: 37421981 DOI: 10.1016/j.plantsci.2023.111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Artemisinin, which is extracted from the plant Artemisia annua L., is a crucial drug for curing malaria and has potential applications for treating cancer, diabetes, pulmonary tuberculosis, and other conditions. Demand for artemisinin is therefore high, and enhancing its yield is important. Artemisinin dynamics change during the growth cycle of A. annua; however, the regulatory networks underlying these changes are poorly understood. Here, we collected A. annua leaves at different growth stages and identified target genes from transcriptome data. We determined that WRKY6 binds to the promoters of the artemisinin biosynthesis gene artemisinic aldehyde Δ11(13) reductase (DBR2). In agreement, overexpression of WRKY6 in A. annua resulted in higher expression levels of genes in the artemisinin biosynthesis pathway and greater artemisinin contents than in the wild type. When expression of WRKY6 was down-regulated, artemisinin biosynthesis pathway genes were also down-regulated and the content of artemisinin was lower. WRKY6 mediates the transcriptional activation of artemisinin biosynthesis by binding to the promoter of DBR2, making it a key regulator for modulating the dynamics of artemisinin changes during the A. annua growth cycle.
Collapse
Affiliation(s)
- Xingxing Wang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenjing Sun
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyuan Fang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Boran Dong
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - JinXing Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wankui Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
18
|
Xie Z, Mi Y, Kong L, Gao M, Chen S, Chen W, Meng X, Sun W, Chen S, Xu Z. Cannabis sativa: origin and history, glandular trichome development, and cannabinoid biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad150. [PMID: 37691962 PMCID: PMC10485653 DOI: 10.1093/hr/uhad150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023]
Abstract
Is Cannabis a boon or bane? Cannabis sativa has long been a versatile crop for fiber extraction (industrial hemp), traditional Chinese medicine (hemp seeds), and recreational drugs (marijuana). Cannabis faced global prohibition in the twentieth century because of the psychoactive properties of ∆9-tetrahydrocannabinol; however, recently, the perspective has changed with the recognition of additional therapeutic values, particularly the pharmacological potential of cannabidiol. A comprehensive understanding of the underlying mechanism of cannabinoid biosynthesis is necessary to cultivate and promote globally the medicinal application of Cannabis resources. Here, we comprehensively review the historical usage of Cannabis, biosynthesis of trichome-specific cannabinoids, regulatory network of trichome development, and synthetic biology of cannabinoids. This review provides valuable insights into the efficient biosynthesis and green production of cannabinoids, and the development and utilization of novel Cannabis varieties.
Collapse
Affiliation(s)
- Ziyan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaolei Mi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Maolun Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
19
|
Man J, Shi Y, Huang Y, Zhang X, Wang X, Liu S, He G, An K, Han D, Wang X, Wei S. PnMYB4 negatively modulates saponin biosynthesis in Panax notoginseng through interplay with PnMYB1. HORTICULTURE RESEARCH 2023; 10:uhad134. [PMID: 37564268 PMCID: PMC10410195 DOI: 10.1093/hr/uhad134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/25/2023] [Indexed: 08/12/2023]
Abstract
Saponins are the main triterpenoid ingredients from Panax notoginseng, a well-known Chinese medicine, and are important sources for producing drugs to prevent and treat cerebrovascular and cardiovascular diseases. However, the transcriptional regulatory network of saponin biosynthesis in P. notoginseng is largely unknown. In the present study we demonstrated that one R2R3-MYB transcription factor, designated PnMYB4, acts as a repressor of saponin accumulation. Suppression of PnMYB4 in P. notoginseng calli significantly increased the saponin content and the expression level of saponin biosynthetic genes. PnMYB4 directly bound to the promoters of key saponin biosynthetic genes, including PnSS, PnSE, and PnDS, to repress saponin accumulation. PnMYB4 and the activator PnMYB1 could interacted with PnbHLH, which is a positive regulator of saponin biosynthesis, to modulate the biosynthesis of saponin. PnMYB4 competed with PnMYB1 for binding to PnbHLH, repressing activation of the promoters of saponin structural genes induced by the PnMYB1-PnbHLH complex. Our study reveals that a complex regulatory module of saponin biosynthesis is associated with positive and negative MYB transcriptional regulators and provides a theoretical basis for improving the content of saponins and efficacy of P. notoginseng.
Collapse
Affiliation(s)
- Jinhui Man
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yue Shi
- School of Life and Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuying Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shanhu Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gaojie He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Kelu An
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongran Han
- School of Life and Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shengli Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
20
|
Zhao Y, Liu G, Yang F, Liang Y, Gao Q, Xiang C, Li X, Yang R, Zhang G, Jiang H, Yu L, Yang S. Multilayered regulation of secondary metabolism in medicinal plants. MOLECULAR HORTICULTURE 2023; 3:11. [PMID: 37789448 PMCID: PMC10514987 DOI: 10.1186/s43897-023-00059-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/27/2023] [Indexed: 10/05/2023]
Abstract
Medicinal plants represent a huge reservoir of secondary metabolites (SMs), substances with significant pharmaceutical and industrial potential. However, obtaining secondary metabolites remains a challenge due to their low-yield accumulation in medicinal plants; moreover, these secondary metabolites are produced through tightly coordinated pathways involving many spatiotemporally and environmentally regulated steps. The first regulatory layer involves a complex network of transcription factors; a second, more recently discovered layer of complexity in the regulation of SMs is epigenetic modification, such as DNA methylation, histone modification and small RNA-based mechanisms, which can jointly or separately influence secondary metabolites by regulating gene expression. Here, we summarize the findings in the fields of genetic and epigenetic regulation with a special emphasis on SMs in medicinal plants, providing a new perspective on the multiple layers of regulation of gene expression.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanze Liu
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
| | - Feng Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Liang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qingqing Gao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunfan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xia Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Run Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanghui Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Lei Yu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China.
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China.
| |
Collapse
|
21
|
Fang S, Qiu S, Chen K, Lv Z, Chen W. The transcription factors SbMYB45 and SbMYB86.1 regulate flavone biosynthesis in Scutellaria baicalensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107794. [PMID: 37257409 DOI: 10.1016/j.plaphy.2023.107794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Scutellaria baicalensis Georgi is an important Chinese medicinal plant that is rich in the flavones baicalin, wogonoside, and wogonin, providing it with anti-cancer, anti-inflammatory, and antibacterial properties. However, although the biosynthetic pathways of baicalin and its derivates have been elucidated, the regulation of flavone biosynthesis in S. baicalensis is poorly understood. Here, we found that the contents of baicalin and its derivates increased and that baicalin biosynthetic pathway genes were induced in response to light, and baicalin and baicalein are not exclusively produced in the roots of S. baicalensis. Based on the fact that MYB transcription factors are known to play important roles in flavone biosynthesis, we identified SbMYB45 and SbMYB86.1 in S. baicalensis and determined that they bind to the promoter of the flavone biosynthesis gene SbCHI to enhance its transcription. Moreover, overexpressing SbMYB45 and SbMYB86.1 enhanced the accumulation of baicalin in S. baicalensis leaves. We demonstrate that SbMYB45 and SbMYB86.1 bind to the cis-acting element MBSII in the promoter of CHI to redundantly induce its expression upon light exposure. These findings indicate that SbMYB45 and SbMYB86.1 transcriptionally activate SbCHI in response to light and enhance flavone contents in S. baicalensis.
Collapse
Affiliation(s)
- Shiyuan Fang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shi Qiu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kaixian Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
22
|
Kayani SI, Ma Y, Fu X, Qian S, Li Y, Rahman SU, Peng B, Liu H, Tang K. JA-regulated AaGSW1-AaYABBY5/AaWRKY9 complex regulates artemisinin biosynthesis in Artemisia annua. PLANT & CELL PHYSIOLOGY 2023:pcad035. [PMID: 37098222 DOI: 10.1093/pcp/pcad035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 06/19/2023]
Abstract
Artemisinin, a sesquiterpene lactone from A. annua, is an essential therapeutic against malaria. YABBY family transcription factor; AaYABBY5 is an activator of AaCYP71AV1 (cytochrome P450-dependent hydroxylase) and AaDBR2 (double bond reductase 2); however, the protein-protein interactions of AaYABBY5, as well as the mechanism of its regulation, are not elucidated before. AaWRKY9 protein is a positive regulator of artemisinin biosynthesis that activates AaGSW1 (Glandular trichome specific WRKY1) and AaDBR2 (double bond reductase 2), respectively. In this study, YABBY-WRKY interactions are revealed to indirectly regulate artemisinin production. AaYABBY5 significantly increased the activity of the luciferase (LUC) gene fused to the promoter of AaGSW1. Towards the molecular basis of this regulation, AaYABBY5 interaction with AaWRKY9 protein was found. The combined effectors AaYABBY5 + AaWRKY9 showed synergistic effects toward the activities of AaGSW1, and AaDBR2 promoters, respectively. In AaYABBY5 over-expression plants, the expression of GSW1 was found significantly increase when compared to that of AaYABBY5 antisense or control plants. Secondly, AaGSW1 was seen as an upstream activator of AaYABBY5. Thirdly, it was found that AaJAZ8, a transcriptional repressor of jasmonates signaling, interacted with AaYABBY5 and attenuated its activity. Co-expression of AaYABBY5 and antiAaJAZ8 in A. annua increased the activity of AaYABBY5 towards artemisinin biosynthesis. For the first time, the current study provided the molecular basis of regulation of artemisinin biosynthesis through YABBY-WRKY interactions and its regulation through AaJAZ8. This knowledge provides AaYABBY5 overexpression plants as a powerful genetic resource for artemisinin biosynthesis.
Collapse
Affiliation(s)
- Sadaf-Ilyas Kayani
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Food and Biological Engineering, Jiangsu University
| | - Yanan Ma
- Memorial Sloan Kettering Cancer Center, New York City, United States
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shen Qian
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongpeng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saeed-Ur Rahman
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
23
|
Zhao L, Zhu Y, Jia H, Han Y, Zheng X, Wang M, Feng W. From Plant to Yeast-Advances in Biosynthesis of Artemisinin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206888. [PMID: 36296479 PMCID: PMC9609949 DOI: 10.3390/molecules27206888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022]
Abstract
Malaria is a life-threatening disease. Artemisinin-based combination therapy (ACT) is the preferred choice for malaria treatment recommended by the World Health Organization. At present, the main source of artemisinin is extracted from Artemisia annua; however, the artemisinin content in A. annua is only 0.1-1%, which cannot meet global demand. Meanwhile, the chemical synthesis of artemisinin has disadvantages such as complicated steps, high cost and low yield. Therefore, the application of the synthetic biology approach to produce artemisinin in vivo has magnificent prospects. In this review, the biosynthesis pathway of artemisinin was summarized. Then we discussed the advances in the heterologous biosynthesis of artemisinin using microorganisms (Escherichia coli and Saccharomyces cerevisiae) as chassis cells. With yeast as the cell factory, the production of artemisinin was transferred from plant to yeast. Through the optimization of the fermentation process, the yield of artemisinic acid reached 25 g/L, thereby producing the semi-synthesis of artemisinin. Moreover, we reviewed the genetic engineering in A. annua to improve the artemisinin content, which included overexpressing artemisinin biosynthesis pathway genes, blocking key genes in competitive pathways, and regulating the expression of transcription factors related to artemisinin biosynthesis. Finally, the research progress of artemisinin production in other plants (Nicotiana, Physcomitrella, etc.) was discussed. The current advances in artemisinin biosynthesis may help lay the foundation for the remarkable up-regulation of artemisinin production in A. annua through gene editing or molecular design breeding in the future.
Collapse
Affiliation(s)
- Le Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunhao Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Haoyu Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yongguang Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Plant Research and Development, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (M.W.); (W.F.); Tel.: +86-134-2629-2115 (M.W.); +86-371-60190296 (W.F.)
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (M.W.); (W.F.); Tel.: +86-134-2629-2115 (M.W.); +86-371-60190296 (W.F.)
| |
Collapse
|
24
|
Structural Characterization and In-Vitro Antioxidant and Immunomodulatory Activities of Polysaccharide Fractions Isolated from Artemisia annua L. Molecules 2022; 27:molecules27113643. [PMID: 35684579 PMCID: PMC9182033 DOI: 10.3390/molecules27113643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
Arimisia annua L. is an important anticancer herb used in traditional Chinese medicine. The molecular basis underpinning the anticancer activity is complex and not fully understood, but the herbal polysaccharides, broadly recognised as having immunomodulatory, antioxidant and anticancer activities, are potential key active agents. To examine the functions of polysaccharides from A. annua, their immunomodulatory and antioxidant potentials were evaluated, as well as their structural characterization. The water-soluble polysaccharides (AAPs) were fractionated using size-exclusion chromatography to obtain three dominant fractions, AAP-1, AAP-2 and AAP-3, having molecular masses centered around 1684, 455 and 5.8kDa, respectively. The antioxidant potentials of the isolated polysaccharides were evaluated by measuring radical scavenging activities against DPPH● (2,2-diphenyl-1-picrylhydrazyl radical), ABTS●+ (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid radical ion), and the OH● (hydroxyl radical). AAP-1 displayed high antioxidant activities against these radicals, which were 68%, 73% and 78%, respectively. AAP-2 displayed lower scavenging activities than the other two fractions. Immunostimulatory activities of AAPs were measured using mouse macrophages. The three polysaccharide fractions displayed significant antioxidant activities and stimulated the production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). AAP-1 showed significant immunostimulatory activity (16-fold increase in the production of IL-6 compared to the control and 13-fold increase in the production of TNF-α) with low toxicity (>60% cell viability at 125 μg/mL concentration). Preliminary structural characterization of the AAPs was carried out using gas chromatography (GC) and FTIR techniques. The results indicate that AAP-1 and AAP-2 are pyranose-containing polysaccharides with β-linkages, and AAP-3 is a β-fructofuranoside. The results suggest that these polysaccharides are potential candidates for immunotherapy and cancer treatment.
Collapse
|
25
|
Han G, Li Y, Yang Z, Wang C, Zhang Y, Wang B. Molecular Mechanisms of Plant Trichome Development. FRONTIERS IN PLANT SCIENCE 2022; 13:910228. [PMID: 35720574 PMCID: PMC9198495 DOI: 10.3389/fpls.2022.910228] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 05/25/2023]
Abstract
Plant trichomes, protrusions formed from specialized aboveground epidermal cells, provide protection against various biotic and abiotic stresses. Trichomes can be unicellular, bicellular or multicellular, with multiple branches or no branches at all. Unicellular trichomes are generally not secretory, whereas multicellular trichomes include both secretory and non-secretory hairs. The secretory trichomes release secondary metabolites such as artemisinin, which is valuable as an antimalarial agent. Cotton trichomes, also known as cotton fibers, are an important natural product for the textile industry. In recent years, much progress has been made in unraveling the molecular mechanisms of trichome formation in Arabidopsis thaliana, Gossypium hirsutum, Oryza sativa, Cucumis sativus, Solanum lycopersicum, Nicotiana tabacum, and Artemisia annua. Here, we review current knowledge of the molecular mechanisms underlying fate determination and initiation, elongation, and maturation of unicellular, bicellular and multicellular trichomes in several representative plants. We emphasize the regulatory roles of plant hormones, transcription factors, the cell cycle and epigenetic modifications in different stages of trichome development. Finally, we identify the obstacles and key points for future research on plant trichome development, and speculated the development relationship between the salt glands of halophytes and the trichomes of non-halophytes, which provides a reference for future studying the development of plant epidermal cells.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
26
|
Wang X, Wang B, Yuan F. Lb1G04202, an Uncharacterized Protein from Recretohalophyte Limonium bicolor, Is Important in Salt Tolerance. Int J Mol Sci 2022; 23:5401. [PMID: 35628211 PMCID: PMC9140551 DOI: 10.3390/ijms23105401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
With global increases in saline soil, it has become increasingly important to decipher salt-tolerance mechanisms and identify strategies to improve salt tolerance in crops. Halophytes complete their life cycles in environments containing ≥200 mM NaCl; these remarkable plants provide a potential source of genes for improving crop salt tolerance. Recretohalophytes such as Limonium bicolor have salt glands that secrete Na+ on their leaf epidermis. Here, we identified Lb1G04202, an uncharacterized gene with no conserved domains, from L. bicolor, which was highly expressed after NaCl treatment. We confirmed its expression in the salt gland by in situ hybridization, and then heterologously expressed Lb1G04202 in Arabidopsis thaliana. The transgenic lines had a higher germination rate, greater cotyledon growth percentage, and longer roots than the wild type (WT) under NaCl treatments (50, 100 and 150 mM). At the seedling stage, the transgenic lines grew better than the WT and had lower Na+ and malonyldialdehyde accumulation, and higher K+ and proline contents. This corresponded with the high expression of the key proline biosynthesis genes AtP5CS1 and AtP5CS2 under NaCl treatment. Isotonic mannitol treatment showed that Lb1G04202 overexpression significantly relieved osmotic stress. Therefore, this novel gene provides a potential target for improving salt tolerance.
Collapse
Affiliation(s)
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan 250014, China;
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan 250014, China;
| |
Collapse
|